
PersPective Article
published: 30 June 2011

doi: 10.3389/fpls.2011.00025

OSC, lanosterol synthase (LAS), for sterol biosynthesis. However, 
higher plants have several OSCs not only for sterol biosynthesis, 
such as cycloartenol synthase (CAS) and LAS (Ohyama et al., 2009), 
but also for triterpenoid biosynthesis. The molecular diversity of 
OSCs enables more than 100 skeletal variations of triterpenoids in 
plants (Xu et al., 2004). Until now, some dozens of OSC genes from 
not only model plants but also crops and medicinal plants have been 
cloned and functionally characterized (reviewed in Kushiro and 
Ebizuka, 2010). For example, the Arabidopsis thaliana genome has 
13 OSC genes, and the functional identification of these genes has 
been completed, at least, by in vitro experiments. Most of the OSCs 
from eudicots are phylogenetically classified into some groups, and 
the reaction products differ from group to group. The site-directed 
mutagenesis and homology modeling of plant OSCs have been 
carried out to investigate the reaction mechanisms regarding their 
product variety (reviewed in Kushiro and Ebizuka, 2010). Of OSCs 
from various organisms, the structure of human LAS protein was 
elucidated (Thoma et al., 2004).

After an OSC constructs the basic triterpenoid skeleton, the 
skeleton is modified to a hydrophobic aglycone called sapogenin. 
The first modification is oxidation catalyzed by cytochrome P450 
monooxygenase (P450), and this step enables further modifica-
tions such O-glycosylation. P450 is highly diverse and catalyzes 
several kinds of chemical reactions committed to the secondary 
metabolism (Kahn and Durst, 2000).

Glycosylation is essential for saponin biosynthesis. Glycosylation 
increases the water solubility and changes the biological activity 
of triterpenoid. Uridine diphosphate (UDP)-dependent glycosyl-
transferases (UGTs) recognize a wide range of natural products as 
acceptor molecules.

P450 species and UGTs belong to multigene families and are the 
key factors for explosive diversification of other natural products in 
plants. In the case of reported P450 species in saponin biosynthesis, 
those CYP families vary respecting not only the carbon skeletons of the 
triterpenoid substrates but also the target positions of the  reactions. 

IntroductIon
Triterpenoids including steroids are a highly diverse group of natu-
ral products widely distributed in plants (Vincken et al., 2007). 
Plants often accumulate these compounds in their glycosylated 
form – saponin. Saponins comprise hydrophobic triterpenoid agly-
cones called sapogenin and one or more hydrophilic sugar moieties.

Biologically, plant saponins are considered defensive com-
pounds against pathogenic microbes and herbivores (Osbourn, 
1996; Kuzina et al., 2009; Szakiel et al., 2011). These saponins 
also have beneficial properties for humans. For example, Panax 
and Glycyrrhiza plants are well-known traditional herbal medi-
cines containing saponins, ginsenosides, and glycyrrhizin, respec-
tively, with various pharmacological effects (Shibata, 2000, 2001). 
Saponins have a variety of other applications as well. They show 
foaming ability when mixed with water, as indicated by the word 
sapo, meaning soap in Latin. In fact, Saponaria officinalis (common 
soapwort) and Quillaja saponaria (soapbark) have been used as 
soap. The saponins of Q. saponaria are also used as emulsifiers in 
cosmetics and foods. Furthermore, glycyrrhizin is used as a natural 
sweetener, with 150 times the sweetness of sugar.

In this article, we summarize the genes involved in triterpe-
noid biosynthesis identified to date and the recent advances in the 
bioengineering production of useful plant terpenoids; finally, we 
provide a perspective on the bioengineering of plant triterpenoids.

trIterpenoId bIosynthesIs
Terpenoids are built up from C5 units, isopentenyl diphosphate 
(IPP). IPP is supplied from the cytosolic mevalonic acid (MVA) 
pathway and the plastidal methylerythritol phosphate (MEP) 
pathway. Triterpenoids and sesquiterpenoids are biosynthesized 
via the MVA pathway, whereas monoterpenoids, diterpenoid, and 
tetraterpenoids are biosynthesized via the MEP pathway. The first 
diversifying step in triterpenoid biosynthesis is the cyclization of 
2,3-oxidosqualene catalyzed by oxidosqualene cyclase (OSC; Abe 
et al., 1993; Figure 1). In general, animals and fungi have only one 
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The diversity of these enzymes makes identification of the genes for 
saponin biosynthesis difficult. The genes involved in triterpenoid bio-
synthesis identified in plants to date are presented as follows.

trIterpenoIds In ArAbidopsis thAliAnA
The first model plant A. thaliana has total 13 OSCs, 246 P450 spe-
cies (Werck-Reichhart et al., 2002) and 112 UGTs (Paquette et al., 
2003). The protein encoded by At5g48010, an OSC, was identified 
as thalianol synthase (Fazio et al., 2004). However, no tricyclic triter-
penoid including thalianol had been reported in Brassicales at that 
time. After that thalianol was detected at about 0.4% of total sterols 
in the root of A. thaliana, CYP708A2 and CYP705A5 were identi-
fied as P450 species in thalianol metabolism (Field and Osbourn, 
2008). Although the details of variety and content of saponins in 
A. thaliana have not been clarified, Warnecke et al. (1997) reported 
one UGT for sterol glycosylation.

soyasaponIns In Glycine mAx
Glycine max mainly accumulates β-amyrin-derived oleanane-type 
triterpenoid saponins termed soyasaponins (Kitagawa et al., 1982, 
1988; Burrows et al., 1987; Taniyama et al., 1988; Shiraiwa et al., 

1991a,b; Kudou et al., 1992, 1993; Tsukamoto et al., 1993; Kikuchi 
et al., 1999). Soyasaponins are divided into two groups: 2,3-dihy-
dro-2,5-dihydroxy-6-methyl-4H-pyran-4-one (DDMP) saponins 
have soyasapogenol B as their aglycone and group A saponins have 
soyasapogenol A as their aglycone. Soyasapogenol B is a C-22- and 
C-24-hydroxylated β-amyrin, and soyasapogenol A has an addi-
tional hydroxyl group at C-21.

Although DDMP saponins and their derivatives have beneficial 
effects on human health, some group A saponins are unfavorable 
because of their astringent taste (Okubo et al., 1992). To reduce 
the astringent taste of soybean, transgenic soybean plants with sup-
pressing β-amyrin synthase (bAS), an OSC, gene by RNAi silencing 
were generated. The sapogenol levels of the transgenic seeds were 
reduced to below 500 μg g−1 or about 25% of the content in wild type 
(Maxwell et al., 2004). Only CYP93E1 C-24 hydroxylase was identi-
fied as an oxidase in soyasaponin biosynthesis (Shibuya et al., 2006). 
Soyasaponin βg, the main soyasaponin in G. max, is soyasapogenol 
B that attaches three sugar molecules, glucuronic acid, galactose, 
and rhamnose, at the C-3 hydroxyl group. UGT73P2 and UGT91H4 
attach the second and third sugars in the sugar chain, respectively 
(Shibuya et al., 2010). These UGTs were selected as G. max expressed 

FiGUre 1 | Triterpenoid biosynthetic pathway. After the cyclization of 2,3-oxidosqualene catalyzed by OSC, a triterpenoid undergoes various modifications 
including P450-catalyzed oxidation and UGT-catalyzed glycosylation. Blue arrows, OSC-catalyzed steps; red arrows, P450-catalyzed steps; green arrows, additional 
modifications including UGT-catalyzed steps.
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et al., 1999; Haralampidis et al., 2001; Qi et al., 2006; Mylona et al., 
2008; Mugford et al., 2009). Genetic analysis showed five Sad loci, 
Sad2, Sad3, Sad6, Sad7, and Sad8, are within 3.6 cM around the Sad1 
locus, and especially three Sad genes, Sad1, Sad3, and Sad7, clearly 
clustered in the genome (Qi et al., 2004). A cluster of such genes 
was also found in the A. thaliana genome for thalianol metabolism 
(Field and Osbourn, 2008). These clusters interest in the evolution-
ary process of triterpenoid biosynthesis in plants (Osbourn, 2010).

VaccarosIdes In sAponAriA vAccAriA
The seeds of S. vaccaria, used in traditional Chinese medicine, 
accumulate oleanane-type saponins called vaccarosides. The agly-
cone of vaccaroside B is a C-23 and C-28 carboxylated β-amyrin, 
gypsogenic acid. A bAS cDNA was cloned by homology-based PCR 
(Meesapyodsuk et al., 2007). UGT74M1, with sequence similar-
ity to other plant ester-forming glucosyltransferases, was cloned 
from the developing seed EST library and identified as an UDP-
glucosyltransferase to C-28 of gypsogenic acid in an ester linkage 
(Meesapyodsuk et al., 2007).

GInsenosIdes In pAnAx GinsenG
Panax ginseng is a famous medicinal plant in Asia. The main phar-
macologically active compounds in the ginseng are saponins called 
ginsenosides (Shibata, 2001). Major ginsenosides have a damma-
rane skeleton constructed by an OSC, dammarenediol-II synthase 
(PNA). Ginsenoside R

0
, a minor ginsenoside, is derived only from 

β-amyrin. Ebizuka and coworkers identified CAS, two bAS, LAS, 
and PNA cDNAs from hairy root cultures of P. ginseng in the 
ginsenoside-accumulating period (Kushiro et al., 1998a,b; Suzuki 
et al., 2006; Tansakul et al., 2006). Han et al. (2006) also identified 
PNA from the flower-accumulated dammarane-type saponins. The 
genes encoding P450 and UGTs committed to ginsenoside biosyn-
thesis would be identifiable from such resources in the near future.

bIotechnoloGIcal productIon of useful plant 
terpenoIds
Although almost all production of glycyrrhizin depends on the 
collection of wild licorice, its harvesting is restricted to prevent 
exhaustion and desertification in the main producing country, 
China. Similarly, ginseng requires 4–5 years of careful cultivation 
and prevention of injury by continuous cropping. Such problems 
occur not only for saponins but also for other natural plant prod-
ucts. To ensure their stable supply, environment-friendly, and 
lower-cost alternatives such as biotechnological production are 
necessary. In the following, we describe the recent advances in the 
biotechnological production of useful terpenoids.

artemIsInIn
Artemisinin, a sesquiterpenoid originally sourced from Artemisia 
annua, is used in combination therapy for malaria. The cost of ther-
apy is too high for people in low-income countries where malaria is 
prevalent, and total synthesis of artemisinin (Schmid and Hofheinz, 
1983) is not easy at low cost. Semi-synthesis of artemisinin from 
artemisinic acid (Roth and Acton, 1989) derived by fermentation 
could be an alternative lower-cost supply method (White, 2008). 
Ro et al. (2006) genetically modified yeast to increased productivity 
of a sesquiterpenoid biosynthesis starter, farnesyl pyrophosphate 

sequence tags (ESTs) with homologous sequences in the EST data-
base of Medicago truncatula, which also produces a soyasaponin 
βg intermediate called soyasaponin I (Huhman et al., 2005). The 
activity of the first UGT, UDP-glucuronic acid:soyasapogenol 
B-glucuronyl transferase, was detected in the microsomal frac-
tion of G. max (Kurosawa et al., 2002). However, no gene encod-
ing the UGT has been cloned. Group A saponins with a terminal 
acetylated sugar in the C-22 sugar chain accumulate only in seed 
hypocotyls (Shimoyamada et al., 1990). A gene controlling the 
terminal sugar variety was mapped on soybean chromosome 7 
(Takada et al., 2010).

saponIns In medicAGo truncAtulA
Medicago truncatula, a leguminous model plant, accumulates over 
30 oleanane-type saponins (Huhman et al., 2005). A corresponding 
bAS cDNA was identified by EST database mining (Suzuki et al., 
2002) and homology-based PCR (Iturbe-Ormaetxe et al., 2003). 
UGT73K1 and UGT71G1 were characterized as triterpenoid gly-
cosyltransferases by integrated analysis of the transcriptome and 
metabolome of M. truncatula, but UGT71G1 preferred some flavo-
noids to triterpenoids as substrates in vitro (Achnine et al., 2005). 
Although the glycosylated positions by both UGTs were not clari-
fied in vitro, in silico docking simulation of the UGT71G1 crystal 
structure with UDP-glucose and medicagenic acid suggested that 
UGT71G1 can transfer a glucose molecule to the hydroxyl group 
at C-3 (Shao et al., 2005). UGT73F3 was identified as a glucosyl-
transferase of the hederagenin C-28 carboxyl group in an ester 
linkage by cluster analysis of transcription patterns and genetic 
loss-of-function analysis (Naoumkina et al., 2010).

GlycyrrhIzIn In lIcorIce
Glycyrrhizin is an oleanane-type saponin present in the under-
ground parts of licorice (Glycyrrhiza). For use as a medicinal herb, 
the Japanese pharmacopia standard requires the root or stolon with 
2.5% or more glycyrrhizin content. The biosynthetic pathway of 
glycyrrhizin from β-amyrin involves hydroxylations at C-11 and 
C-30, and two steps of glucuronyl transfers to the hydroxyl group 
at C-3. A bAS was identified from G. glabra (Hayashi et al., 2001). 
Further, we identified CYP88D6 as a β-amyrin C-11 oxidase (Seki 
et al., 2008). For CYP88D6 cloning, we first constructed an EST 
library of the underground parts (Sudo et al., 2009). On the basis 
of the sequence similarities, we identified P450 genes and selected 
the candidate P450 gene expressed in glycyrrhizin-accumulating 
tissues. In addition, CYP93E3 was identified as a β-amyrin C-24 
oxidase in the secondary metabolism of glycyrrhizin. Further 
investigation is currently undertaken in our group for identify-
ing other candidate genes including another P450 responsible for 
C-30 oxygenation (Seki et al., submitted) and UGTs involved in 
the biosynthetic pathway of glycyrrhizin.

aVenacIns In AvenA striGosA
Avena spp. (oats) produce antimicrobial oleanane-type saponins 
called avenacins. Osbourn and coworkers generated saponin-defi-
cient (sad) mutants of A. strigosa; cloned Sad1, encoding bAS, Sad2, 
encoding CYP51H10 β-amyrin oxidase, and Sad7, encoding serine 
carboxypeptidase-like acyltransferase; and investigated sad3 and sad4 
mutants accumulating a monodeglucosyl avenacin (Papadopoulou 
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daffodil and crtI encoding phytoene desaturase from the bacterium 
Erwinia uredovora produced provitamin A, the content was not 
enough to meet the recommended daily allowance for children 
even in the regions where rice is a staple food. Therefore, Golden 
rice 2 was developed (Paine et al., 2005). The replacement of psy 
from daffodil by psy from maize improved the content adequately 
(>30 μg g−1).

Carotenoids are also popular targets in metabolically engineered 
microbial production. Alper et al. (2005) combined systematic 
and combinatorial gene knockout target identification methods 
in E. coli to increase the productivity of a well-known carotenoid 
pigment in tomato, lycopene. First, strain genotypes were system-
atically designed with gene knockouts reported to improve produc-
tivity. These strains then underwent deletions of unknown genes by 
a combinatorial transposon-based search. After the combination, 
the strain produced a high amount of lycopene (23 mg g−1 dry cell 
weight). Recently, an engineered E. coli with the MVA pathway 
genes from Enterococcus faecalis and Streptococcus pneumoniae and 
β-carotene biosynthesis genes produced β-carotene of 465 mg l−1 
(Yoon et al., 2009). Furthermore, improvement in the culture con-
dition of the recombinant E. coli increased the β-carotene titer to 
663 mg l−1 (Kim et al., 2009).

bIoenGIneerInG of plant trIterpenoIds
In plants, overexpression of 3-hydroxy-3-methylgulutaryl-CoA 
reductase (HMGR), FPP synthase (FPS), and squalene synthase 
in the isoprenoid pathway has been attempted to increase triter-
penoid productivity (Chappell et al., 1995; Schaller et al., 1995; 
Harker et al., 2003; Lee et al., 2004; Seo et al., 2005; Hey et al., 2006; 
Muñoz-Bertomeu et al., 2007; Lu et al., 2008; Kim et al., 2010). 
Despite the improved productivities per unit weight, the trans-
genic plants sometimes showed growth inhibition (Masferrer et al., 
2002; Manzano et al., 2004; Shim et al., 2010), probably caused by 
metabolic imbalances. In fact, co-overexpression of FPS and the 
HMGR catalytic domain alleviated the growth inhibition caused 
by the individual overexpression of FPS or the HMGR catalytic 
domain (Manzano et al., 2004). Further elucidation of isoprenoid 
biosynthetic mechanisms is required to improve triterpenoid pro-
ductivity in plants.

Furthermore, future challenging targets to elucidate for bioen-
gineering of plant triterpenoids should be the regulatory mecha-
nisms of the biosynthetic gene expressions and the accumulation 
mechanisms of triterpenoids. Saponins are frequently accumulated 
in specific tissues and organs. Glycyrrhizin and ginsenosides are 
accumulated in xylems of roots of licorice and ginseng, respec-
tively (Shan et al., 2001; Fukuda et al., 2006). Genes for saponin 
biosynthesis also express in specific tissues and organs. In avena, 
Sad genes are expressed in the root epidermal cells accumulating 
avenacin A-1 (Haralampidis et al., 2001; Qi et al., 2006; Mylona 
et al., 2008; Mugford et al., 2009). In addition, metabolomic and 
transcriptomic analyses showed good correlations between expres-
sions of the biosynthetic genes and the accumulations (Matsuda 
et al., 2010). In fact, recent successes for identification of sapo-
nin biosynthetic genes are based on such correlation analysis as 
described above. Those observations indicate that saponin pro-
ductions are regulated most likely at the transcription level and 
thus implying the existence of specific transcription factor(s) for 

(FPP), and expressed cDNAs encoding an amorphadiene synthase 
(ADS), CYP71AV1, and a cytochrome P450 reductase (CPR) from 
A. annua in the yeast. The recombinant yeast produced a large 
amount of artemisinic acid (115 mg l−1). Subsequent improvement 
in the fermentation process increased the artemisinic acid titer to 
2.5 g l−1 (Lenihan et al., 2008). On the other hand, an engineered 
Escherichia coli-integrated yeast MEV pathway to supply a large 
amount of FPP (Martin et al., 2003), modified CYP71AV1 at the 
N-terminus, and CPR produced 105 mg l−1 of artemisinic acid 
(Chang et al., 2007). Further improvement in the MEV pathway 
achieved an amorphadiene titer of 27.4 g l−1 (Tsuruta et al., 2009).

taxol (paclItaxel)
Taxol (paclitaxel) is a diterpenoid used against numerous cancers. 
Originally, Taxol was isolated from the bark of pacific yew (Taxus 
brevifolia) at low content (Wani et al., 1971). The complex struc-
ture of this drug limits its commercial chemical synthesis (Holton 
et al., 1994a,b; Nicolaou et al., 1994). Therefore, semi-synthesis 
from more accessible biosynthetic intermediates such 10-deacetylb-
accatin III and production in Taxus plant cell cultures have been 
developed as alternative supply methods (Kingston, 2007), which 
still depend on plant sources. For further improvement in pro-
ductivity and reduction in the therapeutic cost, biosynthetic pro-
duction has been attempted. Introduction of several biosynthetic 
enzyme genes for Taxol in yeast resulted in the production of only 
trace amounts of the first hydroxylated intermediate, taxadien-
5α-ol (Dejong et al., 2006).

On the other hand, Ajikumar et al. (2010) presented an optimi-
zation termed multivariate modular pathway engineering for taxa-
diene production in E. coli. They divided the taxadiene-producing 
pathway into two modules at the isopentenyl pyrophosphate step 
and searched for the optimal balance of the expression strength 
of each module for taxadiene production. The optimization ena-
bled over 1 g l−1 of taxadiene production in E. coli, and subsequent 
expression of a chimeric protein from CYP725A4, a taxadien-5α-
hydroxylase, and Taxus CPR resulted in 58 mg l−1 of taxadien-5α-ol 
production. The researchers (Ajikumar et al., 2010) indicated that 
re-optimization including the chimeric protein would improve the 
taxadien-5α-ol productivity.

carotenoIds
Carotenoids are well-known tetraterpenoid pigments in plants and 
microorganisms. They are used not only as natural colorants in 
food and feed but also in nutraceutical, cosmetic, and pharmaceuti-
cal products because of their antioxidant property. Vitamin A is 
converted from some carotenoids collectively called provitamin 
A in human body. Deficiency of vitamin A causes blindness and 
mortality due to weakening of the immune system in children of 
the developing world. Therefore, carotenoids have received much 
attention as metabolic engineering targets (reviewed in Das et al., 
2007; Misawa, 2010). The engineered host organisms vary from 
microorganisms to plants. Here are two examples of the hosts – one 
for a plant (rice) and one for microorganism (E. coli). “Golden rice” 
is one of the most successful metabolically engineered plants (Ye 
et al., 2000). To increase provitamin A intake from rice, a provitamin 
A biosynthetic pathway was constructed in the endosperm of rice. 
Although Golden rice with psy encoding phytoene synthase from 
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Genetic engineering in yeast sterol biosynthesis to enhance 
the availability of β-amyrin may also improve the production of 
11-oxo-β-amyrin. Kirby et al. (2008) isolated a bAS from A. annua 
and achieved 6 mg l−1 of β-amyrin production in yeast expressing 
an N-terminal-truncated HMGR and restricting the expression 
of a native OSC, LAS. A large amount of squalene accumulated in 
yeast means that the yeast can produce even more β-amyrin. In 
addition to the efforts to improve the common isoprenoid path-
way, as already described, enhancement of the catalytic proper-
ties of enzymes in triterpenoid biosynthesis should be effective. In 
Solanaceae, CYP71Ds are involved in sesquiterpenoid phytoalexin 
biosynthesis. Protein engineering of CYP71Ds based on sequence 
alignment analysis with phylogenetically related P450 species and 
homology modeling successfully enhanced the catalytic efficiencies 
of the enzymes (Takahashi et al., 2007). In Glycyrrhiza, not only 
glycyrrhizin-producing species but also non-producing species can 
produce other oleanane-type triterpenoid saponins (Hayashi et al., 
2000). The saponin diversity in Glycyrrhiza spp. could be derived 
from the variation in homologous P450 species and UGTs in sapo-
nin biosynthesis. Evaluation of the differences in these enzymes 
would be useful to improve their activities.

Although the number of identified genes has increased in the last 
decade, yet there is no saponin biosynthetic pathway of which all 
genes encoding the proteins involved in the biosynthetic steps have 
been identified. In fact only one CYP88D6 has been identified in 
glycyrrhizin biosynthetic pathway that requires two P450 species and 
two UGTs. The recent transcriptomic and metabolomic approaches 
have accelerated the elucidation of plant secondary metabolisms 
(Ziegler et al., 2006; Hirai et al., 2007; Yonekura-Sakakibara et al., 
2007, 2008; Liscombe et al., 2009; Okazaki et al., 2009; Matsuda et al., 
2010; Saito and Matsuda, 2010), and some saponin biosynthetic 
genes were identified by such strategies (Achnine et al., 2005; Seki 
et al., 2008; Naoumkina et al., 2010). Introduction of the current 
advanced DNA sequence technology in the omics strategies should 
enhance gene discovery (Li et al., 2010; Sun et al., 2010). In addition 
to the efforts to discover the proteins for the lacking biosynthetic 
steps, understanding the regulatory mechanisms of the expression 
of biosynthetic genes and the accumulation mechanisms of triterpe-
noids in plant and microbial hosts should enable further promising 
application for the production of useful triterpenoids.
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saponin  biosynthesis. The engineering of transcription factor is a 
promising way to modify the biosynthetic pathway in addition to 
an introduction of multiple biosynthetic enzyme genes (Borevitz 
et al., 2000; Hirai et al., 2007; Gonzalez et al., 2008). The discovery 
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