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In order to maximize reproductive success, plants have evolved different strategies to con-
trol the critical developmental shift marked by the transition to flowering. As plants have
adapted to diverse environments across the globe, these strategies have evolved to rec-
ognize and respond to local seasonal cues through the induction of specific downstream
genetic pathways, thereby ensuring that the floral transition occurs in favorable condi-
tions. Determining the genetic factors involved in controlling the floral transition in many
species is key to understanding how this trait has evolved. Striking genetic discoveries in
Arabidopsis thaliana (Arabidopsis) and Oryza sativa (rice) revealed that similar genes in both
species control flowering in response to photoperiod, suggesting that this genetic module
could be conserved between distantly related angiosperms. However, as we have gained
a better understanding of the complex evolution of these genes and their functions in other
species, another possibility must be considered: that the genetic module controlling flow-
ering in response to photoperiod is the result of convergence rather than conservation. In
this review, we show that while data clearly support a central role of FLOWERING LOCUS
T (FT) homologs in floral promotion across a diverse group of angiosperms, there is little
evidence for a conserved role of CONSTANS (CO) homologs in the regulation of these loci.
In addition, although there is an element of conserved function for FT homologs, even this
component has surprising complexity in its regulation and evolution.
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INTRODUCTION

Because plants are largely sessile organisms that have little ability
to select their environment, controlling the timing of life history
transitions so that they occur in the most desirable environmental
conditions is critical to survival and fecundity. The timing of flow-
ering, which marks the transition from vegetative to reproductive
growth, is a complex trait that has evolved to respond to many
cues, both environmental and developmental. In terms of envi-
ronmental adaptation, we see that plants adapted to a temperate
environment, where temperature and day length vary substan-
tially throughout the year, may respond strongly to cues such as
day length or the duration of cold exposure while those adapted to
tropical regions may respond to influences by other environmental
factors such as water availability. Thus, genetic mechanisms that
allow plants to sense these different environments and act with
developmentally appropriate responses can provide tremendous
survival and reproductive advantages.

From an evolutionary perspective, understanding the genetic
basis of flowering time in plants with variable growth habits will
provide insight into the processes of adaptation. How have genetic
regulatory pathways evolved across the angiosperms, from herba-
ceous annual weeds to giant perennial trees, from alpine wildflow-
ers to tropical grasses? Which genetic elements are conserved and
which vary? Have similar phenological responses evolved multiple
times using homologous genes and pathways or have novel genes

and pathways been recruited to perform similar tasks? One of
the best understood environmental inputs from a genetic per-
spective is the role of photoperiod in controlling flowering time,
which has been most extensively studied in the long day flowering
core eudicot Arabidopsis and in the short day flowering monocot
rice. These lineages diverged ~130-150 million years ago and the
species evolved in quite different geographic regions (Chaw et al.,
2004; Magallon and Sanderson, 2005) — Arabidopsis in Old World
temperate regions with considerable fluctuation in day length
and temperature, and rice in equatorial regions that experience
more stable temperature and day length regimes (Vaughan et al.,
2003; Koch and Kiefer, 2006). Not surprisingly, these taxa have
evolved different flowering phenologies, with Arabidopsis flow-
ering in response to long days and often having a vernalization
requirement while the major inductive signal in rice is short days
without a requirement for vernalization.

Early genetic analyses of flowering time mutants in Arabidopsis
revealed a regulatory pathway controlling photoperiod response
consisting of the genes GIGANTEA (GI), CONSTANS (CO), and
FLOWERING LOCUS T (FT). This pathway integrates signals
from the circadian clock and light cues (via phytochromes and
cryptochromes) to initiate flowering in long days (Hayama and
Coupland, 2004; Putterill et al., 2004). Work in rice subsequently
showed that genes with homology to GI, CO, and FT — Oryza
sativa GIGANTEA (OsGI), Heading date 1 (Hdl), and Heading
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date 3a (Hd3a), respectively — were required for flowering under
promotive short days in rice (Hayama and Coupland, 2004; Put-
terill et al., 2004; Izawa, 2007). Although details of how these
homologous genes generate a similar response (flowering) under
opposing conditions (long vs. short days) remain unknown, the
similarities between these distantly related species has led to the
conclusion that these genes function in a conserved genetic path-
way (Hayama et al., 2003; Hayama and Coupland, 2004; Izawa,
2007; Turck et al., 2008; Valverde, 2011), and has made their
homologs prime candidates for studying photoperiod response
in many taxa (Martinez-Garcia et al., 2002; Kim et al., 2003; Hecht
et al., 2005; Bohlenius et al., 2006; Chia et al., 2008). As we will
review here, the resulting body of data confirms that FT homologs
are critical to floral promotion in many taxa but the transcriptional
and post-translational factors regulating these loci vary consid-
erably in response to upstream environmental and endogenous
signals. The functions of CO homologs are less clear, and despite
many studies aiming to show conservation of the CO-FT regu-
lon, there is little solid evidence that the photoperiod-dependent
regulation of FT homologs by CO homologs is a major pathway
in diverse angiosperms, necessitating a reevaluation of the strict
conservation model.

GENE LINEAGE EVOLUTION

The starting place for any broad consideration of functional evo-
lution is obtaining the best possible picture of the evolution of
the genes themselves. In this regard, there are three key areas for
consideration: (1) performing as rigorous a phylogenetic analy-
sis as possible, (2) correct assessment of orthology vs. paralogy

(including the correct use of those terms), and (3) producing
a rigorous ancestral state character reconstruction as applied to
gene function. As to point 1, an entire field of evolutionary biol-
ogy is devoted to the science of phylogenetic reconstruction and
ancestral character state reconstruction (Hillis et al., 1996; Page,
1998; Felsenstein, 2003) and, while we do not intend to provide an
in depth review of these techniques here, it is important to note
that methods such as parsimony and likelihood are preferable to
the neighbor-joining approach. Furthermore, with the plethora of
gene sequence information available through NCBI and EMBL,
broad taxonomic sampling can be used to provide a better evolu-
tionary context and, often, improve resolution. Another relevant
consideration is the use of nucleotide sequences vs. amino acids.
No simple rule applies in this decision but aspects to weigh include
the length of the genes (e.g., shorter genes may be better repre-
sented by nucleotides), the breadth of the phylogenetic sampling
(with especially ancient sampling, nucleotides are more likely to
be saturated) and degree of conservation (e.g., nucleotides may
provide more resolution for highly conserved genes). In practice,
testing both nucleotide and amino acid datasets is often necessary.
Even with all these tools, it may be impossible to get fully resolved
trees even when using rigorous analytic techniques, but such a
result itself provides important information about uncertainty.
Starting with a well-constructed tree helps avoid another com-
mon error — misuse of terms regarding gene homology. In par-
ticular, the term ortholog has a very strict definition and should
only be applied to a set of genes when their common descent
has been confirmed via phylogenetic analysis (Figure 1; Theis-
sen, 2002) and/or when syntenic relationships are clear. It is also

Gene Relationship Vocabulary

events
SpA GNTland SpA GN2
SpC GN1 and SpC GN2
SpD GN1 and SpD GN2

events
SpB GN, SpE GN, and SpF GN
SpC GN1 and SpD GN1
SpC GN2 and SpD GN2

FIGURE 1 | Understanding how speciation and duplication events affect
gene orthology, paralogy, and homology. Gene duplication events are
commonly recognized as an important mechanism for generating evolutionary
novelty (Ohno, 1970). Following a duplication event, a gene pair may diverge
in function, with one paralog evolving a new function (neofunctionalization), or
with paralogs dividing the function of the ancestral gene between them

Tracking the evolutionary history of a hypothetical gene family, GENE (GN)

; SpAGNT!
- GN - -eN1 eNz2N- Species A

-en- duplication SpAIGN2|

speciation -enTT- Species B SpBIGNI

—G-

speciation - GN1_- GN2 - Species C SpC GN1

P - GN1 - GN2 - SpD GN1
k3 duplication speciation GN1 - GN2 - Species D SpC GN2
PN - 6N - Species E SpD GN2

SpE GNI

speciation - Spec:es F SpF GN

Following the practice seen in scientific literature, gene names are abbreviated such that GENE1 from Species A is represented by SpA GN1

These terms are dependent on evolutionary relationships only and are not determined by function which can change over time
Orthologs - arise from speciation Paralogs - arise from duplication Homologs - all of these genes could be termed homologs,

Gene tree of GN homologs

but the general term is conveniently used in cases with
one-to-many and many-to-many relationships that break
down simple orthology
eg. SpF IBNiis equally related to SpC GN1 and SpC GN2,
they are homologs

(subfunctionalization; Force et al., 1999). These duplication events break down
gene orthology, however, complicating the relationships between genes. It is
critical to understand the evolutionary history of genes in order to understand
how their function has evolved through time, especially when comparing
function of gene homologs generated via multiple duplication events in which
the processes of neo and/or subfunctionalization may have occurred.
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critical to note that even when properly established, orthology
does not necessarily imply functional similarity and, reciprocally,
functional similarity is in no way a criterion for orthology (Theis-
sen, 2005). Finally, conclusions about the conservation of gene
function essentially involve the reconstruction of ancestral char-
acter states, which ideally requires a well-constructed phylogenetic
hypothesis and broad character state (phenotype, gene function,
etc.) sampling (Swofford and Maddison, 1992; Cunningham et al.,
1998). The critical question is whether multiple organisms exhibit
the same character state due to inheritance from a common ances-
tor (conservation) or, alternatively, because evolution hasled to the
independent derivation of that character state, often the result of
similar selective forces (convergence). For instance, the phyloge-
netic position of a CO-like gene in the green alga Chlamydomonas
has been misinterpreted to suggest a close evolutionary and func-
tional relationship with the angiosperm loci CO and Hd1 (Serrano
et al., 2009). In fact, the algal sequence is as closely related to CO
and Hd1 (type Ia CO-like genes, discussed in further detail below)
asitis to another group of CO-like genes that controls light signal-
ing (type Ib CO-like genes). Furthermore, the reconstruction of
ancestral function in the CO type I clade is completely equivocal.
Thus, the first step in any comparative analysis of functional evo-
lution must start with accurately interpreted phylogenetic analyses
and incorporate as much data as possible on gene function across
diverse taxa.

THE FT-LIKE GENE LINEAGE

FLOWERING LOCUS T is a member of a family of
phosphatidylethanolamine-binding proteins (PEBPs), which were
first discovered in mammals but have now been identified in all
kingdoms (Granovsky and Rosner, 2008). In plants, PEBP genes
have been shown to play important roles in flowering time and
inflorescence architecture, as well as a growing list of other devel-
opmental processes (see below). There are three major clades of
PEBP genes in plants: the FT-like, CEN/TFL-like, and MFT-like
clades. The function of MFT -like genes, likely the earliest diverg-
ing clade, is the least well understood of these gene families but
they have been implicated in seed development and germination
(Hedman et al., 2009; Nakamura et al., 2011). In contrast to the
floral promotion function of homologs from the FT-like clade
(Kardailsky et al., 1999; Kobayashi et al., 1999), several mem-
bers of the CEN/TFL clade have been shown to delay flowering
and maintain indeterminacy in inflorescence meristems, including
CEN from Antirrhinum and TFL from Arabidopsis (Bradley et al.,
1996, 1997). Here we use nucleotide alignments and a maximum
likelihood optimality criterion as implemented by the randomized
accelerated maximum likelihood (RAXML) program (Stamatakis,
2006) via the publically available CIPRES (Cyberinfrastructure for
Phylogenetic Research, www.phylo.org) cluster to explore phylo-
genetic relationships of plant PEBP genes from a wide variety of
angiosperms and some non-angiosperms. Nucleotides were used
because the FT genes are both relatively short (752 nucleotide
characters in the dataset) and highly conserved, therefore, bet-
ter resolution could be obtained with nucleotides rather than
amino acids. We recovered the three expected main clades with
high bootstrap support, however, the relationship of these main
clades to one another is poorly supported (Figure 2 and Figure Al
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FIGURE 2 | FT-like gene tree. The optimal maximum likelihood tree and
bootstrap percentages (shown above branches) were inferred from
analyses of full-length nucleotide sequences using RAXML 7.0.4

(Stamatakis, 2006). All n

odes with less than 50% bootstrap support have

been collapsed. The FT clade shown here has been rooted with the MFT
and TFL lineages (see Figure A1 in Appendix for complete phylogeny). The
many duplications within grass lineages in the FT-like family are highlighted
by the colored boxes and associated numbers. Genes in bold text are

specifically discussed in

the text. GenBank or EMBL accession numbers

are provided for each sequence.
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in Appendix). Due to the short length and high sequence con-
servation in these genes, there is less support for internal nodes
and relationships with less than 50% bootstrap support have been
collapsed. While amino acid conservation across the FT-, TFL-,
and MFT-like clades is high, variation at a few critical amino acid
positions is synapomorphic for each family. In fact, Hanzawa et al.
(2005) have shown that reciprocally switching one amino acid
between FT and TFL (Y85H and HB88Y) is enough to intercon-
vert the floral promotion and floral-repression functions of these
proteins. Consistent with this, all FT-like genes have a conserved
Tyrosine (Y) at Arabidopsis position 85, while TFL-like genes have
a conserved Histidine (H) at this position and MFT-like genes
have a Tryptophan (W).

Of key importance within the FT-like lineage are the highly
supported monophyletic clades that indicate extensive duplication
within the grasses (Figure 2). The current phylogeny supports a
minimum of eight grass-specific duplication events prior to the
split of the BEP and PACCAD clades (containing rice and maize,
respectively), leading to the presence of 13 rice FT genes and 16
maize FT genes. These are much higher than the copy numbers for
dicots, which are four or five at most in the taxa examined thus far.
There is little information about the functions of many of these
loci aside from Hd3a and RFT1 in rice and, based on diversifica-
tion of their expression patterns (Danilevskaya et al., 2008), their
functions may be similarly diverse.

THE CO-LIKE LINEAGE

CONSTANS belongs to a family of zinc finger transcription fac-
tors unique to plants. Genes in this family are marked by the
presence of either one or two zinc finger B-box domains in the
N-terminus of the protein and a C-terminal CCT domain, so
named for its presence in three early cloned Arabidopsis genes
(CO, CO-like, and TOC1; Putterill et al., 1995; Griffiths et al.,
2003). The CCT domain is not unique to CO-like genes, however,

as 45 genes in Arabidopsis, including 17 CO-like genes, contain a
CCT domain (Wenkel et al., 2006; Figure 3). These diverse loci are
known to function in a variety of physiological responses across
plants, including photoperiodic response, light signaling, the regu-
lation of circadian rhythms, and vernalization response (Figure 3;
Putterill et al., 1995; Strayer et al., 2000; Yan et al., 2004; Cheng and
Wang, 2005; Nakamichi et al., 2005; Datta et al., 2006; Xue et al.,
2008).

Genomic studies in Arabidopsis, rice, and barley have revealed
extensive duplication events of genes containing at least one B-box
and one CCT domain, with ~17 such genes present in Arabidopsis,
~16 present in rice,and ~9 present in barley (Griffiths etal., 2003).
These loci are broken into three major groups: type I CO-like genes
containing two B-box domains; type II CO-like genes, with only
one B-box domain; and type III CO-like genes, with one full B-box
and one degraded B-box (Figure 3; Griffiths et al., 2003; Serrano
et al., 2009). We focused on only the type I CO-like genes, as this
is the group to which the CO and Hd1 flowering time loci belong.
In contrast to recent studies focusing on Arabidopsis B-box genes
sensu lato (Khanna et al., 2009), we are primarily concerned with
B-box loci that also contain CCT domains across a wide breadth of
plants, so we have used the terminology of Griffiths et al. (2003).
We constructed several phylogenies using a maximum likelihood
optimality criterion as implemented by RAXML (Stamatakis, 2006)
in analyses of full-length amino acid alignments, collapsing all
nodes with less than 50% bootstrap support. In this case, the use
of amino acid sequences was permitted by the longer length (588
amino acid characters) and lower sequence conservation of these
homologs. This analysis reveals two major clades of type I genes,
designated type Ia and type Ib (Figure A2 in Appendix) in which
both clades contain both eudicots and monocots, with high sup-
port for monophyletic grouping of the monocots. The type Ia
group contains both Arabidopsis CO and rice Hd1, the known
flowering time loci (Figure 4).

Basic types of CCT domain genes

Gene structure

[ ] [ [ ccrdomain [ |
—| - CCT domain I—
— " TREBSR B box [ ccTdomain [
—{[Enehngem [ cCTdomain | -

[ ] | [ ccTdomain | |

FIGURE 3 | Basic types of CCT domain containing genes and their
known functions. Several groups of plant genes contain CCT domains.
Groups |-V have been described in Griffiths et al. (2003). All CCT domain
genes described have a CCT domain in the 3’ portion of the gene but vary in
the 5’ region. Group | genes have two 5’ B-box zinc finger domains. Group Il
genes have only one 5 B-box zinc finger domain. Group Il genes have two 5

Type

Group | CO-like: CO,
AtCOL1-AtCOLS, Hd1,
PsCOLa

Group Il CO-like: AtCOL6-
AtCOL8, AtCOL16, OsJ-OsL

Group lll CO-like: AtCOL9-
AtCOL15, OsM, OsN

Group IV CO-like: ZCCT
(VRN2), Ghd7(Osl), HvCO®9,
OsH

Pseudo Response
Regulators: TOC1, APRRs,
PPD-H1

Known functions

photoperiod response, light
signalling

photoperiod response

photoperiod response

photoperiod response

central oscillator, circadian
clock components, photoperiod
response

B-box zinc finger domains, however the second domain is partially degraded.
Group IV genes are the least well described and have a less conserved &' zinc
finger somewhat representing a C,H, zinc finger. The pseudo response
regulators have a 5’ response regulator domain. For each type, characterized
example loci are listed along with their known functions (see text for
references).
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Helianthus petiolaris TA707_4234
Nicotiana tabacum TA18922_4097
Solanum lycopersicum CO1AY490251
Solanum tuberosum ABF56053
Solanum tuberosum DQ499754
Solanum lycopersicum CO2 AY490252
Solanum lycopersicum CO3 AY490253
Ipomoea nil CO AF300700
————— Olea europaea ACH47948
—— Ricinus communis TA2454_3988
83|: Populus deltoides CO1 AAS00054
Populus deltoides CO2 AAS00055
[————————— Fragaria ananassa ACJ06578
00l [: Medicago truncatula TC86982
Pisum sativum COLa AY830921
————— Poncirus trifoliata TA6005_37690
sor— Arabidopsis thaliana CO At5g15840
100f Arabidopsis thaliana COL1 At5g15850
Arabidopsis thaliana COL2 At3902380
Vitis vinifera CAN74840
Mesembryanthemum crystallis TA3747_3544
Beta vulgaris COL1 EU437782
o Chenopodium rubrum EU395771
Chenopodium rubrum EU395770
Aquilegia formosa CO HQ173331
Oryza sativa Hd1 Os06g16370
Hordeum vulgare CO1 AF490467
00 Festuca pratensis CAH55693
62) Lolium temulentum AY553297
54 Lolium perenne AAT42130
100] Triticum aestivum Hd1 AB094490
Lolium perenne ABF83899
Zea mays conz1 ABV55995

L qcoLw

COL1a

FIGURE 4 | Type la CO-like gene tree. The optimal maximum likelihood
tree and bootstrap percentages (shown above branches) were inferred from
analyses of full-length amino acid sequences using RAXML 7.0.4
(Stamatakis, 2006) with the JTT amino acid substitution matrix. All nodes
with less than 50% bootstrap support have been collapsed. The type la
clade of CO-like genes shown here has been rooted with the type Ib clade
(see Figure A2 in Appendix for complete phylogeny). Genes in bold text are
specifically discussed in the text. GenBank or EMBL accession numbers
are provided for each sequence.

MAJOR MODELS: THE FUNCTION OF FT AND €O HOMOLOGS
IN ARABIDOPSIS AND GRASSES

ARABIDOPSIS: ESTABLISHING THE MODEL

Early grafting experiments led to the proposition that a floral pro-
moting factor, termed florigen, moves from plant leaves to apices
to induce flowering (Chailakhyan, 1937). In 2007, several exper-
iments provided strong evidence that the protein product of the
FT locus, already known to promote flowering in response to
both photoperiod and vernalization, functions as the major mobile
florigen component in Arabidopsis (Corbesier et al., 2007; Jaeger
and Wigge, 2007). Consistent with this, flowering time correlates
with the level of FT mRNA, which increases gradually as plants
mature and reaches higher levels in LD (Kardailsky et al., 1999;
Kobayashi et al., 1999). CO is a direct upstream regulator of FT
that imparts a long day photoperiod response (Putterill et al., 1995;
Kardailsky et al., 1999; Kobayashi et al., 1999). The expression of
CO mRNA is controlled by the circadian clock such that CO has a
diurnal expression pattern with peak levels occurring ~16 h post
dawn (Suarez-Lopez et al., 2001). Studies have shown that the CO
protein is only stable during daylight and that in darkness the
protein gets targeted for proteasomal degradation (Valverde et al.,
2004). Thus, only under LD conditions do levels of CO mRNA
reach significantly high levels during daylight to result in amounts

of stable CO protein sufficient to upregulate FT (Suarez-Lopez
et al., 2001; Valverde et al., 2004). Additional studies showed that
FT is also downstream of the vernalization gene FLOWERING
LOCUS C (FLC) and is important for integrating signals between
the photoperiod and vernalization pathways (Michaels et al., 2005;
see Kim et al., 2009 for an extensive review of the vernalization
pathway). A recent paralog of FT, TWIN SISTER OF FT (TSF),
is largely redundant with FT, although TSF appears to have a role
independent of FT in promoting eventual floral induction in SD
(Yamaguchi et al., 2005).

RICE AND OTHER GRASSES: DIVERSIFICATION IN FT COPY NUMBER
AND INVOLVEMENT OF NEW CCT DOMAIN GENES

Outside of Arabidopsis, the monocot grasses are the best under-
stood models for the genetic control of flowering (Figure 5). As
shown in the phylogenetic analysis (Figure 2), the FT-like genes
have undergone extensive duplication in this group. Although lit-
tle is known about the function of most of these homologs, which
are all equally related to Arabidopsis FT and TSF, the rice locus
Hd3a has been shown to be largely responsible for the promotion
of flowering under short day inductive conditions, although does
not appear to have a strong role in the eventual flowering of plants
grown in long days (Kojima et al., 2002). As with Arabidopsis FT,
Hd3a was also shown to function as a mobile protein, moving
from leaves to the meristem (Tamaki et al., 2007). There is fur-
ther evidence for a role in flowering time for two other rice FT
homologs: RFT'1, a recent paralog of Hd3a, and FTL, a member of
a related but separate lineage (clade 5 in Figure 2). RFT'1 knock-
down alone has a negligible effect on flowering time but RFT'1
Hd3a double knockdowns do not flower even after 300 days, sug-
gesting that RFT'1 may function as a back-up to Hd3a, particularly
in long days (Komiya et al., 2008). Less is known about FTL, but
overexpression promotes the premature transition of the SAM to
a terminal bud (Izawa et al., 2002).

In terms of upstream regulation of the FT' homologs, there is
evidence that the CO homolog, Hd1, controls aspects of Hd3a
expression, however, experiments suggest that Hd1 plays both a
promotive role in SD and a repressive role in LD, a very different
picture from CO-FT in Arabidopsis (Yano et al., 2000; Izawa et al.,
2002). Furthermore, the mechanisms by which Hd1 function is
regulated appear to differ. In non-inductive LD, Hd1 levels begin
to rise while it is still light, similar to what is seen during inductive
periods with Arabidopsis CO, but in SD when Hd1 is actually pre-
sumed to activate Hd34, expression levels remain low throughout
the day (Kojima et al., 2002). A key component to understand-
ing how Hd1 works will be protein stability studies, which may
provide insight into the capacity of Hd1 to promote or suppress
flowering in SD and LD, respectively.

In addition to complexities surrounding how Hd1 regulates
Hd3a, many other rice loci have been identified as playing a role
in photoperiod regulation of Hd3a. Ehd1, a B-type response reg-
ulator with no clear homolog in Arabidopsis, induces flowering via
Hd3a in SD independently of Hd1 (Doi et al., 2004) and inter-
estingly, a different CCT domain containing gene that contains
a zinc finger but no B-boxes, Grain number, plant height, and
heading date 7 (Ghd7, Figure 3), is responsible for preventing
the expression of Ehdl and Hd3a in LD (Xue et al., 2008). The
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across angiosperms. Major angiosperm model systems discussed in the
text with information on their number of FT homologs, the functions of these
loci (when known), and information on their regulation. See text for relevant
references. Under “FT homolog copies,” *indicates that the copy number is

FT homolog
functions

1]
o
3
sp. sativa floral promotion yes, Im:)lecular induced by Ehd1, 5
Oryza * (SD), unknown reguha ory supressed by CCT- 1S
— e other functions mechamism domain gene Ghd7
unknown
TJa
< sp. mays )
Zea o o unknown functions unknown unknown
P-4 16
o
o Beta ot (L), floral functional datay’ anknown
suppression (SD)
needed

FT homologs regulated FT homologs regulated
by COLIa homolog by other pathways

eudicots

based on genome sequencing, *indicates that the copy number is based on
EST or BAC library screening, and unlabelled values come from targeted gene
cloning. All of these numbers should be considered minimum estimates,
although the values generated from sequenced genomes are more likely to
be correct.

importance of the Ehd1 pathway in the environmental control of
flowering has been highlighted by a fascinating study of a diverse
set of rice cultivars. Takahashi et al. (2009) examined gene activity
of six flowering time loci in 64 cultivars of rice from across the
Asian continent that varied in heading date from 45 to 153 days

when grown in the same environment. As might be expected,
they found that Hd3a expression levels are strongly correlated
with flowering time but, surprisingly, they also found that at
least half of the Hd1 alleles (also representing the most com-
mon alleles) produce non-functional proteins. Although there is
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moderate correlation of Hd3a expression with the functionality
of the Hd1 allele, it is also clear that other loci, including Ehd1,
must play a major role in regulating Hd3a. This raises questions
as to how broadly applicable the Hd1 — Hd3 pathway is across
rice, let alone the grasses, and re-emphasizes the importance of
considering natural variation even in broader comparative studies.

In the temperate grass species wheat (Triticum aestivum,
Poaceae) and barley (Hordeum vulgare, Poaceae), the flowering
time locus VRN 3 maps to syntenous FT homologs in each species,
TaFT and HvFT, respectively, and these loci promote flowering
downstream of both photoperiod and vernalization inputs (Yan
et al., 2006). Several wheat and barley CO homologs have been
identified through sequence similarity, but there is no functional
information thus far to show that they are involved in flowering
(Nemoto etal.,2003; Turner et al., 2005). Instead, studies in barley
have shown that two other CCT domain containing genes, VRN2
and PHOTOPERIOD-H1 (PPD-H1; Figure 3), affect flowering
time in a photoperiod-dependent manner, in part by regulat-
ing the expression of HvFT. The VRN2 locus is composed of
two recently duplicated zinc finger CCT domain containing genes
(ZCCT genes) in which the C2H2 zinc finger domain has sequence
similarity with Ghd7 in rice. Like Ghd7, the ZCCT genes repress
HvVFT expression in LD, but the process of vernalization in bar-
ley suppresses expression of the ZCCT genes such that HvFT can
be expressed in LD following vernalization (Trevaskis et al., 2006,
2007). PPD-H1, a pseudo response regulator containing both a
pseudo receiver and a CCT domain, appears to promote flowering
in LD via induction of HvFT in the absence of ZCCT expression
(Turner et al., 2005; Hemming et al., 2008). While the ZCCT and
PPD-H1 genes have a definite effect on the levels of HvFT and
flowering time, it is unclear if either of the two HvCO genes play
a role in flowering in barley. The circadian expression pattern of
HvCOlL is slightly altered in ppd-H1 and HvCO2 shows a general
decrease in expression, but the circadian pattern of these genes is
not highly correlated with wild type PPD-H1 expression and both
genes maintain relatively high levels of expression during daylight
in the mutant (Turner et al., 2005). HvCO1 and HvCO2 mutants
or RNAi knockdown lines would be necessary to determine if these
genes are involved in the upstream regulation of HvFT and flow-
ering in barley. Screening of a H. vulgare EST dataset revealed
that there are at least four additional FT homologs (HvFT2-5),
however their functions remain unknown (Faure et al., 2007).

A genome-wide survey of maize reveals the presence of at least
15 FT homologs, termed Zea mays CENTRORADIALIS, or ZCN
genes (Danilevskaya et al., 2008). Functional data is lacking for
most of these genes, but expression analyses show that these genes
have evolved diverse expression profiles in different maize tissues.
Interestingly, ZCN15, the homolog most closely related to Hd3a
and RFT1inrice and TauFT and HvFT in wheat and barley, respec-
tively (Figure 2, clade 4), is detected primarily in floral tissues
following fertilization, suggesting that this homolog does not play
arole in floral promotion (Danilevskaya et al., 2008). On the other
hand, ZCN8, ZCN12, and ZCN26 are strongly expressed in leaf
blades, indicating that one of these genes may instead be func-
tioning to promote flowering similar to the rice, wheat, and barley
FT homologs mentioned above (Danilevskaya et al., 2008). It was
recently shown that ZCN 8 exhibits diurnal expression patterns in

a SD flowering maize variety, consistent with a role in floral pro-
motion, and when ectopically expressed in the shoot apex, ZCN8
induces early flowering (Meng et al., 2011). It is thus possible
that different clades of FT homologs control floral promotion
function in the two major grass clades — the primarily temperate
BEP grasses (Bambusoideae, Ehrhartoideae, Pooideae; including
Oryza, Hordeum, and Triticum) and the primarily warm climate
PACCAD grasses (Panicoideae, Arundinoideae, Chloridoideae,
Centothecoideae, Aristidoideae, Danthonioideae; including Zea).
While the maize CO homolog, conzl, does show circadian reg-
ulation, it is unknown if it regulates any of the many maize FT
homologs (Miller et al., 2008).

EMERGING DICOT MODELS: EVIDENCE FOR DIVERSITY IN FT
HOMOLOG FUNCTION AND REGULATION

Our understanding of FT homolog function in dicots outside
the Brassicaceae is growing and now includes Populus, Ipomoea,
Solanum, Cucurbita, Pisum, Helianthus, and Beta (Figure 5). As
new environmental types and growth forms are sampled, it is
becoming clear that the variation in flowering time genetics may
be more interesting than the conservation.

POPULUS: FLOWERING IN LONG-LIVED PERENNIALS

While most work on flowering and the CO-FT regulon has cen-
tered on annual herbaceous taxa, a pair of studies have examined
the recently derived paralogs PtFT1 and PtFT2, FT homologs
in the long-lived tree Populus trichocarpa (Salicaceae; Bohlenius
et al., 2006; Hsu et al., 2011). Several lines of evidence indicate
that PrFT1 promotes floral initiation. Populus usually spend 8-
20years in the juvenile phase before the annual production of
inflorescences begins, however, overexpression of PtFT1 results in
the production of flower-like structures after just 4-weeks (Bohle-
nius et al., 2006). Consistent with this role in floral induction,
expression of PtFT1 is specifically promoted by cold treatment in
reproductively mature trees, corresponding to the winter develop-
ment of inflorescences (Hsu et al., 2011). In contrast, the PtFT2
paralog is only expressed under warm, long day conditions (Hsu
et al., 2011). This photoperiod-responsive expression of PtFT2
appears to mediate the developmental decision to maintain vege-
tative bud growth or undergo growth cessation and dormancy in
preparation for over-wintering. This role was uncovered in heat-
shock inducible PtFT2 plants where normally inductive SDs fail to
initiate bud set and growth cessation, instead continuing to grow
vegetatively (Hsu et al., 2011). The significance of this function
is reflected in studies of natural European aspen clones, which
exhibit a latitudinal cline such that the day length required to pro-
mote PtFT'1/2 expression shifts between populations (note, Bohle-
nius et al. (2006) did not distinguish between expression of PtFT'1
and 2 but the subsequent study of Hsu et al. (2011) indicates that
PtFT?2 is the specific regulator of bud dormancy). Plants from the
northernmost latitude experience a decline in PtFT'1/2 expression
and corresponding growth cessation at much longer day lengths
(effectively earlier in the year) than those from progressively more
southern latitudes. Interestingly, the paralog specifically involved
with flowering, PtFT'1, does not show diurnal expression varia-
tion and appears to be strictly controlled by temperature (Hsu
etal., 2011). Rather, it is the vegetative growth/dormancy paralog,
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PtFT?2, that is strongly regulated by photoperiod. The latitudi-
nal study provided some evidence that the Populus CO homolog
PtCO2 controls PtFT?2 since diurnal expression peaks of PtCO2
appear to shift between populations in a manner that tracks the
shifts of dormancy response (Bohlenius et al., 2006). It is interest-
ing to note, however that although the peak in PtCO2 expression
occurs earlier in plants from southern populations, the overall
expression levels of PtCO2 are higher in northern populations
such that even the lowest levels of PrCO?2 expression at all circa-
dian points in northern populations appear higher than the peak
expression of the gene in southern populations. Thus, in north-
ern populations, the relatively high level of PtCO2 expression at
all circadian points is not consistent with the Arabidopsis protein
stability model, as high base levels of PtCO2 would occur dur-
ing daylight even in short days. Reduced PtFTL1/2 expression in
PtCO2 RNAi knockdown lines provides some functional evidence
that PtCO2 may regulate PtFT2 (Bohlenius et al., 2006), but exam-
ining PtCO2 protein stability in different light conditions would
be key to understanding when the protein is active. Regardless, in
the context of flowering, it would appear that PtFT'1 regulation is
not photoperiod sensitive as previously assumed (Bohlenius et al.,
2006), but only regulated by vernalization (Hsu et al., 2011).

IPOMOEA: SHORT DAYS, LONG NIGHTS

Morning-glory (Ipomoea nil, formerly Pharbitis nil) has long
served as a model for studying SD flowering, although night
length is really the critical factor promoting flowering (Imamura,
1967). At least two FT homologs, PnFT1 and PnFT?2, and one CO
homolog, PnCO, have been identified in Ipomoea (Liu et al., 2001;
Hayama et al.,2007). Several lines of evidence indicate a role in flo-
ral promotion for the FT homologs. Diurnal expression of these
genes, which rises gradually through the night and peaks in the
morning, is induced only in floral promoting SD conditions and
is disrupted by night breaks that inhibit flowering (Hayama et al.,
2007). In addition, overexpression of PnFT'1 dramatically speeds
flowering in LD (Hayama et al., 2007). While circadian expres-
sion peaks of PnCO and the PnFT's coincide in SD, expression
of these genes moves out of phase as dark-to-light and light-to-
dark transitions are experimentally modified, indicating that there
is no direct regulatory action of PnCO on either PnFT homolog
(Hayama et al., 2007). However, as Hayama et al. (2007) note, the
search for CO homologs in Ipomoea was not exhaustive and there
may be other CO homologs that regulate expression of PnFT.

SOLANUM: A DAY NEUTRAL LIFESTYLE

A major question arising from the hypothesis that the CO-FT
regulon is conserved in angiosperms is how this regulon would
function in day neutral plants. While there is significant evidence
that FT homologs promote flowering in day neutral tomato vari-
eties, there is no indication that its regulation is downstream of
CO homologs (Ben-Naim et al., 2006). In day neutral tomato
(Solanum lycopersicum, Solanaceae), the flowering phenotype is
largely dependent on overall plant architecture. Typically, after a
juvenile growth period that produces 8—12 leaves, the SAM is ter-
minated by a cymose inflorescence. A new vegetative shoot then
begins growing in the axil of the last leaf and this shoot will produce
three leaves before terminating in another inflorescence with a

new vegetative shoot again initiating in the axil of the last leaf
(Lifschitz et al., 2006). This process repeats indefinitely, establish-
ing a sympodial growth habit in which plants essentially make
frequent transitions between vegetative and reproductive shoot
production. Thus, there are two measures of flowering in tomato,
one is the number of leaves on the primary shoot until the first
inflorescence and then, subsequently, the number of leaves in each
sympodial unit prior to production of another inflorescence in the
secondary shoots. Plants mutant for the FT homolog SINGLE-
FLOWER TRUSS (SFT) are late flowering in regards to both the
appearance of the first inflorescence, after 15-20 leaves in the pri-
mary shoot, and the subsequent formation of a shoot lacking strict
sympodial units with indeterminate vegetative and inflorescence
characteristics that produces far more leaves than flowers (Lifschitz
et al., 2006). 35S:SFT lines show the opposite phenotype, induc-
ing the formation of the initial inflorescence after only three to five
leaves and reducing the number of leaves in sympodial units from
3 to 2 (Lifschitz et al., 2006). The ability of 35S:SFT to rescue the
sft phenotype is graft transmissible and SFT RNA is not detected
in the sft stocks, strongly suggesting that the SFT protein is moving
from the scion to the stock (Lifschitz et al., 2006).

Interestingly, SELF PRUNING (SP), a tomato TFL homolog,
has the opposite effect on flowering, as plants homozygous for
the sp mutant produce fewer and fewer vegetative nodes between
each inflorescence until eventually two inflorescences in a row are
formed, effectively terminating the meristem (Pnueli et al., 1998;
Shalit et al., 2009). It appears that SFT is important for the ini-
tial transition to flowering and a balance between the expression
of SFT and SP is largely responsible for controlling a continu-
ous alternation between vegetative and reproductive growth that
results in the complex inflorescence structure of tomato (Pnueli
et al., 1998; Shalit et al., 2009). In addition, this SFT/SP module
influences other aspects of development including leaf architec-
ture, abscission zone formation, and radial expansion of stems
(Shalit et al., 2009). The functions of the other two tomato FT
homologs (SP6A and SP5G) and the other tomato TFL homolog
(SP9D) remain largely unexplored. The upstream regulatory
mechanisms controlling these genes remain unknown, but they
do not appear to be downstream of the tomato CO homologs
TCOL1, TCOL2, or TCOL3. TCOL2 has a frameshift mutation
before the CCT domain and while both TCOL1 and TCOL3 show
circadian expression patterns, their overexpression has no clear
effect on flowering time (Ben-Naim et al., 2006). Interestingly,
CO-like genes have been implicated in the regulation of a dif-
ferent photoperiod response, tuberization, in the closely related
species potato (Solanum tuberosum; Martinez-Garcia et al., 2002).

CUCURBITA: EVIDENCE FOR POST-TRANSLATIONAL REGULATION

Convincing evidence that FT-like proteins are a mobile florigen
capable of responding to day length also comes from work in
cucurbits (Cucurbita spp., Cucurbitaceae), however the regula-
tory mechanism of these homologs is quite different than that of
Arabidopsis. In the cucurbits, the FT lineage has undergone an
independent duplication resulting in two FT homologs, Cucur-
bitaFTL1 and CucurbitaFTL2. In a variety of Cucurbita moschata
that flowers only in SD, scions were induced to flower in LD when
grafted to flowering C. maxima stocks, showing that a florigenic
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signal moves from C. maxima to C. moschata to promote flower-
ing (Lin et al., 2007). Surprisingly, the mRNA levels of CmoFTL1
and CmoFTL2 in C. moschata are high in both inductive SD and
non-inductive LD (Lin et al., 2007). However, the protein levels
of these genes in phloem sap differ greatly between SD and LD
with levels of CmoFTL1 nearly 5x higher in SD and CmoFTL2
nearly 40x higher in SD (Lin et al., 2007). This indicates that in the
cucurbits, phloem-loading of the FT homolog protein may be the
important distinction between floral induction in SD vs. LD, and
not transcriptional regulation by CO-like genes (Lin et al., 2007).

PISUM, HELIANTHUS, AND BETA: MORE COPIES, MORE VARIATION
Although loss-of-function is hypothesized as the most common
fate of gene duplicates, neofunctionalization, and subfunction-
alization can cause paralogous genes to acquire new functions
or divide aspects of the ancestral gene’s function between them
(Forceetal., 1999). Complementing the studies in poplar discussed
above, recent work in pea (Pisum sativum, Fabaceae), sunflower
(Helianthus annuus, Asteraceae), and beet (Beta vulgaris, Ama-
ranthaceae) indicates that duplication events in the FT lineage
have led to the diversification in the regulation and function of
these genes.

Five PEBP genes belonging to the FT-like lineage have been
identified in pea: PsFTal, PsF1a2, PsFTb1, PsFTb2, and PsFTc
(Hechtetal., 2011). Although functional data for all five genes has
not yet been obtained, expression analyses across various devel-
opment stages, in different day length conditions (LD vs. SD),
in different tissue types (expanded mature leaf vs. apex and very
young leaves) and in two mutant backgrounds (late bloomer 1,a GI
homolog mutant that delays flowering in LD, and die neutralis, an
EARLY FLOWERING four homolog mutant that speeds flower-
ing in SD), indicate that these homologs are differentially regulated
and likely have different functions from one another. Mutations
in PsFTal are responsible for the gigas mutant phenotype, which
has delayed flowering in both LD and SD, providing functional
evidence for a role in floral promotion for at least one of these FT
homologs (Hecht et al., 2011). Data from grafting experiments
between wild type, gigas, late bloomer 1 (latel), and die neutralis
(dne) stocks and scions indicates that both PsFTal and PsFTb2 are
responsible for generating, or may themselves act as, mobile sig-
nals signaling flowering downstream of photoperiod input. Based
on the expression profiles of PsFTal and PsFTb2, PsFTb2 would
make the best candidate for the primary FT homolog responsible
for the photoperiod response initiating flowering in LD (Hecht
et al., 2011). Although good candidates for the upstream regula-
tory control of these genes remain unknown, PsFTal and PsFTb2
are clearly downstream of the GI homolog LATE1, but it is unlikely
that regulation of these genes is via the pea CO homolog, PsCOLa,
as expression of PsCOLa is unchanged in the latel mutant (Hecht
et al., 2007).

Similar to pea, multiple FT homologs have been identified in
the sunflower, H. annuus. Flowering time, an important trait for
domestication, differs between the wild and domesticated popula-
tions of sunflower, with the wild progenitor flowering faster in SD
while the domesticated variety flowers faster in LD. After examin-
ing expression patterns, sequence, and heterologous expression of
these homologs — HaFT1, HaFT2, HaFT3, HaFT4 — from both

the wild progenitor and the domesticated variety, Blackman et al.
(2010) drew several conclusions regarding their diversification of
expression and function. First, expression studies show that spa-
tial regulation of the paralogs has diverged relative to one another.
HaFT?2 and HaFT4 are both expressed in the leaves, HaFT1 is
expressed in the apex, and HaFT'3 does not appear to be expressed.
Additionally, changes in cis-regulation of HaFT2 are hypothesized
to promote early flowering in LD, while a frameshift mutation in
the HaFT1 copy from the domesticated variety, which falls in
the region of a QTL for flowering time, is proposed to regulate
the function of HaFT4 in a dominant-negative fashion. Although
true functional analyses using mutants and transgenic plants will
be necessary to fully understand how these homologs function,
these initial studies indicate that there is not a simple one-to-one
conservation between the function of these sunflower homologs
and Arabidopsis FT.

Beta (beet) is another case in which a duplication event in
the FT lineage has lead to diversification in expression and func-
tion. There are two FT paralogs present in the genus Beta and
elegant studies carried out in the cultivated variety B. vulgaris
vulgaris indicate that one of the paralogs, BvFT2, acts as a flo-
ral promoter in LD following vernalization treatment (Pin et al.,
2010). The other paralog, BvFT'1, is only expressed in the juvenile
phase of development in SD and prior to vernalization. Overex-
pression studies with BvFT'1 indicate it opposes the function of
BvFT?2 by acting as a floral repressor prior to vernalization and in
short days. Although the expression patterns differ, both of these
genes show circadian regulatory patterns, indicating that they are
downstream of photoperiod or clock elements. It is interesting
to note that while constitutive expression of BvCOLI, the clos-
est beet homolog to CO (Chia et al., 2008), can rescue the co-2
mutant phenotype in Arabidopsis, the endogenous expression lev-
els of BYCOL1 differ from that of CO such that BvCOL1 levels are
near zero except for the first hour after dawn. Thus, there is no
substantial evidence that BvCOL1 is functioning the same way as
CO to induce flowering in LD in beet.

CONCLUSION
Although the parallels between the GI-CO-FT and OsGI-Hd1-
Hd3aregulons are striking in some ways, it is important to remem-
ber that these datasets are drawn from two distantly related taxa.
Asserting that this module is conserved between Arabidopsis and
rice (e.g., Valverde, 2011) implies that the developmental network
of CO homologs regulating FT' homologs to control photope-
riodic flowering not only evolved prior to the divergence of the
monocots and eudicots, but also that it was commonly inherited
along the branches leading to these taxa. As studies examining the
genetic basis of flowering have expanded, we see now that there
is strong evidence that FT homologs have a conserved role in
promoting flowering. However, evidence that CO homologs have
regulatory control of these homologs is limited and based primar-
ily on coincidental expression patterns (Figure 5). In this regard,
it may be useful to separate the clearly conserved role of some
FT homologs as floral promoters from that of CO homologs as
potential regulators of FT'-like genes.

While there is substantial evidence that FT homologs func-
tion as mobile signals to promote flowering in families spanning
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deep divergences of the angiosperms, understanding all of the
factors that regulate these genes will be critical to understanding
how the functions of FT loci in flowering have evolved. Recent
studies have revealed diversification of both transcriptional and
post-translational regulatory mechanisms, which appear to reflect
variation in FT homolog copy number, integration of different
environmental signals and, most likely, a degree of developmen-
tal system drift (True and Haag, 2001). One emerging theme is
the real breadth of the FT functional repertoire, which in many
taxa includes multiple aspects of vegetative development such as
leaf structure (Shalit et al., 2009), meristem activity (Hsu et al.,
2011), and stomatal function (Kinoshita et al., 2011). Another
outstanding question is the origin of opposing functions in the
FT and TFL lineages. The relationship of the limited number of
known gymnosperm homologs cannot be resolved relative to the
angiosperm FT and TFL lineages (Figure 2 and Figure Al in
Appendix). Although the gymnosperm FT/TFL genes posses the
typical 85Y residue of the FT lineage, they do not appear to be bio-
chemically conserved with FT in Arabidopsis (Karlgren etal.,2011),
which casts doubt on earlier speculation regarding the ancestral
functions of the genes (Shalit et al., 2009). The complexity of these
findings highlight the importance of working with diverse model
systems even within closely related lineages, such as the many FT
paralogs of the grasses whose functions are only beginning to be
teased apart.

An important aspect of these expanded studies is the realization
that CO homologs do not always control the activity of FT-like
genes. This is the case for both photoperiod sensitive and day
neutral taxa (e.g., Pisum, Ipomoea, Solanum, Figure 5). Aside from
Arabidopsis and rice, the studies in Populus represent the only other
potential evidence of a CO homolog regulating an FT' homolog.
Even with this example, however, the supporting data are limited
to correlated expression patterns and the FT homolog (PtFT2)
showing photoperiod response controls bud set, not flowering.
Given that genes containing CCT domains are often involved in
processes related to photoperiod and circadian rhythms (Figure 3;
Putterill et al., 1995; Strayer et al., 2000; Yan et al., 2004; Cheng and
Wang, 2005; Nakamichi et al., 2005; Datta et al., 2006; Xue et al.,
2008; Serrano et al., 2009), we must consider the possibility that
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APPENDIX

—4 FT-like (expanded in Figure 1)

Arabidopsis thaliana BFT At5g62040
Vigna unguiculata FF382559
Glycine max ABS57463

Glycine max EU912425

Pisum sativum TFL1c AY343326
Lotus japonicus AY423715
Lotus corniculatus AV423715
Cicer arientinum GR410124
Medicago truncatula DW017452

Pisum sativum TFL1a AY340579
[ Solanum lycopersicum SP9D AY 186738
Nicotiana tabacum CET2 AF145260
Solanum lycopersicum SP U84140
Capsicum frutescens FA FJ042755
[ Lactuca saligna DW070796
[~ Antirrhinum majus CEN CAC21563
Chaenomeles sinensis TFL1 BAD10971
Eriobotrya japonica AB162045
Cydonia oblonga AB162045
Pyrus communis BAD10963
[ Arabidopsis thaliana ATC At2g27550
Arabidopsis thaliana TFL At5g03840
Gossypium hirsutum TFL1b ABW24964
Populus nigra FTL3a AB181185
Citrus sinensis AY344244
Citrus sinensis AAR04683
Poncirus trifoliata ABY91242
72| [———————— Viitis vinifera TFL1a ABI99469
Euphorbia esula DV157402
Aquilegia formosa TFL HQ173337
Oncidium Gower Ramsey *
Zea mays ZCN6 ABX11008
Zea mays ZCN1 ABX11003
= = _E Zea mays ZCN3 ABX11005
51 Lolium perenne AAG31808
_|g_|: Oryza sativa RCN1 Os11g05470
Oryza sativa RCN3 Os12g05590
100— Zea mays ZCN4 ABX11006
Zea mays ZCN5 ABX11007
Oryza sativa RCN4 Os04g33570
79— Zea mays ZCN2 ABX11004
Oryza sativa RCN2 0s02932950

100p— Medicago truncatula ABE80135
Glycine max ABF65987
Vitis vinifera CAN80336
Populus trichocarpa ABC26020
Gossypium hirsutum DW506990
Citrus unshiu MFT1 BAF93494
Arabidopsis thaliana MFT At1g18100
Aquilegia formosa MFT DQ286962
Oryza sativa MFT2 Os01g02120
Zea mays ZCN9 ABX11011
Zea mays ZCN10 ABX11012
100 Zea mays ZCN11 ABX11013
_E Oryza sativa MFT1 Os06g30370
Solanum lycopersicum SP2G AY 186734
Vitis vinifera ABI99469
Picea sitchensis ACN40175
I go— Physcomitrella patens EDQ56479
Physcomitrella patens EDQ70652
Pyscomitrella patens EDQ76351

1
100,

80
76

TFL-like

MFT-like

FIGURE A1 | Expansion of the PEBP gene tree to show TFL-like and
MFT -like clades. Expansion of the tree presented in Figure 1. *Sequence
for Oncidium Gower Ramsey was provided by C. H. Yang, National Chung
Hsing University, Taichung, Taiwan, and does not have a GenBank accession

number.
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FIGURE A2 | Type | CO-like gene tree. Expansion of the tree presented in

Figure 4.
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