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Plant viruses use several strategies to transport their nucleic acid genomes throughout the
plants. Regardless of the movement mechanism, a universal major block to uninterrupted
viral trafficking is the induction of antiviral silencing that degrades viral RNA. To counteract
this defense, viruses encode suppressors that block certain steps in the RNA silencing
pathway, and consequently these proteins allow viral spread to proceed. There is a con-
stant battle between plants and viruses and sometimes viruses will succeed and invade the
plants and in other cases the RNA silencing mechanism will override the virus. A key role
in the silencing versus suppression conflict between plants and viruses is played by one or
more members of the Argonaute protein (AGO) family encoded by plants. Here we review
the mechanisms and effects of antiviral silencing with an emphasis on the contribution of
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AGOs, especially the recently discovered role of AGO2.
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PLANT VIRUS INFECTION STEPS

There are several steps during the course of a virus infection that
form crucial plant-viral interaction determinants that need to
be compatible to ensure the establishment of a successful sys-
temic invasion. Briefly, first the virus needs an entryway into
the plant tissue, either via natural openings, through mechan-
ical damage, or by biological vectors such as insects. Upon
entry, a virus disassembly process is necessary for release of the
genome to initiate expression of key proteins for replication.
Some viral replicase proteins induce membrane invaginations,
e.g., P33 from Tomato bushy stunt virus (TBSV; McCartney et al.,
2005), that stimulate the formation of organelle-like RNA repli-
cation factories (Den Boon and Ahlquist, 2010). Subsequently,
other virus proteins need to be expressed, for instance for viral
cell-to-cell movement that in some instances may involve trans-
port of aforementioned replication complexes (Kawakami et al.,
2004; Guenoune-Gelbart et al., 2008). This movement originates
from its intracellular location toward and through plasmodes-
mata for intercellular movement to neighboring cells, followed
by systemic spread through the whole plant via the vascular sys-
tem (Oparka and Santa-Cruz, 2000; Lucas and Lee, 2004; Ueki
and Citovsky, 2007; Harries and Ding, 2011; Niehl and Heinlein,
2011).

At any step above, existing barriers or innate and induced plant
immune responses can interfere with virus accumulation. A classic
molecular interaction is illustrated by the elicitation of a gene-for-
gene type hypersensitive response (HR) by specific virus proteins
(e.g., replicase, coat protein, or movement protein), leading to the
formation of local lesions that arrest further spread, in essence by
walling off the virus from the surrounding healthy tissue. Another
conserved strategic defense response, which is the focus of the
present review, is based on RNA silencing that targets viral RNA (of
both DNA and RNA viruses) for destruction, thereby eliminating
further virus spread and permitting plants to recover.

RNA SILENCING AND VIRUS MOVEMENT

Systemic spread of most plant viruses is predicated on traversing
different cell types: epidermal, mesophyll, bundle sheath, vascular
parenchyma, companion cells, and sieve elements, to culminate in
phloem-mediated viral movement to new shoots. To facilitate this
trafficking, viruses encode specialized movement proteins (MP)
that assist and protect viral nucleic acids while traveling through
the cells. MPs of different viruses are quite variable but most pos-
sess functionally equivalent properties (Scholthof, 2005) such as:
nucleic acid binding activity, ability to interact with plasmodes-
mata and change their size exclusion limit, and in some cases they
exhibit pleiotropic roles in the infection process. Many viral pro-
teins that in the past were characterized as proteins involved in
systemic invasion, such as TBSV P19, Potato virus X (PVX) p25,
Tobacco mosaic virus (TMV) 126-kDa protein, and the potyviral
HC-Pro are now known to be suppressors of gene silencing (Ueki
and Citovsky, 2007; Taliansky et al., 2008). Their identification as
movement-related proteins prior to the advent of RNA silencing
is currently understood to be related to the outcome that silencing
against viruses is responsible for degradation of viral RNA. This
inevitably causes the abolishment of viral transport throughout
plants, and it follows that suppressors counteracting the degra-
dation will let systemic spread take full effect (Scholthof, 2005).
Suppressors of RNA silencing are also known to interfere with a
“mobile” signal used by plants (Melnyk et al., 2011), possibly to
prevent the alerting of distant plant organs of the viral infection
(Ratcliff et al., 1997; Schwach et al., 2005). In summary, if a virus
fails to express an effective suppressor, the plant can mount an
attack using the antiviral RNA silencing process to eliminate virus
accumulation and spread.

THE ANTIVIRAL RNA SILENCING PATHWAY
RNA interference (RNAi) or RNA silencing is a highly conserved
molecular mechanism known to regulate gene expression and
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combat invasive nucleic acids across species, for instance in mam-
mals (Liu et al., 2004), Caenorhabditis elegans (Fire et al., 1998),
plants (Baulcombe, 2004; Voinnet, 2005; Li and Ding, 2006), fungi
(Romano and Macino, 1992), and insects (Hammond et al., 2001).
As currently understood, RNA silencing is triggered by the pres-
ence of double-stranded RNA (dsRNA) structures in the cell,
for instance those that are transcribed as progenitor microRNAs
(miRNAs), or that accumulate in the cell via viral infection or
upon artificial introduction (Filipowicz, 2005). These dsRNAs are
cleaved into smaller segments by a Dicer protein to yield short
duplex RNAs such as miRNAs or short-interfering RNAs (siR-
NAs), and one of the strands is used by the cell to program
an RNA-induced silencing complex (RISC) containing at least
one Argonaute protein (AGO). This programmed RISC then tar-
gets single-stranded RNAs complementary to that incorporated
siRNA for cleavage or translational repression, resulting in post-
transcriptional gene silencing of specific genes (Alvarado and
Scholthof, 2009).

The individual components of the general RNA silencing path-
way in plants (Figure 1) were mostly identified through genetic
studies, but many of the potential biochemical interactions that
could occur between these components remain to be elucidated.
However, it is known that Dicer-like proteins (DCLs) are the first
to interact with viral RNA. Specifically, DCL2 and DCL4 are nec-
essary for antiviral silencing of Tobacco rattle virus (TRV; Deleris
et al.,, 2006), as well as participating in other RNA silencing func-
tions such as generation of trans-acting siRNAs and transitivity
(Gasciolli et al., 2005; Mlotshwa et al., 2008). Double-stranded
RNA binding proteins (DRBs) interact with DCLs to assist these
with dsRNA recognition and cleavage, for instance DRB4 was
shown to contribute to antiviral silencing (Curtin et al., 2008).
The siRNAs are stabilized by methylation of their 3’-end by
HEN1 methyl-transferase, preventing siRNAs from uridylation
and degradation (Li et al., 2005; Yu et al., 2005), hence, ensur-
ing maintenance of the siRNA signal and programming of AGOs.
The primary siRNAs move cell-to-cell in short distance signaling
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FIGURE 1 | The antiviral RNA silencing model as presently understood.
During viral replication or transcription of DNA or RNA viruses, highly
structured RNA or double-stranded (ds) RNA is formed providing a substrate
for cleavage by Dicerlike proteins (DCL) associated with dsRNA binding
protein (DRB). This generates duplex short-interfering RNAs (siRNAs) and
upon methylation by HUA enhancer 1 (HEN1) these associate with an
antiviral RNA-induced silencing complex (vRISC), or in absence of
methylation these will be polyuridylated and degraded. One siRNA strand

_, Degradation of

viral RNA vRISC
cleavage products

remains bound to an Argonaute protein (AGO) in VRISC and this operates as
a search-and-strike module to cleave single-stranded (ss) RNA
complementary to the siRNA. The resulting RNA fragments are either
degraded via XRN4 or re-amplified by concerted action of SGS3, SDE3,
SDEB, and an RNA-dependent RNA polymerase (RDR). The vRISC
(starshaped) associated AGO is indicated in red, whereas other possible
AGO-mediated interactions alluded to in the text are denoted by ?AGO?
Figure modified from Alvarado and Scholthof (2009).
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(10-15 cells) with the aid of silencing movement deficient proteins
(SMD1,2,3; Ding and Voinnet, 2007). Secondary siRNAs are gen-
erated by an RNA-dependent RNA (RDR) polymerase-dependent
amplification cycle (Figure 1) and these are presumably used for
long distance signaling (Dunoyer et al., 2010; Molnar et al., 2010).
RDR activity results in the creation of long dsRNA targets that
increase the levels of siRNAs processed by DCL proteins. Inter-
estingly, three out of six RDRs in plants contain a C-terminal
catalytic DLDGD peptide domain conserved in many eukaryotes
(Wassenegger and Krczal, 2006). RDR6 was shown to have antivi-
ral activities in Arabidopsis and Nicotiana benthamiana (Qu et al.,
2005, 2008; Schwach et al., 2005) and requires SDE3, a protein
with helicase activity, and SDE5 (Ding and Voinnet, 2007) for this
amplification process (Vaistij et al., 2002). SGS3 binds and stabi-
lizes RNA templates to initiate RDR6-mediated dsRNA synthesis,
and these two proteins co-localize and interact in specific cytoplas-
mic granules referred to as SGS3/RDR6-bodies (Kumakura et al.,
2009).

There are a number of other RNA silencing-associated pro-
teins not depicted in Figure 1 with accessory functions that can
feasibly contribute to the silencing pathway. For instance, during
the secondary amplification cycle a specific mRNA export complex
(THO/TREX) might perform a function in transporting long RNA
molecules to be used as templates for secondary siRNA production
(Yelina et al., 2010). Furthermore, AGO-associated proteins such
as cyclophilin 40 (Smith et al., 2009), and the heat shock protein
HSP90 (Ikietal.,2010), assist with AGO1 conformational changes.
Other examples are proteins that bind directly to AGOs via a con-
served GW-rich domain “Ago hook” and their different functional
interactions may play roles in distinct gene silencing pathways
(Till and Ladurner, 2007). For instance, the NRPD1b subunit of
the plant-specific RNA PolIVb/PolV (El-Shami et al., 2007) and
another protein (SPT5-like) associate with AGO4 in Arabidopsis
via a GW-rich repeat domain (Bies-Etheve et al., 2009).

Even though the common assumption is that an AGO forms
a core constituent of the antiviral RISC (VRISC; Figure 1), it
remains to be established which AGO(s) are recruited for vRISC
activity. Additionally, considering the abovementioned alternative
AGO-mediated interactions it is possible that different AGOs are
engaged in the assembly of alternative antiviral silencing com-
plexes to participate at different steps in the pathway as shown in
red in Figure 1. Toward gaining a comprehensive understanding,
investigations are ongoing to precisely elucidate which, and how,
AGOs function in antiviral RNA silencing.

FIRST THERE WAS AGO1

According to our present understanding, AGO1 is the primary
Argonaute protein in the plant miRNA silencing pathway (Baum-
berger and Baulcombe, 2005). The miRNA process is employed
by plants to regulate genes involved in numerous biological func-
tions such as development, hormone regulation, biotic, and abiotic
stress responses (Voinnet, 2009). Several lines of evidence also
implicate AGOL1 in antiviral responses; for instance, its transcript
levels are induced upon virus inoculation (Varallyay et al., 2010)
and some suppressors of gene silencing (e.g., Tombusvirus P19)
apparently decrease AGOLI levels in infected tissue by enhancing
expression of miR168 which regulates AGO1 through a feedback

mechanism (Varallyay et al., 2010). Other suppressors mediate the
targeted degradation of AGO1 protein (Polerovirus P0; Csorba
et al.,, 2010) or inhibit its RNA cleavage activity, as shown for
Cucumber mosaic virus (CMV) 2b (Zhang et al., 2006), and Turnip
crinkle virus (TCV) P38 (Azevedo et al., 2010). Moreover, an agol
hypomorphic Arabidopsis mutant was found to be more suscepti-
ble to virus infection than wild-type plants (Morel et al., 2002). All
these findings point to the importance of AGO1 in plant silenc-
ing pathways involved in endogenous gene regulation as well as
in host defenses. Nevertheless, a major question remains: is AGO1
the only AGO protein involved in antiviral defense mechanisms in
plants?

Plants encode at least 10 AGOs that may well play specific parts
in the silencing cascade to regulate endogenous gene expression,
and that could potentially also be recruited for antiviral defense.
Indirect support for this notion is derived from studies showing
that Arabidopsis AGO2 and AGO5 bind CMV-derived viral siR-
NAs (Takeda et al., 2008), and are localized to the nucleus and
cytoplasm. These AGOs exhibit a 5'-end nucleotide preference
in relation to the type of associated siRNA. For example, AGO2
prefers a 5'-adenine nucleotide while AGO5 favors a 5'-cytosine
(Takeda et al., 2008). Genetic studies also implicate other AGOs
in addition to AGOL1 in antiviral defense responses. For exam-
ple, experiments involving Arabidopsis agol and ago7 mutants
infected with suppressor-defective TCV point to complementary
roles for AGO1 and AGO?7 in viral defense responses (Qu et al.,
2008; Azevedo et al., 2010). Another example is represented by
AGO4, which was connected to virus defense, but solely in the
context of the induction of a specific resistance gene-mediated
response (Bhattacharjee et al., 2009). Moreover, the Polerovirus PO
suppressor not only targets AGO1 for degradation, it also affects
AGO2, -4, -5, -6, and -9 (Baumberger et al., 2007). Collectively,
these discoveries suggest that potentially multiple AGOs might be
enlisted in the effort to target viral invaders for destruction.

THEN CAME AGO02
In support of the above notion that AGOs in addition to AGO1 may
be a factor in the battle against viruses, four recent studies linked
AGO?2 in Arabidopsis and N. benthamiana with antiviral defense
responses. In the first study, Arabidopsis AGO mutant knockouts
(KOs) for each of the 10 AGOs, were challenged with TCV and
CMV (Harvey et al., 2011). These viruses encode suppressors of
gene silencing, P38 for TCV and 2b for CMV, which among other
activities directly interfere with AGO1 function, resulting in the
condition that regardless of the KO line, upon infection AGO1
activity was compromised by these viruses. Out of all the mutants
tested within this experimental framework only the ago2 KO line
showed enhanced susceptibility to infections with either virus. It
appears that this novel antiviral role for Arabidopsis AGO2 is nor-
mally hidden in the presence of active AGO1, because the latter
regulates the expression of AGO2 via the production of miR403
(Allen et al., 2005). But once AGO1 has vanished as a consequence
of the activity of P38 or 2b, AGO?2 is expressed at higher levels and
then surfaces as an antiviral defense protein.

At the same time a similar role was discovered for Arabidop-
sis AGO2 in antiviral defense, but in this particular case it was
found that AGO1 and AGO2 operate in a non-redundant and
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cooperative manner against a weak form of CMV not express-
ing the 2b suppressor (CMVA2b; Wang et al., 2011). Individual
Arabidopsis lines bearing T-DNA insertional KOs to eliminate
expression of specific AGO-encoding genes were infected with the
CMV A2bD variant. The outcome was that only agol and ago2 KO
lines were susceptible to CMV A2b, while the double KO displayed
even higher susceptibility. Moreover, an increase in CMVA2b
viral siRNAs was observed in the single and double KO mutant
lines of agol and ago2 when compared to wild-type plants, indi-
cating that AGO1 and AGO2 are conceivably not required for
the production of primary and secondary siRNAs in CMV A2b—
Arabidopsis interactions, but they are involved in downstream
antiviral activities. Pull down assays were also performed with
FLAG-tagged AGO1 and AGO2 in order to analyze viral siRNA
sorting preferences for these two proteins. The results showed
that siRNAs with 5'-uracil nucleotides were preferred by AGO1
whereas 5'-adenine nucleotides were favored by AGO2, corrobo-
rating previous findings on AGO-dependent preferential sorting
properties.

A third study associating Arabidopsis AGO2 with antiviral
silencing identified a PVX “strain” capable of infecting Arabidopsis
while this species is normally a non-host for this virus (Jaubert
etal., 2011). However, it was determined that the “strain” actually
comprised a mix of two separate viruses, PVX, and Pepper ring
spot virus (PepRSV), a Tobravirus. In this scenario PepRSV acted
by repressing viral RNA silencing, thereby creating a molecular
milieu now conducive for PVX infection. Key to understand-
ing the nature of the non-host behavior was the observation
that PVX alone was competent for infecting an Arabidopsis triple
dicer mutant (dcl2, dcl3, and dcl4) to cause severe disease symp-
toms along with systemic necrosis pointing to silencing as the
main impediment for PVX to infect wild-type Arabidopsis plants
(Jaubert et al., 2011). Subsequently it was investigated whether
AGOs were involved in this non-host interaction, by challeng-
ing Arabidopsis ago mutant plants with PVX and observing that
only ago2 plants allowed accumulation of PVX in systemic tis-
sues. Sap from these PVX-infected Arabidopsis plants induced an
HR in Rx2 N. benthamiana plants that are resistant to PVX, pro-
viding evidence that the original tissue contained virus. However,
sap from upper leaves of wild-type Arabidopsis or from other ago
mutant plants inoculated with PVX, failed to cause a local lesion
response in the Rx2 N. benthamiana plants, indicating the absence
of virus in that source. Thus, it was concluded that Arabidop-
sis AGO2 plays a major role in the antiviral defense mechanism
against PVX.

The final study identifying AGO2 as an important compo-
nent of the antiviral silencing defense mechanism was not derived
from work with Arabidopsis, but is instead based on studies with
N. benthamiana infected with TBSV mutants (Scholthof et al.,
2011). The purpose of the investigation was to identify which
N. benthamiana AGOs are important for silencing TBSV RNA
and that could perhaps be a component of VRISC (Omarov et al.,
2007). Toward this, infectious TBSV clones were used that either
expressed the P19 suppressor (TBSV) or that were defective for its
translation (TdP19). Additional versions of the TBSV constructs
expressed green fluorescence protein (TG and TGdP19) to visual-
ize the effects of silencing on virus spread. In a normal wild-type

TBSV infection in N. benthamiana, the plants succumb to a lethal
necrosis about a week after inoculation, but plants infected with
dP19 variants display much weaker symptoms and in fact even-
tually recover from the initial infections through the action of
antiviral RNA silencing (Scholthof, 2006). It was reasoned that
in plants inactivated for a crucial AGO, the dP19 mutants would
not be targeted by silencing and yield a wild-type-like virus infec-
tion. To obtain AGO “KO” plants in N. benthamiana, TRV-based
virus-induced gene silencing was used to down-regulate expres-
sion of AGO1, AGO2, or AGO4, and after the onset of AGO-
silencing, those plants were subsequently challenged with TBSV,
TdP19, TG, or TGdP19. Non-silenced control plants, or plants
silenced for AGO1 or AGO4, recovered from virus infections with
TdP19 as a result of anti-TBSV silencing. Similarly, in such plants
TGdP19 initially expressed GFP but at reduced intensity compared
to TG infections (Figure 2), and a few days later GFP expres-
sion by TGdP19 had entirely disappeared due to antiviral RNA
silencing. In contrast, AGO2-inactivated N. benthamiana plants
supported wild-type-like infections by the TdP19 virus and more-
over, these plants exhibited no difference when infected with TG
or TGdP19 because GFP intensity and duration was the same for
both (Figure 2). In short, inactivation of AGO2 in N. benthami-
ana compromised the ability of the plants to mount an effective
antiviral silencing defense against TBSV.

PROSPECTS

It is evident that plants evolved RNA silencing not only to regulate
endogenous gene expression but also as an important strategy for
defense against invasions by foreign nucleic acids. An increasing

TGdP19

00-control

AGO2-silenced

FIGURE 2 | AGO2-mediated silencing of Tomato bushy stunt virus RNA
in Nicotiana benthamiana. Plants were agroinfiltrated to express Tobacco
rattle virus (TRV) as a virus-induced gene silencing vector containing either
no insert (00-control) or an AGO2 fragment (AGO2-silenced). At ~40 days
post-infiltration, upper leaves of these plants were infiltrated to express
TBSV-GFP (TG) or TBSV-GFP devoid of P19 translation (TGdP19); images of
leaves were captured 5 days later under UV illumination. Evidently when
AGO?2 expression is silenced, GFP expression from TGdP19 (only infiltrated
in one half of the leaf) is maintained indicating the absence of effective
silencing when compared to that in the 00-control. Details can be found in
Scholthof et al. (2011), that also describes the eventual complete
abolishment of GFP expression in TGdP19-infected 00-control plants at later
time points, while expression in AGO2-silenced plants is maintained stably.
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body of evidence points to vital antiviral roles not only for AGO1
but most recently also for AGO2. Probably additional or maybe
even all AGOs have overlapping and/or epistatic functions relating
to antiviral defense. The type of viral infection (e.g., localization
or formation of specific intracellular structures) and the nature
of the suppressors, could possibly also determine which AGOs are
recruited most effectively by the plant for an antiviral defense func-
tion under the prevailing conditions. Moreover, host-dependent
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