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The engulfment of a photoautotrophic cyanobacterium by a primitive mitochondria-bearing
eukaryote traces back to more than 1.2 billion years ago. This single endosymbiotic event
not only provided the early petroalgae with the metabolic capacity to perform oxygenic pho-
tosynthesis, but also introduced a plethora of other metabolic routes ranging from fatty
acids and amino acids biosynthesis, nitrogen and sulfur assimilation to secondary com-
pounds synthesis. This implicated the integration and coordination of the newly acquired
metabolic entity with the host metabolism. The interface between the host cytosol and
the plastidic stroma became of crucial importance in sorting precursors and products
between the plastid and other cellular compartments. The plastid envelope membranes
fulfill different tasks: they perform important metabolic functions, as they are involved in
the synthesis of carotenoids, chlorophylls, and galactolipids. In addition, since most genes
of cyanobacterial origin have been transferred to the nucleus, plastidial proteins encoded
by nuclear genes are post-translationally transported across the envelopes through the
TIC–TOC import machinery. Most importantly, chloroplasts supply the photoautotrophic
cell with photosynthates in form of reduced carbon. The innermost bilayer of the plastidic
envelope represents the permeability barrier for the metabolites involved in the carbon
cycle and is literally stuffed with transporter proteins facilitating their transfer. The intra-
cellular metabolite transporters consist of polytopic proteins containing membrane spans
usually in the number of four or more α-helices. Phylogenetic analyses revealed that con-
necting the plastid with the host metabolism was mainly a process driven by the host cell.
In Arabidopsis, 58% of the metabolite transporters are of host origin, whereas only 12%
are attributable to the cyanobacterial endosymbiont.This review focuses on the metabolite
transporters of the inner envelope membrane of plastids, in particular the electrochemical
potential-driven class of transporters. Recent advances in elucidating the plastidial comple-
ment of metabolite transporters are provided, with an update on phylogenetic relationship
of selected proteins.
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INTRODUCTION
Oxygenic photosynthesis is the process by which plants are able to
convert the solar energy into stable chemical bonds. By trapping
the ephemeral energy contained in the photon, photosynthetic
organisms are able to form and stabilize chemical bonds.

In the oxygenic photosynthesis reduced carbon is formed,
using electrons extracted from water. The energy stored in the
C–H bonds can be released during respiration, where the elec-
trons are transferred back to oxygen, leading to the formation of
water. In this way photosynthesis and respiration define a water–
oxygen cycle, thereby re-distributing the solar energy to the whole
biosphere (Hohmann-Marriott and Blankenship, 2011).

Long before oxygenic photosynthesis arose, the solar energy was
trapped by non-oxygenic organisms, using hydrogen, ferrous iron,
and hydrogen sulfide as the main electron source. Some of today’s
bacteria still use this source of electrons instead of water. These are
the purple non-sulfur bacteria (e.g., Rhodopseudomonas), which
perform cyclic electron flow around a PSII-like protein complex,

and the green sulfur bacteria (e.g., Chlorobium), which possess a
PSI-like reaction center able to extract electrons from hydrogen
sulfide and transferring them to NAD+ via linear electron trans-
port (Allen and Martin, 2007; Hohmann-Marriott and Blanken-
ship, 2011). Different hypotheses exist for explaining the events
that gave rise to the oxygen-evolving protocyanobacterium, pos-
sessing both types of reaction centers and using water as electron
donor. One states that lateral gene transfer occurred between a
purple non-sulfur bacterium with a quinone-based (Type II) reac-
tion center and a green sulfur bacterium with a FeS-based (Type
I) reaction center, while in an alternate hypothesis the structural
similarity of the two photosystems indicates that they might have
evolved from a single ancestor via gene duplication and divergence
(Xiong et al., 2000; Mulkidjanian et al., 2006; Allen and Martin,
2007).

Whatever model best explains the integration of the two photo-
systems, the key in evolving oxygenic photosynthesis is the devel-
opment of the water-splitting oxygen-evolving complex (OEC),
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containing four Mn atoms and a Ca atom capable of sequentially
removing four electrons from two water molecules. This process
ultimately releases molecular oxygen as by-product. The accu-
mulation of O2 converted the atmosphere into an oxidizing one,
permitting the development of more complex life forms that utilize
oxygen as electron acceptor during the aerobic respiration.

This all posed the bases for the next level of complexity:
endosymbiotic associations. Eukaryotic origin is defined as being
concomitant with the acquisition of mitochondria, likely an α-
proteobacterium, either by a nucleus-bearing amitochondriate
cell, or by a prokaryotic host cell, later evolving eukaryote-specific
features (Embley and Martin, 2006).

Later on the engulfment of a photoautotrophic cyanobac-
terium by a primitive mitochondriate eukaryote established the
lineage of the Archaeplastida, also known as the Plantae (Gould
et al., 2008; Keeling, 2010). All plastids are believed to have
originated after a single endosymbiotic event, more than 1.2
billion years ago (Björn, 2009). One exception is provided by

Paulinella chromatophora, which represents a case of ongoing
primary endosymbiosis between an ameba and a cyanobacterium-
like endosymbiont (Figure 1; Kies, 1974). Soon after the primary
endosymbiosis, three major autotrophic lineages arose: the glau-
cophytes, the green algae, and the red algae (Figure 1; Adl et al.,
2005).

Glaucophytes are a small group of unicellular, chlorophyll a
containing freshwater algae consisting of four genera with at least
seven species. They were the first lineage branching off and contain
a plastid (muroplast) with a thin peptidoglycan wall between the
two envelope membranes (Martin and Herrmann, 1998; Steiner
and Löffelhardt, 2002; Sato et al., 2009). The peptidoglycan layer
is believed to be a relic of the cyanobacterial cell wall, thus sup-
porting the endosymbiotic theory of plastid origin. Other simi-
larities to the cyanobacterial progenitors are the maintenance of
phycobilisomes as light-harvesting antenna and a carboxysomal-
like carbon-concentrating mechanism (Burey et al., 2007). Red
algae (rhodophytes) also possess plastids with phycobilisomes but

FIGURE 1 | Plastid evolution in photosynthetic eukaryotes. The
uptake of a cyanobacterium resulted in a photosynthetic plantae
ancestor which subsequently diverged in the three lineages containing
primary plastids: the chlorophytes (including the land plants), the
rhodophytes, and the glaucophytes. The subsequent secondary

endosymbioses of green and red algae engulfed by different hosts
resulted in the euglenophyta and chlorarachniophyta (greens) and in the
possibly monophyletic chromalveolates (reds). Paulinella
chromatophora represents an independent primary endosymbiosis in
progress.
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lack any remnant of the peptidoglycan wall and carboxysomes.
In addition, they possess membrane-intrinsic light-harvesting
complexes (LHCs) similar to those of the chloroplasts of the
Viridiplantae associated with the PSI, thus representing a tran-
sitional state between cyanobacteria and chloroplasts (Wolfe et al.,
1994). Rhodophyta have furthermore contributed to at least six
other algal lineages by secondary endosymbiosis, as indicated by
the presence of up to four membranes surrounding their plastids.
These include members from the chromalveolates supergroup: the
cryptophytes (still retaining a remnant nucleus, the nucleomorph),
the haptophytes, the plastid-containing heterokontophyta (e.g.,
diatoms), and the alveolates. (Figure 1; Reyes-Prieto et al., 2007;
Archibald, 2009).

The green lineage (chlorophyta) is represented by the green
algae and the land plants. This is the most derived lineage. In
contrast to glaucophytes and red algae (collectively termed bili-
phytes) their photosynthetic plastids lack the phycobilisomes; they
possess instead chlorophyll b-containing LHCs associated with
both photosystems as well as other accessory pigments (Keeling,
2010). A secondary endosymbiotic event involving one member
of the green algae has been proposed to have occurred once,
leading to the Cabozoa which include the euglenophyta and the
chlorarachniophyta (Figure 1).

Even if the presence of the plastid is often associated with the
capability to perform photosynthesis, a diverse number of lineages
reduced the plastids metabolic capability to the point where photo-
synthesis was lost. These include for example the red algal-derived
apicoplast of the malaria parasite Plasmodium (which still retains
important anabolic pathways providing the host cell with fatty
acids, isoprene units, and haem; Ralph et al., 2004) and secondary
endosymbionts containing plastids of green origin occurring in
the excavata, such as the colorless euglenozoa.

Primary plastids are delimited by two membranes, whose com-
position reflects their bacterial origin: besides the already men-
tioned peptidoglycan layer, the outer envelope membrane contains
galactolipids and β-barrel proteins (Jarvis et al., 2000; Schleiff
et al., 2003). However, envelope membranes were subjected to
extensive modifications: whereas the inner envelope derives from
the cyanobacterial plasma membrane, the outer envelope is of
chimeric origin, with the outer leaflet containing lipids derived
from the host endomembrane system (Cavalier-Smith, 2000).

The events occurring at the interface between the endosym-
biont and the host were of crucial importance for the establishment
of the plastid. Insertion of host protein translocators into the enve-
lope was necessary to take full advantage of the newly acquired
metabolic entity. Besides the photosynthetic reactions that lead
to carbon fixation, endosymbiosis introduced into the petroal-
gae a set of metabolic pathways, including nitrogen and sulfur
assimilation, the biosynthesis of amino acids, fatty acids, vita-
mins, hormones, and a plethora of secondary compounds (Weber
and Flügge, 2002; Weber et al., 2006; Weber and Fischer, 2007).
Metabolite translocators were therefore of utmost importance for
integrating and coordinating the flux of precursors and prod-
ucts between the plastid and other cellular compartments. The
metabolite traffic between plastids and other cellular compart-
ments is predominantly facilitated by antiporters embedded in
the inner membrane. The choice of antiporter systems ensures

that the exchange of a substrate on one side of the membrane is
always accompanied by the presence of another counter-exchange
substrate on the trans-side (Flügge, 1995). This antiport trans-
port mechanism is common to other subcellular compartments
such as mitochondria, peroxisomes, and the endomembrane sys-
tem, and is important to link different metabolite pools subjecting
them to a strict control. In the context of endosymbiosis, the
regulated exchange of metabolites would have been of crucial
importance in maintaining the metabolic homeostasis between
the cyanobacterium and the host (Weber and Linka, 2011).

The outer envelope contains porin-like channels and has long
been considered as not acting as a permeability barrier, propos-
ing that solute movement across the outer envelope membrane is
limited solely by size (Flügge, 2000). The discovery of low-affinity,
high-specific channels in the outer envelope points to a more active
role of the outer envelope, even if their regulatory role in vivo is
still a matter of debate (Soll et al., 2000; Bölter and Soll, 2001; Duy
et al., 2007). The reader is referred to recent reviews describing the
outer envelope proteins (e.g., Duy et al., 2007; Inoue, 2011).

This review focuses on the metabolite transporters of the inner
envelope membrane of plastids, in particular the electrochemical
potential-driven class of transporters. Recent advances in eluci-
dating the plastidial complement of metabolite transporters are
provided, with an update on phylogenetic relationship of selected
proteins.

PLASTIDIC PHOSPHATE TRANSLOCATORS
The plastidic phosphate translocator (pPT) family comprises four
members of the drug/metabolite transporters (DMT) superfam-
ily (TC 2.A.7; Saier et al., 2006, 2009). These antiporters catalyze
the exchange of phosphorylated C3-, C5-, and C6-compounds for
inorganic phosphate (Pi). The homo-exchange guarantees a bal-
ance in the phosphate content of the stroma and the cytosol and
ensures a constant provision of phosphate to sustain ATP synthesis
(Weber et al., 2005).

Phylogenetic analyses revealed that pPTs are monophyletic and
originated from an existing endomembrane translocator (Weber
et al., 2006). The major plant plastid translocators co-localize in
branches containing homologs from red and green algae, sup-
porting their monophyly and an origin of the translocators in
their common ancestor (Weber et al., 2006). pPTs are more closely
related to the nucleotide sugar transporters (NSTs) than to other
families of the DMT superfamily (Knappe et al., 2003a).

This is in agreement with the need of the petroalgae to
export the adenosine-diphosphoglucose (ADP-Glc) produced by
the cyanobiont into the host cytosol. The first metabolic connec-
tion between the two compartments would thus have been through
an ADP-Glc translocator. Indeed, it was recently shown that mem-
bers of the NSTs possess an innate ability to transport ADP-Glc,
filling the link between the carbon metabolism of endosymbiont
and host cell (Colleoni et al., 2010). The establishment of a carbon
flux was thus a host-driven process, by recruiting a translocator
of its endomembrane system and redirecting it to the endosym-
biont, later on evolving into the pPT family of transporters (Weber
et al., 2006; Tyra et al., 2007; Colleoni et al., 2010). This hypoth-
esis, however, awaits support from analyzing the plastid perme-
ome of a member of the third lineage of the Archaeplastida, the
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glaucophyta. The host contribution to the establishment of the
endosymbiosis was further supported by a work in which trans-
porter proteins broadly distributed in the plantae kingdom were
subjected to phylogenetic analysis: out of 83 proteins scrutinized,
58% were shown to be of host origin (Tyra et al., 2007).

THE TRIOSE PHOSPHATE/PHOSPHATE TRANSLOCATOR
The plastid provides the cell with reduced carbon compounds
by the assimilation of carbon dioxide during photosynthesis. In
plants the photoassimilates are either exported in their phos-
phorylated form by members of the pPT family to fuel sucrose
biosynthesis in the cytosol, or they are retained in the plastid
to drive starch synthesis (Figure 2). The daily path for carbon
export occurs in form of triose phosphates (TP) via the triose
phosphate/phosphate translocator (TPT). TPT accepts TPs (dihy-
droxyacetone phosphate, DHAP, and glyceraldehyde 3-phosphate)
as well as 3-phosphoglycerate (3-PGA) as substrates (Table 1;
Fliege et al., 1978; Flügge and Heldt, 1984). In addition to its role
in allocating the carbon between the stroma and the cytosol, the
TPT has the ability to export reducing equivalents to the cytosol.
The TP/3-PGA shuttle exports TPs, which are then converted by
the glyceraldehyde phosphate dehydrogenase to 3-PGA, reducing
one molecule of NADP+ to NADPH, required for biosynthetic

processes. The 3-PGA is then transported back to the chloro-
plast stroma by the TPT and can re-enter the Calvin–Benson cycle
(Figure 2; Flügge and Heldt, 1984).

In the red alga Galdieria sulphuraria the TPT shows narrower
substrate specificity, being able to transport TPs but not 3-PGA
(Figure 3B). Moreover, the GsTPT displays a three-fold higher
affinity to Pi and the substrate DHAP has a two-fold higher affin-
ity to the Pi binding site than its counterpart from the chlorophytes
(Table 1; Linka et al., 2008a). While in organisms descending from
the green lineage the products of the carbon fixation are stored
in insoluble starch granules inside the chloroplasts, rhodophytes
accumulate a starch-like polymer in the cytosol through the use
of UDP-glucose, called floridean starch, resembling amylopectin
in its structure (Ball and Morell, 2003; Patron and Keeling, 2005).
The heteroside floridoside is synthesized from UDP-Gal and glyc-
eraldehyde 3-phosphate (Gly-3-P) in the cytosol as well and rep-
resents the main soluble pool of fixed carbon in analogy with
sucrose in chlorophytes (Figure 3B; Viola et al., 2001). This means
that the partitioning of the photoassimilates in red algae occurs
exclusively in the cytosol, with GsTPT acting only as TP-exporter.
This also explains the higher affinity of GsTPT for its substrates,
enabling the export of TPs even at low concentrations (Linka et al.,
2008a).

FIGURE 2 | Overview of the characterized chloroplast envelope

metabolite transporters. Transport processes of carbon, nitrogen
compounds and energy across the envelope membrane of photosynthetic
plastids in green plants are depicted. Abbreviations: 2-OG, 2-oxoglutarate;
ADP-Glc, ADP-glucose; BT1L, BT1-like transporter; CLT, CRT-like
transporter; Cys, cysteine; Ery 4-P, Erythrose 4-phosphate; ETC, electron
transport chain; Fru1,6P2, fructose-1,6-bisphosphate; γ-EC,
γ-glutamylcysteine; Glc, glucose; Glc 1-P, glucose 1-phosphate; Glc 6-P,

glucose 6-phosphate; Glu, glutamine; GPT, glucose
6-phosphate/phosphate translocator; Mal, maltose; MEX, maltose
exporter; NTT, nucleoside triphosphate transporter; OPPP, oxidative
pentose phosphate pathway; 3-PGA, 3-phosphoglyceric acid; PEP,
phosphoenolpyruvate; pGlcT, plastidic glucose transporter; Pi, inorganic
phosphate; PPT, PEP/phosphate translocator; TP, triose phosphate; TPT,
triose phosphate/phosphate translocator; XPT, xylulose
5-phosphate/phosphate translocator; Xul 5-P, xylulose 5-phosphate.
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Table 1 | Phosphate translocators of the plastidic inner envelope membrane.

TPT (triose

phosphate/phosphate

translocator)

PPT (phospho-enol -

pyruvate/phosphate

translocator)

GPT (glucose-6-

phosphate/phosphate

translocator)

XPT (xylulose-5-

phosphate/phosphate

translocator

AGI number At5g17630 At5g33320, At3g01550 At5g54800, At1g61800 At5g17630

TC number TC 2.A.7.9

Substrates Green plants TP, 3-PGA PEP Glc-6-P, TP, 3-PGA TP, Xul-5-P, Ru-5-P, Ery-4-P

Red algae TP PEP n.d. –

Glaucophytes – – – –

Apicomplexas

cryptomonads

TP, PEP – – –

Kinetic constant Substrate

K m (app) Phosphate 1.0 0.8 1.1 1.0

K i (app) TrioseP 1.0 8.0 0.6 0.4

K i (app) 3-PGA 1.0 4.6 1.8 10.6

K i (app) PEP 3.3 0.3 2.9 2.1

K i (app) Glc-6-P >50 >50 1.1 6.6

K i (app) Ery-4-P 3.3

K i (app) Xul-5-P 0.8

K i (app) Ru-5-P 3.5

Apparent Km (phosphate) and Ki values expressed in millimolar for various phosphorylated metabolites. Transport activities of the recombinant translocators from

green plants were measured in a reconstituted system using proteoliposomes pre-loaded with inorganic phosphate (Fischer et al., 1997; Kammerer et al., 1998; Eicks

et al., 2002).

In addition to its ability to grow heterotrophically, G. sul-
phuraria can grow on more than 50 different carbon sources
(Gross and Schnarrenberger, 1995; Barbier et al., 2005). Unlike
land plants, where TPT is expressed in photosynthetic active tis-
sues, GsTPT is also expressed in heterotrophically grown cells
(Schulz et al., 1993; Linka et al., 2008a). Whereas plants provide
heterotrophic plastids with glucose 6-phosphate (Glc6P) through
the Glucose 6-phosphate/phosphate translocator (GPT), red algae
do not appear to have pentose phosphate or hexose phosphate
translocators (Oesterhelt et al., 2007).

Since the GsTPT is unable to transport 3-PGA, its role in the
abovementioned NADPH shuttle can be excluded. While in plants
the enzyme fructose-1,6-bisphosphatase is redox regulated and
inactivated by oxidation, the G. sulphuraria homolog lacks redox
modulation (Reichert et al., 2003). In this way the TPs can be con-
verted into hexose phosphates in heterotrophic growth conditions
and in the dark by the plastidic FBPase, ensuring the production of
reduction equivalents (Reichert et al., 2003; Oesterhelt et al., 2007).

The expression pattern of GsTPT thus reflects the route for
carbon import into heterotrophically grown cells with GsTPT as
unique mediator of the carbon flux between plastid and cytosol
(Linka et al., 2008a).

The lineage of the glaucophytes is best studied in the freshwater
alga Cyanophora paradoxa (Löffelhardt et al., 1997). As for the red
algae, glaucophytes synthesize and store the starch in the cytosol
through an UDP-glucose pathway (Plancke et al., 2008). Trans-
port assays with isolated cyanelles demonstrated the activity of a
translocator transferring phosphate, DHAP, and 3-PGA, in anal-
ogy with chloroplasts of higher plants (Figure 3A; Schlichting and

Bothe, 1993). It is expected that the ongoing C. paradoxa genome
sequencing project will soon provide clues as to whether a TPT
ortholog also exists in glaucophytes.

The plastids of organisms derived by secondary endosymbio-
sis can have up to four envelope membranes, like the apicoplast
of the malaria parasite Plasmodium falciparum. The apicoplast is
no longer able to perform photosynthetic carbon fixation, but
retained the capacity to synthesize fatty acids, heme, iron sulfur
clusters, and isoprene subunits (Ralph et al., 2004). The compart-
mentalization of these biosynthetic pathways poses as prerequisite
the net import of carbon skeletons, ATP, and reducing equiva-
lents. Indeed, P. falciparum has two TPTs, PfoTPT, and PfiTPT,
previously shown to reside in the outermost and innermost mem-
branes of the apicoplast (Figure 4A; Mullin et al., 2006).They
both have a substrate preference for DHAP, 3-PGA, and phos-
phoenolpyruvate (PEP), suggesting that they operate in tandem
(Table 1; Lim et al., 2010). The discovery of PEP as substrate of
a member of the TPTs is unprecedented and provides a plausible
strategy to solve the needs of the apicoplast anabolism. PEP can be
converted to pyruvate yielding one molecule of ATP by substrate-
level phosphorylation. Pyruvate can then be channeled to fatty
acid biosynthesis further producing NADH (Lim et al., 2010). It
still remains unclear how the C3 compounds cross the two inter-
nal membranes. In another apicomplexan, Toxoplasma gondii, a
pfoTPT homolog (TgAPT1) has been proposed to reside in more
than one membrane, providing a solution to the issue of transport
(Karnataki et al., 2007).

The cryptomonad Guillardia theta harbors a complex plas-
tid which retained a vestigial nucleus (nucleomorph) from the
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FIGURE 3 | Characterized and putative metabolite transporters of the

glaucophaye Cyanophora paradoxa (A) and the rhodophyte Galdieria

sulphuraria (B). Proposed model of carbon export from C. paradoxa based on
uptake experiments with isolated cyanelles. The identity of the transporter
responsible for the TPT activity is not elucidated yet (A). Characterized
metabolite transporters of G. sulphuraria and their substrate specificities. The
GsTPT, unlike for the green plant chloroplasts, is unable to transport 3-PGA
pointing to the presence of an alternate reduction shuttle in the red algae (B).

Abbreviations: ADP-Glc, ADP-glucose; ETC, electron transport chain; Glc 1-P,
glucose 1-phosphate; Glc 6-P, glucose 6-phosphate; GPT, glucose
6-phosphate/phosphate translocator; NTT, nucleoside triphosphate
transporter; OPPP, oxidative pentose phosphate pathway; 3-PGA,
3-phosphoglyceric acid; PEP, phosphoenolpyruvate; Pi, inorganic phosphate;
PPT, PEP/phosphate translocator; TP, triose phosphate; TPT, triose
phosphate/phosphate translocator; UDP-Glc, UDP-glucose; UDP-Gal,
UDP-galactose.

engulfed red alga. The nucleomorph resides in the periplastid com-
partment, the former algal cytoplasm. This intermembrane space
is also the site of starch accumulation (Haferkamp et al., 2006). The
genome of G. theta encodes for two putative TPTs,able to import Pi

in counter-exchange to DHAP but not 3-PGA (Table 1). Interest-
ingly, the genes encoding these phosphate translocators (TPT1 and
TPT2) are regulated in opposite directions. TPT1 transcripts accu-
mulate during the night phase, whereas TPT2 accumulates during
the light phase (Haferkamp et al., 2006). It has been proposed
that that this expression pattern reflects the metabolic involve-
ment of the corresponding carrier proteins, if TPT2 resides in the
innermost membrane and favors the export of TPs in the inter-
membrane space during the day. On the other hand, TPT1 could
reside in the first or second outermost membrane and function
as exporter of the starch degradation products during the night
(Figure 4C; Haferkamp et al., 2006).

THE GLUCOSE 6-PHOSPHATE/PHOSPHATE TRANSLOCATOR
In contrast to photosynthetic plastids which are able to synthesize
carbon skeletons and reducing equivalents, heterotrophic plas-
tids of sink tissues rely on the import of photosynthates. The
phosphorylated C3 sugar phosphates synthesized in the stroma of
photosynthetically active chloroplasts are exported to the cytosol
through the TPT and converted into sucrose, which is in turn

loaded into the phloem and redirected to sink tissues such as
tubers, fruits, and seeds. Here sucrose is cleaved by the action
of invertase or sucrose synthase and converted into hexose phos-
phates. The primary hexose phosphate, glucose 6-phosphate, is
ultimately imported into the plastid through the (GPT; Figure 5).

Glucose 6-phosphate/phosphate translocator is preferentially
expressed in non-green tissues and mediates the import of glu-
cose 6-P (Glc6P) as well as TPs and 3-PGA (Table 1; Kammerer
et al., 1998). Glc6P is further channeled into the starch biosyn-
thetic pathway or into the oxidative pentose phosphate pathway
(OPPP),producing reduction equivalents required for diverse ana-
bolic pathways (Figure 5; Flügge et al., 2011). The importance of
GPT in plant metabolism is demonstrated by the lethal phenotype
resulting after disruption of the AtGPT1 homolog of Arabidopsis
thaliana (Niewiadomski et al., 2005). Mutant plants are severely
impaired in the gametogenesis, due to the lack of NADPH pro-
duced by the OPPP to sustain fatty acid biosynthesis. Shortage of
Glc6P as substrate for the OPPP results in reduced formation of
lipid bodies and non-physiological cell death (Niewiadomski et al.,
2005). In a recent report the GPT2 ortholog of oil palm (Elaeis
guineensis Jacq) could be associated with a function in fatty acid
biosynthesis and oil accumulation in the mesocarp (Bourgis et al.,
2011). Oil palm can accumulate up to 90% oil in its mesocarp.
This is achieved through a high flux of glycolytic intermediates
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FIGURE 4 | Substrates of the triose phosphate/phosphate translocators

(TPTs) and nucleoside triphosphate transporters (NTTs) of the apicoplast

of Plasmodium falciparum (A), of the diatom plastids fromThalassiosira

pseudonana and Phaedactylum tricornutum (B), and of the crytomonad

plastid from Guillardia theta (C). Overview of the metabolite transport
processes for the characterized transporters of the chromalveolates. The
presence of four envelope membranes reflects their secondary
endosymbiotic origin. The TPT of the apicoplast of P. falciparum has a broader
substrate specificity compared to the green counterpart, accepting also PEP
(A). Diatom plastids are not able to synthesize nucleotides and therefore they
depend on the import of nucleotides from the cytosol. They possess NTTs

which catalyze a uniport mode of transport as in the chlamydial intracellular
parasites from where these transporters were acquired (B). The
cryptomonads contain a less reduced secondary endosymbiont, still
harboring a vestigial nucleus in the periplasmic compartment, the former algal
cytoplasm, where the starch is synthesized. The day and night path of carbon
metabolism are regulated by differential expression of TPT genes whose
products localize in different envelopes (C). Abbreviations: (d)NTP,
(deoxy)nucleotide triphosphate; G3P, glycerol 3-phosphate; PEP,
phosphoenolpyruvate; PfiTPT, P. falciparum innermost envelope TPT; PfoTPT, P.
falciparum outermost envelope TPT; 3-PGA, 3-phosphoglycerate; Pi, inorganic
phosphate; TP, triose phosphate; UDP-Glc, UDP-glucose.

providing pyruvate for oil synthesis. Up-regulation of GPT2 and
PPT supplies glycolytic substrates and intermediates to the plas-
tid by transport from the cytosol, funneling carbon compounds
toward pyruvate to sustain the high demand of substrates for fatty
acid biosynthesis during mesocarp ripening (Bourgis et al., 2011).

Reconstituted G. sulphuraria membranes showed high activity
of phosphate/phosphate and phosphate/DHAP counter-exchange,
whereas 3-PGA, 2-PGA, PEP, and Glc 6-P transport rates did
not vary from that of the negative controls (Weber et al., 2004).
Indeed, uptake experiments with reconstituted liposomes contain-
ing a recombinant protein with significant homology to higher
plant GPT demonstrated that Glc6P is not a relevant substrate
and suggests that G. sulphuraria and likely red algae in gen-
eral do not possess a plastidic hexose-P importer (Linka et al.,
2008a). As mentioned above, GPT supplies heterotrophic plas-
tids of green plants due to the absence of FBPase activity. Since
in G. sulphuraria the FBPase is not redox regulated, import of

TPs mediated by GsTPT could ensure the supply of hexose-P
for NADPH production during the night or under heterotrophic
growth conditions.

THE XYLULOSE 5-PHOSPHATE/PHOSPHATE TRANSLOCATOR
The XPT of Arabidopsis was the last member of plant pPT to
be identified and is able to transport inorganic phosphate, TPs,
3-P-glycerate, xylulose 5-P (Xul 5-P), and, to a lesser extent, ery-
throse 4-P (Ery 4-P) and ribulose 5-P (Ru 5-P; Table 1; Eicks
et al., 2002). The XPT protein displays high homology to the GPT,
and most likely derived from the latter by retrotranscription and
genome insertion, as suggested by the lack of introns in the XPT
gene (Knappe et al., 2003a). Phylogenetic analysis of the phosphate
transporters of the red algae G. sulphuraria and Cyanidioschyzon
merolae showed that members of this family are present which
localize within the branch of the GPT/XPT group of transporters
(Weber et al., 2006).
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FIGURE 5 | Overview of the characterized metabolite transporters of the

heterotrophic plastid. Non-photosynthetic plastids rely on the import of
photosynthates to drive the metabolic reactions in the sink tissues. Glucose
6-phosphate is transported by GPT to provide heterotrophic plastids with
substrates further used to produce reducing equivalents and storage
compounds. In maize, the substrate for starch synthesis, ADP-glucose, is
produced in the cytoplasm and shuttled to the seeds by the brittle-1

transporter. Abbreviations: ADP-Glc, ADP-glucose; BT1, Brittle-1 ADP-glucose
carrier; Glc 1-P, glucose 1-phosphate; Glc 6-P, glucose 6-phosphate; GPT,
glucose 6-phosphate/phosphate translocator; Mal, maltose; NTT, nucleoside
triphosphate transporter; OPPP, oxidative pentose phosphate pathway;
3-PGA, 3-phosphoglyceric acid; PEP, phosphoenolpyruvate; Pi, inorganic
phosphate; PPi, pyrophosphate; PPT, PEP/phosphate translocator; XPT,
xylulose 5-phosphate/phosphate translocator; Xul 5-P, xylulose 5-phosphate.

The proposed function of XPT is to import pentose phosphates
into the stroma in the form of Xyl 5-P to be further metabolized
in the Calvin cycle and the OPPP (Figures 2 and 5). A further
function of the XPT would be the supply of carbon skeletons
intermediates withdrawn from the Calvin cycle and the OPPP and
channeled into other biosynthetic pathways such as the synthesis
of nucleotides and the shikimate pathway requiring Rib 5-P and
Ery 4-P, respectively (Eicks et al., 2002).

THE PHOSPHOENOLPYRUVATE/PHOSPHATE TRANSLOCATOR
The phosphoenolpyruvate/phosphate translocator (PPT) medi-
ates the import of cytosolic PEP into the plastid stroma in exchange
with Pi (Table 1; Fischer et al., 1997).

Since the chloroplasts and most plastids of non-green tissues
lack the enzymes required to form PEP from TPs via the gly-
colytic pathway, PEP has to be imported from the cytosol (Stitt and
Aprees, 1979; Borchert et al., 1993). The energy-rich compound
PEP serves as substrate for the shikimate pathway, whose start-
ing point is the condensation of one molecule of PEP and one of
Ery 4-P (Figure 2). The shikimate pathway is exclusively localized
within the plastid and is involved in the biosynthesis of aromatic

amino acids and of a variety of secondary compounds such as
lignin, alkaloids, and flavonoids (Herrmann, 1995; Herrmann and
Weaver, 1999). PEP can also be metabolized to pyruvate and acetyl-
CoA which serves as precursor for the biosynthesis of fatty acids,
as already mentioned for the GPT (Figures 2 and 4; Rajasekharan
and Nachiappan, 2010; Bourgis et al., 2011).

Arabidopsis contains two PPT genes (PPT1 and PPT2) which
differ in their expression pattern (Knappe et al., 2003b). PPT1 is
expressed in the leaf vasculature and in some root tissues. The
abolishment of its activity in the cue1 mutant causes a reticulate
leaf phenotype with abnormally developed mesophyll cells (MC)
(Streatfield et al., 1999). The expression pattern of PPT1 and the
observation that the biosynthesis of aromatic amino acids is not
severely affected in the cue1 mutant led to the suggestion that it
might be involved in the development of the MCs trough a not
yet identified signaling molecule likely derived from the shiki-
mate pathway. AtPPT1 is presumably involved in the synthesis
of secondary metabolites that regulate leaf development, whereas
AtPPT2 which is ubiquitously expressed in leaves could have a
more housekeeping function in supplying the plastidic shikimate
pathway with PEP (Knappe et al., 2003b; Voll et al., 2003).
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Another way to provide plastids with PEP is from plastidic
pyruvate by pyruvate, orthophosphate dikinase (PPDK). This
reaction is an essential step in C4- and CAM-plants where PEP
is exported to the cytosol of MCs and serves as substrate for the
PEP-carboxylase during CO2 fixation (Bräutigam et al., 2008). In
C4 and CAM-plants PPT is therefore an exporter of PEP (Weber
and Von Caemmerer, 2010).

In the red alga G. sulphuraria, preliminary uptake experi-
ments with isolated total membranes did not show pronounced
PPT activity (Weber et al., 2004). However, phylogenetic analy-
sis revealed the presence of a candidate ortholog in the red algal
genome, suggesting the presence of a potential coding capability
for PPT (Weber et al., 2006). Indeed, the recombinant protein was
functionally characterized in reconstituted liposome membranes
and displayed the signature of PPT activity (Linka et al., 2008a).
As its green counterpart, the G. sulphuraria PPT is highly specific
for Pi and PEP (Table 1).

PEP synthesis inside the rhodoplast is assumed to be unlikely
since the isozymes of both routes for synthesizing PEP in the plas-
tid (i.e., the glycolytic pathway through phosphoglyceromutase
and enolase, and the conversion of pyruvate to PEP by the PPDK)
do not possess obvious subcellular targeting sequences and are
predicted to be cytosolic (Linka et al., 2008a). Since fatty acid
biosynthesis and the shikimate pathway in red algae are predicted
to be similar to those of the green lineage of Archaeplastida, it is
assumed that conversion of TP to PEP is not possible in G. sul-
phuraria, thus depending on PEP import from the cytosol to drive
PEP-depended reactions in the stroma (Figure 3B; Weber et al.,
2004; Richards et al., 2006; Linka et al., 2008a).

THE GLUTATHIONE TRANSPORTER
Recently, a new transporter member of the DMT superfamily
has been characterized as glutathione transporter in Arabidopsis.
In plants, glutathione is in the center of an antioxidant net-
work that buffers the reactive oxygen species (ROS) originating
as by-product of the aerobic energy metabolism. Glutathione is
a tripeptide enzymatically synthesized by the glutamate–cysteine
ligase (GSH1) and the glutathione synthase (GSH2). In Ara-
bidopsis, GSH1 is plastid localized, while GSH2 is targeted to
both plastid and cytosol (Meister, 1995; Wachter et al., 2005).
Consequently, the pathway intermediate, γ-glutamylcysteine (γ-
EC), must be exported from the plastid to allow for cytosolic
GSH biosynthesis (Figure 2). In a mutant screening designed to
select mutants resistant to l-buthionine-SR-sulfoximine (BSO),
an inhibitor of GSH1, the gene At5g19380, encoding a predicted
membrane transport protein, was identified as responsible for the
revertant phenotype (Maughan et al., 2010). The gene was found
to be related to the chloroquine resistance transporter (PfCRT)
of the malaria parasite P. falciparum and was consequently desig-
nated CRT-like transporter1 (CLT1). Arabidopsis mutants lacking
CLT1 are heavy metal-sensitive, GSH-deficient, and hypersensi-
tive to Phytophthora infection. CLT1 is a member of a small gene
family comprising three members in Arabidopsis and all localize
to the plastid envelope. Expression of the transporter in Xeno-
pus oocytes confirmed that it can mediate GSH uptake (Maughan
et al., 2010). Homology search revealed related genes in higher
plants, in the moss Physcomitrella patens, in green algae and

in parasitic protozoans, suggesting an ancient ancestry for this
transporter.

THE ATP:ADP ANTIPORTER FAMILY
Members of the ATP:ADP Antiporter (AAA) Family (TC 2.A.12),
also called nucleoside triphosphate transporters (NTT) catalyze a
counter-exchange mode of transport and may be distantly related
to members of the major facilitator superfamily (MFS; TC 2.A.1).
They are not related to the mitochondrial ATP/ADP exchang-
ers of the mitochondrial carrier family (MCF; TC 2.A.5), which
pump ATP out of mitochondria in accordance with the polar-
ity of the mitochondrial membrane potential. In addition, the
plant mitochondrial adenylate translocator is highly sensitive to
specific inhibitors, whereas the plastidic ATP/ADP translocator
is only slightly sensitive to them (Vignais et al., 1976; Ardila
et al., 1993; Schunemann et al., 1993; Winkler and Neuhaus,
1999).

In prokaryotes these transporters enable “energy parasitism,” as
in Rickettsia and Chlamydia (Neuhaus et al., 1997). In addition,
putative nucleotide transport proteins with weak sequence simi-
larities to the NTT family of transporters have been identified in
the nuclear genome of the obligate intracellular parasite Encephal-
itozoon cuniculi (Katinka et al., 2001). The bacterial nucleotide
carriers have conspicuous sequence similarity to the NTT proteins
from chloroplasts of higher plants (Neuhaus et al., 1997).

In plants, the main function proposed for the NTT family
of transporters is to supply ATP-dependent reactions in non-
photosynthetic plastids. Amyloplasts are heterotrophic plastids
of sink tissues and contain various anabolic pathways, like the
biosyntheses of starch and fatty acids or nitrogen assimilation.
During starch biosynthesis in potato tubers, glucose 1-phosphate
(Glc1P) is converted to ADP-Glc by the AGPase, a reaction which is
ATP-dependent and relies on the supply of cytosolic ATP by NTT
(Figure 5). This is corroborated by transgenic plants where repres-
sion of the potato NTT leads to decreased tuber yield and starch
contents (Tjaden et al., 1998). In contrast to heterotrophic plas-
tids, the role of NTTs in chloroplasts is not obvious. Rather than
exporting ATP out of the photosynthetically active plastid during
the day, NTT import ATP during the night or when photosyn-
thetic ATP biosynthesis is not sufficient to fuel anabolic reactions
requiring ATP (Reinhold et al., 2007).

Arabidopsis knock-out mutants demonstrated the involvement
of NTT and ATP import in the assembly of magnesium chelatase,
an enzyme involved in chlorophyll biosynthesis (Kobayashi et al.,
2008). Plants repressing NTTs display necrotic lesions caused
by photo-oxidation due to an accumulation of high amounts
of the phototoxic chlorophyll biosynthesis intermediate proto-
porphyrin IX, which induces ROS production and photooxida-
tive damage. Furthermore, the severity of the stress depended
on the size of the plastidic starch pool, with plants grown
in short day conditions being more affected (Reinhold et al.,
2007). It has been proposed that the sensitivity to photooxida-
tive stress in plants with limited plastidic ATP supply may link
the appearance of the light harvesting complexes in the green
lineage with the return of the storage polysaccharide to the plas-
tid (Deschamps et al., 2008b). In plants, the main pathway of
starch breakdown does not allow for the direct generation of
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ATP within the plastid. However, hexose phosphates can be gen-
erated in the stroma by plastidial starch phosphorylase and fur-
ther metabolized within the plastid to generate the required ATP
pools, thereby circumventing protoporphyrin IX-induced oxida-
tive stress (Deschamps et al., 2008b; Rathore et al., 2009). The
authors propose that a sufficient supply of ATP was a potentially
important protective innovation necessary for “safe” proliferation
of LHCs.

The glaucophyte C. paradoxa also possesses a NTT, although
the activity for ATP/ADP translocation could not be demon-
strated in isolated muroplasts (Schlichting et al., 1990; Linka et al.,
2003). In C. paradoxa, both fatty acids and starch biosynthesis
are cytosol-localized, indicating that ATP import into the muro-
plast is not required for these reactions (Figure 3A; Ma et al., 2001;
Plancke et al., 2008). Functional expression and reconstitution into
membranes of the glaucophyte NTT ortholog will be required
to elucidate its physiological role and demonstrate whether the
protein is able to mediate ATP/ADP exchange.

The red algae C. merolae and G. sulphuraria contain each one
gene coding for NTT (Tyra et al., 2007). In Galdieria, similarly to
the plant NTT, the ortholog transporter is able to exchange ATP
for ADP (Linka et al., 2003). In red algae the synthesis of stor-
age carbon is confined in the cytoplasmic compartment, however,
other anabolic reactions such as fatty acid biosynthesis require
energy supply (Viola et al., 2001). The synthesis of fatty acids
in G. sulphuraria has been postulated to occur in the plastid, as
indicated by the presence of the subunits of the plastidic acetyl-
coA carboxylase, an ATP-dependent enzyme (Weber et al., 2004).
As mentioned before, the occurrence of a glycolytic pathway in
the plastids of red algae is unlikely and ATP import would be
required to drive fatty acid biosynthesis (Figure 3B; Linka et al.,
2008a).

In contrast to higher plants, the secondary derived plastids of
the diatoms are not able to synthesize nucleotides. Plants export
newly synthesized nucleotides through a member of the MCF, an
adenine nucleotide uniporter (Leroch et al., 2005). In diatoms, the
synthesis of nucleotides is confined to the cytosol, implying the
existence of an import mechanism. Thalassiosira pseudonana and
Phaeodactylum tricornutum possess diverse members of the NTTs
mediating the import of purine and pyrimidine nucleotides (Ast
et al., 2009). In these organisms the NTTs are therefore involved
in the nucleotide supply to maintain organellar metabolism (such
as nucleic acids synthesis) rather than energy provision. Diatoms
possess therefore plastidial NTT proteins with biochemical prop-
erties similar to those of some bacterial intracellular parasites,
which catalyze nucleotide transport in a unidirectional mode, a
feature not observed for any eukaryotic NTT (Figure 4B; Tjaden
et al., 1999). This role in providing the plastid with externally syn-
thesized nucleotides is similar to that of metabolically impaired
intracellular bacteria such as Chlamydia which depend on host-
derived metabolites. The functional relatedness of Chlamydia and
plant NTTs reflects their common origin. The prokaryote trans-
porters with the highest sequence similarity to plant NTT proteins
occur in Chlamydia relatives and phylogenetic analyses of plant,
Chlamydiae and Rickettsiae NTTs suggest that the translocator
was transferred from Chlamydia to plants (Schmitz-Esser et al.,

2004). The Arabidopsis AtNTT1 and AtNTT2 ATP/ADP translo-
cases were shown to be monophyletic with the chlamydial translo-
cators (Tyra et al., 2007). Moreover, free-living cyanobacteria are
devoid of genes encoding for NTTs. Although Chlamydiae are
not found in plants, an unexpected number of chlamydial genes
display a high degree of similarity to their plant homologs. An
analysis of bacteria–eukaryote protein similarities revealed that,
beyond the well explainable abundance in cyanobacterial and α-
proteobacterial sequences, a notable number of plant-like genes
were found in the Chlamydiaceae genomes and, most intriguingly,
the vast majority of these genes contain a plastid-targeting signal
(Brinkman et al., 2002; Horn et al., 2004). A phylogenetic analy-
sis of the C. merolae genome aimed at searching for genes that
are evolutionary related to Chlamydia retrieved 21 genes which
are broadly present in primary photosynthetic eukaryotes. The
direction of transfer is proposed to be from the bacteria to the
plants, since the genes are predominantly distributed in bacteria
and the cyanobacterial homologs form a well supported group dis-
tinct from the chlamydial homologs (Huang and Gogarten, 2007).
Genes of chlamydial origin are mainly restricted to photosynthetic
eukaryotes and non-photosynthetic plastid-bearing lineages, an
observation that supports an association between Chlamydiae and
the plant ancestor. A deeper phylogenomic analysis of 17 plant
genomes extended the list to 55 proteins of chlamydial origin, two-
thirds of which are of plastid function (Moustafa et al., 2008). The
scenario evolving from these comparative genomics surveys sug-
gests a three-way partnership between the host, the cyanobacterial
endosymbiont and an environmental Chlamydia. The chlamydial
contribution may have consisted in facilitating the establishment
of the cyanobacterial endosymbiont by providing the necessary
transport systems required for the equilibration of their metab-
olism, like the ADP/ATP translocator needed for the energy flux
into the organelle. Later on, when the organelle was fully estab-
lished in the host cell, the bacterial parasite became dispensable
and was eventually lost.

Chlamydia could have thus given a contribution in the early
steps of endosymbiosis by providing the petroalgae with the
genetic tools necessary to establish a favorable interaction.

MITOCHONDRIAL CARRIER FAMILY
Members of the MC family (TC 2.A.29) catalyze the passage of
hydrophobic compounds across the inner mitochondrial mem-
brane and preferentially catalyze the exchange of one solute acting
as antiporters (Haferkamp, 2007; Palmieri et al., 2011). Members
of the MCF are involved in transporting keto acids, amino acids,
nucleotides, inorganic ions, and co-factors across the mitochon-
drial inner membrane. Although most are found in mitochondria,
recently members of the MCF were found in peroxisomes, in
hydrogenosomes of anaerobic fungi, and chloroplasts (Picault
et al., 2004; Haferkamp, 2007; Linka et al., 2008b). In Arabidopsis,
58 genes encode for MCF proteins (Picault et al., 2004; Palmieri
et al., 2011). The number in other sequenced plant genomes varies
from 37 to 125, thus being larger than that of Saccharomyces cere-
visiae, which encodes for 35 MCs and comparable with that of
humans which contain 53 members (Palmieri et al., 1996; Palmieri,
2004).
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Members of the MCF located in the plastid membrane repre-
sent transporters which are of host origin and were likely relocated
to the envelope to substitute the pre-existing cyanobacterial trans-
porters with the endomembrane-derived host transporters (Tyra
et al., 2007). No homologs of mitochondrial carriers have ever been
found in prokaryotes or archaea, meaning that MCFs are a later
addition during the development of the eukaryotic cell (Kunji,
2004). In plants plastids, they mediate the transport of different
substrates like folates, S-adenosylmethionine, NAD, ADP-glucose
or ATP, ADP, and AMP (Haferkamp, 2007).

THE ADP-GLUCOSE TRANSPORTER BRITTLE-1
Besides the abovementioned NTT transporter, plastids contain
another type of nucleotide transporter, the ADP-glucose trans-
porter Brittle-1 (BT1), first identified in maize endosperm (Sul-
livan et al., 1991). The brittle1 mutant was named after the
reduced starch content in the endosperm, resulting in collapsed,
brittle kernels (Mangelsdorf and Jones, 1926). In the cereals
endosperm, ADP-glucose pyrophosphorylase is localized in the
cytosol (Denyer et al., 1996). The enzyme generates ADP-glucose,
which must be imported into the plastid to drive starch biosyn-
thesis. BT1 is localized to the inner envelope membrane of the
amyloplast and transports ADP-glucose in antiport with the ADP
released during starch biosynthesis, ensuring the balance of adeny-
lates between stroma and cytoplasm (Figure 5; Sullivan and
Kaneko, 1995; Kirchberger et al., 2007).

Another maize Brittle transporter protein, Brittle-1-2, and
homologs of these transporters are found in other plants (Kirch-
berger et al., 2007). Interestingly, two types of Brittle-1 trans-
porters can be identified: the BT1 from maize endosperm is
present only in monocotyledonous plants and catalyzes ADP-
glucose-ADP antiport, whereas the BT1-2 isoform has homologs
also in dicotyledonous plants and transports nucleotides but not
ADP-glucose (Leroch et al., 2005; Kirchberger et al., 2008). The
StBT1 from potato and the AtBT1 from Arabidopsis locate to
the inner plastid envelope and transport AMP, ADP, and ATP.
Moreover, they show a unidirectional mode of transport rather
than antiport (Figure 2; Leroch et al., 2005; Kirchberger et al.,
2008).

TRANSPORTERS INVOLVED IN THE ONE-CARBON METABOLISM
Several cellular processes such as the synthesis of amino acids,
purines, secondary metabolites, and the photorespiratory path-
way depend upon the supply or removal of one-carbon units by
tetrahydrofolate (THF) or S-adenosylmethionine (SAM).

Tetrahydrofolate and its derivatives are a family of co-factors
that are essential for all cellular one-carbon transfer reactions: they
are required for the synthesis of purines, thymidylate, methionine,
pantothenate, and the interconversion of serine and glycine (Han-
son and Roje, 2001). Folates are tripartite molecules composed of
a pterin, a p-aminobenzoic acid (pABA), and a glutamate chain
with a variable number of glutamate moieties.

In plants, folate synthesis presents a complex spatial organiza-
tion, involving three subcellular compartments: the cytosol, the
plastid, and the mitochondria.

In Arabidopsis, one member of the MCF was identified as
folate carrier of the plastid envelope (Bedhomme et al., 2005).

The AtFOLT1 protein is the closest homolog of the human mito-
chondrial folate transporter. Functional complementation of a
glycine auxotroph Chinese hamster ovary (CHO) cell line deficient
for the transport of folates into mitochondria could identify the
folate carriers both in human and Arabidopsis (Titus and Moran,
2000; Bedhomme et al., 2005). The expression of AtFOLT1 in E.
coli confers to the bacteria the ability to uptake exogenous folate,
whereas the disruption of the gene did not led to a deficient folate
supply to the plastid, since wild-type levels of folates were detected
in the chloroplasts and the enzymatic capacity to catalyze folate-
dependent reactions was preserved (Bedhomme et al., 2005). This
suggests that alternative routes for folate uptake into plastids are
present.

SAM serves as methyl-group donor and it is exclusively syn-
thesized in the plant cytosol. Consequently, it has to be imported
into plastids and mitochondria where it acts as substrate for the
methyltransferases. The product resulting from the transmethy-
lation reaction, S-adenosylhomocysteine (SAHC) has to be in
turn exported to undergo re-methylation in the cytosol. The
carrier that catalyzes the counter exchange of SAM for SAHC
has been recently identified in Arabidopsis (Bouvier et al., 2006;
Palmieri et al., 2006). The SAM transporter (SAMT) exhibits a
broad expression in various plant tissues, is localized to the plastid
envelope membrane and, interestingly, the complete sequence con-
tains additional information for mitochondrial targeting (Palmieri
et al., 2006).

OTHER TRANSPORTERS
THE DICARBOXYLATE TRANSLOCATORS
For plants, nitrogen is available in the form of nitrate, which
is sequentially reduced to nitrite in the cytosol and finally to
ammonia in the chloroplast stroma. Ammonia is further assim-
ilated into nitrogen compounds via the plastidic glutamine
synthetase/glutamate synthetase (GS/GOGAT) cycle. Glutamate
serves as a universal organic nitrogen donor for the biosynthe-
sis of a vast variety nitrogen-containing compounds. Assimilation
of ammonia in the plastids involves two distinct dicarboxylate
translocators (DiTs) with partially overlapping substrate speci-
ficities, the 2-oxoglutarate/malate-translocator (DiT1), and the
glutamate/malate-translocator (DiT2). DiT1 imports the precur-
sor of ammonia assimilation, 2-oxoglutarate, in exchange with
malate; DiT2 exports the end product of ammonia assimilation,
glutamate, to the cytosol, importing back the malate (Figure 2;
Weber et al., 1995; Weber and Flügge, 2002; Renne et al., 2003).
These transporters play also an important role in recycling the
ammonia lost during photorespiration by the mitochondrial
glycine decarboxylase, as indicated by the photorespiratory phe-
notype displayed by Arabidopsis plants lacking DiT2 and tobacco
DiT1 antisense plants (Renne et al., 2003; Linka and Weber, 2005;
Schneidereit et al., 2006). DiT1 also displays a high affinity for
oxaloacetate (OAA) and has been proposed as the long-sought
OAA/malate valve (Taniguchi et al., 2002). The malate valve func-
tions as redox sink to dissipate excess of electrons and protect
the photosynthetic apparatus from photoinhibition by export-
ing reducing equivalents thus balancing the stromal ATP/NADPH
ratio (Heineke et al., 1991; Scheibe, 2004; Scheibe et al., 2005).
The role as malate valve for DiT1 was recently proven by mutant
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analysis: CO2-dependent O2 evolution assays showed that cytoso-
lic oxaloacetate is efficiently transported into chloroplasts mainly
by DiT1 and O2 evolution is not enhanced by addition of OAA
in the mutant, supporting the absence of additional oxaloacetate
transporters (Kinoshita et al., 2011).

Dicarboxylate translocators belong to the Divalent Anion:Na+
Symporter (DASS) Family (TC 2.A.47) which transport organic
di- and tri-carboxylates of the Krebs Cycle as well as dicarboxylate
amino acid, inorganic sulfate, and phosphate. These proteins are
found in Gram-negative bacteria, cyanobacteria, archaea, plant
chloroplasts, yeast, and animals. DiTs are present only in the
green lineage of plants and in bacteria, but not in red algae or
glaucophytes. Phylogenetic surveys indicate that the dicarboxylate
transporters are of chlamydial origin, reinforcing the hypothe-
sis on the importance these intracellular parasites had in the
establishment of endosymbiosis (Tyra et al., 2007). In isolated
C. paradoxa muroplasts, transport activities for glutamine and 2-
oxoglutarate could be measured (Kloos et al., 1993). In uptake
experiments with isolated cyanelles by silicone oil filtering it
could be shown that glutamate poorly penetrated into cyanelles,
whereas glutamine was enriched in the plastid fraction by 1.7 fold
within 10 min. Glutamine uptake proceeded in two phases and
was stimulated by 2-oxoglutarate (Kloos et al., 1993). Ammonia
formed by nitrite reduction inside the cyanelles is incorporated
by GS into glutamine and then exported jointly with oxoglu-
tarate (Kloos et al., 1993). The export of glutamine appears to
be the route for providing the host cell with fixed nitrogen, a situ-
ation that encounters a parallel in the nitrogen-fixing filamentous
cyanobacteria. In cyanobacteria however, the transporter seems
not to discriminate between glutamine and glutamate, indicating
that the glutamine export route is unique to C. paradoxa (Chap-
man and Meeks, 1983; Flores and Muropastor, 1988; Kloos et al.,
1993).

THE MALTOSE TRANSPORTER
In the dark, the starch which has accumulated during the day
is degraded to supply sucrose biosynthesis. Maltose and glucose
are the main products of starch degradation, with maltose being
the most prominent sugar exported to the cytosol at night or
during increased sink demand (Figure 2; Weise et al., 2004).
The maltose transporter was identified by a screening of Ara-
bidopsis mutants displaying a maltose excess (MEX) phenotype
(Niittyla et al., 2004). MEX is unrelated to any other membrane
transporter and belongs to a family represented solely by the A.
thaliana member (TC 2.A.84). The maltose exporter is found
only in the genomes of chloroplastida and is absent in red algae,
glaucophytes, and photosynthetic organisms derived by secondary
endosymbiosis. The presence of MEX orthologs in the dinoflagel-
late Karlodinium micrum and in Synechococcus likely is the result
of independent horizontal gene transfers (Figure 6; Tyra et al.,
2007). The pathway of starch synthesis and degradation is pre-
sumed to have been cytosolic in the common ancestor of the three
Archaeplastida lineages (Deschamps et al., 2008a). MEX appears
therefore to be a plant-specific transporter, evolved as a conse-
quence of the relocation of the starch metabolism to the stroma
of the green algal ancestor (Tyra et al., 2007; Deschamps et al.,
2008a).

THE PLASTIDIC GLUCOSE TRANSPORTER
Starch breakdown initiates by the action of the phosphorylating
enzymes glucan, water dikinase (GWD) and phosphoglucan, water
dikinase (PDW) and, after involvement of a debranching enzyme,
results in the release linear glucans (Smith et al., 2005). β-amylases
catalyze the production of maltose from linear glucans, and, to a
lesser extent, maltotriose which is further metabolized to glucose
by the disproportionating enzyme DPE1 (Critchley et al., 2001;
Smith et al., 2005). A transporter involved in carbon mobilization
mediating glucose export has been initially characterized and two
decades later cloned and identified (Schafer et al., 1977; Weber
et al., 2000). The glucose transporter (pGlcT) mediates the export
of glucose released during the onset of starch degradation and
has additional and still unknown roles suggested by its expres-
sion in some heterotrophic tissues that do not contain starch
(Butowt et al., 2003). pGlcT contributes to the export of pho-
toassimilates from chloroplasts, even though it is not the major
route for the export of starch degradation products (Figure 2).
The pglct-1/mex1 double knock-out Arabidopsis line displays a
severe growth retardation phenotype suggesting that the effects of
pGlcT loss on photoassimilate partitioning and plant growth are
observable when the major route for exporting starch degradation
products is blocked (Hahn et al., 2011). pGlcT belongs to the (MFS,
TC 2.A.1) a very old, large and diverse superfamily whose mem-
bers catalyze uniport, solute:cation symport and/or solute:H+ or
solute:solute antiport (Law et al., 2008). This superfamily is ubiq-
uitous in all kingdoms of life, however, close relatives of pGlcT
are found only within the Chloroplastida and, as for the maltose
exporter, it reflects an acquisition by the green lineage imposed
by the compartmentalization of the starch metabolism within the
chloroplast (Tyra et al., 2007).

THE PLASTIDIC BILE ACID:Na SYMPORTER
Glucosinolates (GSLs) are sulfur- and nitrogen-containing plant
secondary metabolites derived from amino acids and sugar. They
are mainly present in the Brassicaceae family, including Ara-
bidopsis, and have repellent activity against herbivore insects and
pathogens (Fahey et al., 2001).

The biosynthesis of methionine-derived glucosinolates involves
both the chloroplast and the cytosolic compartments and starts in
the cytosol where Met is transaminated by the aminotransferase
BCAT4. The resulting 2-keto acid, 4-methylthio-2-oxobutanoate
(MTOB) is imported into the chloroplast where it undergoes
repeated condensations with acetyl-CoA and subsequent decar-
boxylations to the corresponding α-keto acid. The chain-elongated
keto acid is aminated to the amino acid and transported back to
the cytosol for the following core structure synthesis (Fahey et al.,
2001; Knill et al., 2008; Nour-Eldin and Halkier, 2009). Thus, the
methionine derivatives must be transported at least twice across
the chloroplast membranes. The first transporter involved in the
biosynthesis of Met-derived glucosinolates was recently identified
as member of the Bile Acid:Na Symporter (BASS) Family (TC
2.A.28) due to significant sequence similarities to mammalian
sodium-coupled bile acid transporters (Gigolashvili et al., 2009;
Sawada et al., 2009). The BAT5 protein localizes to the plastid
and loss-of-function mutants defective in BAT5 function con-
tained strongly reduced levels of aliphatic glucosinolates. Feeding
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FIGURE 6 | Molecular phylogenetic analysis of the MEX1 proteins. The
evolutionary history was inferred by using the maximum likelihood method
based on the WAG model (Whelan and Goldman, 2001). Sequence
alignment was performed with MUSCLE included in MEGA5 (Tamura
et al., 2011). Alignment quality was assessed by GUIDANCE giving an
alignment score of 0.783. The bootstrap consensus tree inferred from 500
replicates is taken to represent the evolutionary history of the taxa
analyzed. The percentage of replicate trees in which the associated taxa
clustered together in the bootstrap test (500 replicates) are shown next to

the branches. A discrete gamma distribution was used to model
evolutionary rate differences among sites (five categories, +G,
parameter = 3.3094). The rate variation model allowed for some sites to be
evolutionarily invariable ([+I], 5.4532% sites). The tree is drawn to scale,
with branch lengths measured in the number of substitutions per site. The
analysis involved 14 amino acid sequences. All positions containing gaps
and missing data were eliminated. There were a total of 173 positions in
the final dataset. Evolutionary analyses were conducted in MEGA5
(Tamura et al., 2011).

experiments suggest that BAT5 transports MTOB and chain-
elongated 2-keto acids across the chloroplast envelope membrane,
indicating a role for BAT5 in the transport of GS intermediates
(Gigolashvili et al., 2009; Sawada et al., 2009).

Homologs of the sodium-coupled bile acid transporters are
also found in the algal genomes, however no data about their
localization or function are to date available.

THE PLASTIDIC FOLATE CARRIER
In addition to the plastidic folate carrier belonging to the MCF,
a second folate carrier was identified which belongs to the folate-
biopterin transporter (FBT) Family (TC 2.A.71). The FBT family
includes functionally characterized members from protozoa and
homologs are found in cyanobacteria (Synechocystis) and plants
(A. thaliana). The Synechocystis and Arabidopsis FBTs were iden-
tified based on their homology to the folate transporter of the
trypanosomatid protozoa Leishmania (Klaus et al., 2005). These
transporters are able to complement E. coli mutants impaired in
folate uptake or production; in particular they are capable of trans-
porting the monoglutamyl form of folate (Klaus et al., 2005).
The plant FBT likely originated by endosymbiotic gene transfer

(EGT) from the captured cyanobacterium and contributes to a
redundant folate uptake system involving also the abovementioned
host-derived FOLT1 transporter (Tyra et al., 2007).

THE PYRUVATE CARRIER
Plants that perform C4 photosynthesis require a massive flux of
metabolites across the membranes of their MC and bundle sheat
cells (BSC). In particular, pyruvate is formed in the chloroplasts
of the BSC by decarboxylation of the C4 acid malate and has to
be transported back to the MC chloroplasts to regenerate the CO2

acceptor PEP (Bräutigam and Weber, 2011). Pyruvate transport in
C4 plants has been shown to occur either in a proton- or sodium-
dependent manner (Ohnishi and Kanai, 1987, 1990). Accordingly,
a putative plastidic proton:sodium symporter (NHD1) is 16-fold
up-regulated in the C4 species Cleome gynandra with respect to the
C3 relative Cleome spinosa (Bräutigam et al., 2011). It is proposed
that NDH1 functions in exporting sodium out of the chloroplast
to sustain a gradient necessary for pyruvate import. In addition,
a strong up-regulation of a bile acid:sodium cotransporter was
observed in C. gyandra (Bräutigam et al., 2011) and in C4 Flave-
ria species (Gowik et al., 2011). This cotransporter is a member
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of the BASS Family (TC 2.A.28) and is not found in maize, a
species which displays a proton-dependent transport of pyruvate
(Bräutigam et al., 2008). The biochemical function NDH1 and
BASS2 was recently demonstrated by expression in an heterolo-
gous system of BASS2 alone and in presence of NDH1 (Furumoto
et al., 2011). Indeed, these proteins represent a two-translocator
system, consisting of the sodium:pyruvate cotransporter BASS2
and the sodium:proton antiporter NHD1 (Figure 7; Furumoto
et al., 2011).

CONCLUSION
The transport of organic compounds across the cyanobacterial
membrane was of crucial importance for establishing endosym-
biosis and insertion of protein translocators into the envelope was
necessary to take full advantage of the newly acquired metabolic
entity. The pPTs were most likely pioneers in settling a connection
between the host and the cyanobiont in order to tap the photo-
synthates, as suggested by their ubiquitous distribution among the
plastid-bearing organisms. The majority of the plastid transloca-
tors, including the PTs, are of host origin, indicating that establish-
ment of the plastid was a host-driven process. However, evidence
is accumulating which implies a small but substantial contribu-
tion from the intracellular parasite Chlamydia. The requirement of
three organisms in the early steps of endosymbiosis could explain
why this event occurred only once during evolution. Understand-
ing the metabolic connection between plastid and cytosol is also
crucial for future attempts to generate synthetic organelles, such
as synthetic plastids that harbor tailor-made metabolic capacities
and that are introduced into plastid-free recipient cells (Weber and
Osteryoung, 2010).

FIGURE 7 | Model for the pyruvate uptake into the plastid. The
two-translocator system responsible for pyruvate uptake into the plastid of
certain C4 species is based on a sodium:pyruvate cotransporter (BASS2)
and a sodium:proton antiporter (NHD1). NHD1 is able to establish a sodium
gradient across the envelope membrane, which in turn drives pyruvate
import by the cotransporter BASS2. Abbreviations: BASS2, BILE
ACID:SODIUM SYMPORTER FAMILY PROTEIN 2; NHD1, sodium:proton
antiporter; OAA, oxaloacetate; PEP, phosphoenolpyruvate; PPT,
PEP/phosphate translocator.
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