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Analysis of mutants with increased branching has revealed the strigolactone synthe-
sis/perception pathway which regulates branching in plants. However, whether variation in
this well conserved developmental signaling system contributes to the unique plant archi-
tectures of different species is yet to be determined. We examined petunia orthologs of
the Arabidopsis MAX1 and MAX2 genes to characterize their role in petunia architecture.
A single ortholog of MAX1, PhMAX1 which encodes a cytochrome P450, was identified
and was able to complement the max1 mutant of Arabidopsis. Petunia has two copies
of the MAX2 gene, PhMAX2A and PhMAX2B which encode F-Box proteins. Differences
in the transcript levels of these two MAX2-like genes suggest diverging functions. Unlike
PhMAX2B, PhMAX2A mRNA levels change in leaves of differing age/position on the plant.
Nonetheless, this gene functionally complements the Arabidopsis max2 mutant indicating
that the biochemical activity of the PhMAX2A protein is not significantly different from
MAX2. The expression of the petunia strigolactone pathway genes (PhCCD7, PhCCD8,
PhMAX1, PhMAX2A, and PhMAX2B) was then further investigated throughout the devel-
opment of wild-type petunia plants.Three of these genes showed changes in mRNA levels
over a development series. Alterations to the expression patterns of these genes may
influence the branching growth habit of plants by changing strigolactone production and/or
sensitivity.These changes could allow both subtle and dramatic changes to branching within
and between species.
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INTRODUCTION
Vegetative branching involves the production of new growth axes
from axillary meristems. Coordinating the growth of these meris-
tems across the body of the plant is vital to a plant’s reproductive
success and its ability to recover from herbivory and other dam-
age. The study of branching mutants in different plant systems can
provide insights into the conservation and diversity of branching
control systems. In petunia (Petunia hybrida), branching occurs
in two distinct phases (Snowden and Napoli, 2003). During veg-
etative development branches are generally produced acropetally
from nodes 3–8 on the main stem. Basal branching ceases at or
before the floral transition, with the axillary meristems above node
eight not developing beyond small buds. The petunia inflorescence
is then produced by a series of sympodial branches, while at the
same time additional lateral branches develop in a basipetal wave
down the main stem from the node immediately below the first
flower (Snowden and Napoli, 2003; Drummond et al., 2009b).

Branching in Arabidopsis (Arabidopsis thaliana), pea (Pisum
sativum), and rice (Oryza sativa) is also well studied, particularly
under conditions that promote flowering. Differences are observed
in the branching that occurs in these species (and petunia), partic-
ularly with respect to the timing of branching or the positioning
of branches along the main shoot axis (Figure 1). For example,

Arabidopsis tends to produce branches in a basipetal wave after
the floral transition (Hempel and Feldman, 1994) though axillary
meristems can produce vegetative buds in an acropetal wave from
basal nodes of the plant in some circumstances (Stirnberg et al.,
1999). Rice produces branches (known as tillers) during vegeta-
tive growth (Hanada, 1993) and tall, wild-type cultivars of pea
branch from the nodes immediately basipetal to the first flower
(Stafstrom, 1995). For many species, differences occur in growth
habit between cultivars. In different petunia cultivars, the number
of nodes that produce branches can vary, as well as the positioning
of the basal branches along the shoot axis (Brunaud et al., 1977;
Drummond et al., 2009b).

The decreased apical dominance (dad)/more axillary growth
(max)/ramosus (rms)/dwarf (d ; petunia/Arabidopsis/pea/rice)
mutants have an increased number of vegetative branches and
decreased plant height compared to wild-type plants (Blixt, 1976;
Napoli and Ruehle, 1996; Stirnberg et al., 2002; Ishikawa et al.,
2005). The petunia dad1 and dad2 mutants have a similar mutant
phenotype, these plants have decreased height and in most growth
conditions produce branches from every axillary meristem on the
main shoot before flowering (Snowden and Napoli, 2003). A large
number of secondary branches and a smaller number of tertiary
branches are also produced. The dad3 mutant has a less severe
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Drummond et al. Developmental regulation of branching genes

FIGURE 1 | Growth habit of petunia, Arabidopsis, pea, and rice. Branching patterns are shown for (from left to right) petunia, Arabidopsis, pea, and rice.
Leaves are shown in green, open circles represent flowers, and arrows represent branches.

mutant phenotype, which in some growth conditions is over-
lapping with that of wild-type, although the mutants frequently
produce secondary branches when wild-type does not. There are
other changes to the plants in each species, such as delayed leaf
senescence, delayed flowering time, and decreased root mass. The
severity of change in these characters varies depending on the
species and the particular gene (Woo et al., 2001; Snowden et al.,
2005).

It is now apparent that the carotenoid cleavage dioxygenase
(CCD) genes CCD7 and CCD8 are important components in the
regulation of axillary branching. These genes when disrupted give
rise to the dad3/max3/rms5/htd1 and the dad1/max4/rms1/d10
mutants respectively (Sorefan et al., 2003; Booker et al., 2004;
Snowden et al., 2005; Zou et al., 2005; Johnson et al., 2006;
Arite et al., 2007; Drummond et al., 2009c). The CCD7 and
CCD8 proteins are required for the production of the plant hor-
mone strigolactone (Gomez-Roldan et al., 2008; Umehara et al.,
2008). Strigolactones are a class of naturally occurring compounds
(Yoneyama et al., 2008), thought to be derived from carotenoids
(Matusova et al., 2005). Strigolactones were first identified as ger-
mination stimulants for parasitic weeds (Cook et al., 1966; Siame
et al., 1993; Yokota et al., 1998) and they have also been shown
to be important for the establishment of the plant/arbuscular
mycorrhizal fungi symbiosis (Akiyama et al., 2005). The addi-
tion of strigolactone to ccd7 or ccd8 mutant plants of rice, pea,
and Arabidopsis suppresses branching to wild-type levels iden-
tifying these compounds as an endogenous plant growth signal
(Gomez-Roldan et al., 2008; Umehara et al., 2008).

Two additional genes were identified in mutant screens in Ara-
bidopsis that are involved in the control of branching, these are
AtMAX1 and AtMAX2 (Stirnberg et al., 2002; Booker et al., 2005).
The MAX1 protein is a cytochrome P450 monooxygenase and
has been suggested to modify the strigolactone signal molecule
(Booker et al., 2005). The MAX2 protein is a member of the F-box
LRR_7 family and is thought to be involved in the reception of
strigolactone, or to be involved in its signal transduction, in the
stem or the axillary bud (Stirnberg et al., 2002). Part of the rea-
soning for placing the AtMAX2 gene in signal reception is that
the max2 mutant, unlike the other max mutants, is unable to be

reverted by grafting the mutant scion to wild-type rootstocks,a fea-
ture that it shares with the dad2 mutant of petunia (Booker et al.,
2005; Simons et al., 2007). The AtMAX2 gene has been reported to
play a role in two additional developmental processes; leaf senes-
cence and seedling morphogenesis (Woo et al., 2001; Shen et al.,
2007).

Senescence of leaves is the last stage of their developmental
program. It is an orderly process that recycles much of the content
of the dying leaves into the growing parts of the plant (reviewed
in Lim et al., 2007). Senescence is frequently triggered by stresses,
such as nutrition shortages, and high or low light. However, a large
number of delayed leaf senescence mutants have been identified
in Arabidopsis (Lim et al., 2007) including one with a mutation
in AtMAX2 (Woo et al., 2001). In petunia delayed leaf senescence
has been reported for the dad1 mutant (Snowden et al., 2005) and
kiwifruit plants with CCD8 knocked down by RNAi have delayed
leaf senescence (Ledger et al., 2010).

The endogenous developmental program that regulates
branching determines whether growth will occur by integrat-
ing the timing, position, and identity of axillary meristems (Bell,
1991). In petunia this produces a zone of branches on the lower
part of the main stem (Snowden and Napoli, 2003). The petu-
nia dad mutants are altered in the timing and/or position of
branch growth (Napoli and Ruehle, 1996). This suggests that the
strigolactone signaling system may regulate branching during the
development of petunia. Not all components of the strigolac-
tone biosynthesis and perception pathway have been identified
in petunia, and it is unknown whether all genes in the pathway
are conserved. Our aim is to identify any orthologs of the MAX1
and MAX2 genes in petunia, and to determine whether the tran-
script abundance patterns of these and other branching genes are
involved in determining the branching pattern of petunia. The
possibility that a MAX2 ortholog could be the as yet unidentified
DAD2 gene was also explored.

We have identified genes orthologous to MAX1 and MAX2
in petunia – PhMAX1, PhMAX2A and PhMAX2B and show that
these genes are expressed in a range of organs in mature wild-type
and dad mutant petunia. We have also determined the transcript
profiles of five genes involved in either strigolactone synthesis or
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reception across whole-plant development and during leaf senes-
cence and observed time dependent changes in steady state mRNA
levels for four of the genes. This suggests that although the genetic
system that controls the production and reception of the hormone
strigolactone is conserved, the detailed regulation of these genes
may lead to the observed differences in plant form.

MATERIALS AND METHODS
GENETIC STOCKS, TRANSFORMATION, AND PLANT GROWTH
CONDITIONS
The dad mutants were derived from P. hybrida inbred line V26
(petunia) by Napoli and Ruehle (1996). The A. thaliana (Arabidop-
sis) max1 and max2 mutants were derived from ecotype Columbia
and were kindly donated by O. Leyser. Petunia was transformed as
described by Jorgensen et al. (1996), modified to remove acetosy-
ringone from the co-cultivation medium. Transformation efficacy
was assessed by the parallel introduction of a control construct,
pHEX4 (Drummond et al., 2009c). Thirteen lines of wild-type
petunia stably transformed with 35S-RNAi-PhMAX1 and 19 lines
transformed with 35S-RNAi-PhMAX2A were produced. Four lines
of 35S-RNAi-PhMAX1 and three lines of 35S-RNAi-PhMAX2A
showed a possible alteration to the branching phenotype and were
taken to the T2 generation. The segregating populations were
screened by PCR for the presence of the transgene. Arabidopsis
was transformed as described by Clough and Bent (1988), with the
minor modification that the Agrobacterium cultures were applied
to individual flowers in 10-μL drops. For phenotypic characteri-
zation, all plants were grown in soil in a glasshouse as described in
Snowden et al. (2005), unless otherwise stated in the text.

GENE ISOLATION
We identified MAX1 and MAX2 homologous genes from pub-
lic sequence databases using BLAST. Alignments of the protein
sequences that were identified were used to find regions of con-
servation in each gene and degenerate primers were designed to
those regions. Two fragments of PhMAX1 were isolated using

the degenerate primer pairs oM1–1/oM1–2, and oM1–3/oM1–4
(Table 1). The PCR cycling conditions were 94˚C for 2 min, fol-
lowed by 30 cycles of 94˚C for 15 s, 60˚C for 30 s, 72˚C for 2 min,
followed by 72˚C for 5 min. The first fragment of PhMAX2A was
isolated using the primers oM2A–1/oM2A–2 (Table 1). The PCR
cycling conditions were 94˚C for 2 min, followed by 30 cycles of
94˚C for 15 s, 55˚C for 30 s, 72˚C for 1 min, followed by 72˚C for
5 min. The reaction mixes contained Platinum Taq (Invitrogen)
with all components as per the manufacturer’s recommendations,
except that primers were added to a final concentration of 10 μM
for PhMAX1 and 1 μM for PhMAX2A (to allow for the high redun-
dancy of these primers). Petunia genomic DNA was used as the
template for both reactions. A fragment of the PhMAX2B sequence
was identified in the 454PetuniaDB sequence database (Zenoni
et al., 2011). An iterative process of cloning, sequencing, RT-PCR,
and inverse PCR (iPCR; Snowden and Napoli, 1998) was used to
isolate the remainder of the genes’ sequence.

BIOINFORMATICS
Sequences with similarity to known genes were identified in the
GenBank and 454PetuniaDB databases using the BLAST algo-
rithm. Sequences were aligned using either ClustalX or Geneious®
alignment (Drummond et al., 2009a). Maximum likelihood phy-
logenies were calculated using the PhyML (Guindon and Gascuel,
2003) algorithm as implemented in Geneious®. Bootstrap values
were calculated as a confidence measure in the phylogenies using
1000 replicates.

VECTOR CONSTRUCTION
To overexpress the PhMAX1 gene its full-length cDNA, amplified
using the oM1–5/oM1–6 primer pair (Table 1), was cloned into
the pSAK778 vector (Drummond et al., 2009c) immediately 3′ of
the 35S promoter in that vector. Similarly the full-length cDNA
of PhMAX2A was amplified using the oM2A–3/oM2A–4 primer
pair (Table 1), and cloned into the pART277 vector (Gleave, 1992)
again immediately 3′ of a 35S promoter.

Table 1 | DNA primer pairs used in this research.

Primer pair names Primer sequences

oM1–1/oM1–2 GCNGTIACNTAYGARCAYCTICTNGCNGG/TCNGGYTCIGGRAARTTYTTNGGRTCYTT

oM1–3/oM1–4 GATGACCAGCGACTAGATAG/ACNGAYGTIATHGGNCARGCNGCNTTYGG

oM1–5/oM1–6 CGGGATCCCGATCTCCTTCTCCATCAAGAG/CCGCTCGAGCGGCGTAGAGCTTCTTCTGAG

oM1–7/oM1–8 GGGGACAAGTTTGTACAAAAAAGCAGGCTGGACTCTCCAAACCAATAAC/GGGGACCACTTTGTACAAGAAAGCTGGGTG

TGATCATCAGGGCCAAAAG

oM1–9/oM1–10 GAGGTGGAGATTGGAGGCTAT/TTCTCTGGTTCAGGGAAGTTCT

oM1–11/oM1–12 GCTGTCTACCCATATGGAATC/CGGGATCCCGATCTCCTTCTCCATCAAGAG

oM1–13/oM1–14 GTTGGCTCTTGGAGTTCTTG/CCGCTCGAGCGGCGTAGAGCTTCTTCTGAG

oM2A–1/oM2A–2 GATIIAAGGIGATTGCAG/GGTGGCCAATAATCIAGITC

oM2A–3/oM2A–4 CACTCGAGCAACACCTGTGACTGATTGCT/GCTCTAGACCAATTTGCACAAAGTGCACC

oM2A–5/oM2A–6 GGGGACAAGTTTGTACAAAAAAGCAGGCTAAGAAGCGATGCAAGTTCTCC/GGGACCACTTTGTACAAGAAAGCTGGGTG

CTCAAAGTTCCAATCCCAAG

oM2A–7/oM2A–8 TCCATTGCCATGTCCATTGAC/CAGCTTTGTCCAACTCTAGG

oM2A–9/oM2A–10 CTACAAGAATGCCTCACGCTC/ATAGTAATCCTCTCTCAGTTGCAC

oM2B–1/oM2B–2 GCTCAGAAAGTTGTTCATCCATG/TGCCGGGTAGTAATCTTCTCTC

oCAB-1/oCAB-2 CGGACTTGACTACTTGGGCAAC/GCAACACGGTAACCCTCAAC
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To knockout the expression of the PhMAX1 gene, a frag-
ment of the gene was amplified using the oM1–7/oM1–8 primer
pair (Table 1). These primers have 5′ extensions consisting of
the AttB1/AttB2 Gateway® cloning sites. The amplified prod-
uct was Gateway cloned into pDONR221 and from there into
pTKO2 (Snowden et al., 2005). A construct designed to knockout
PhMAX2A expression was created in the same way starting with
the oM2A–5/oM2A–6 primer pair (Table 1).

SOUTHERN ANALYSIS
Southern analysis of MAX2 copy number was carried out using
10 μg of restriction enzyme-digested petunia genomic DNA with
radioactive probes, as described in Snowden and Napoli (1998).
The probe was created from a PCR fragment amplified using the
oM2A–7/oM2A–8 primer pair (Table 1). The analysis of PhMAX1
was carried out using a similar method but with the radioactive
probes replaced with the digoxigenin labeling system (Roche),
and following the manufacturer’s instructions. The probes were
created from PCR products; probe 1 was produced using the
oM1–11/oM1–12 primer pair, probe 2 using the oM1–13/oM1–
14 primer pair (Table 1). The positive control was linearized
pGEM-T Easy plasmid carrying the PhMAX1 cDNA (expected size
4.7 kb). All washes of Southern blots were performed at medium
to high stringency (0.5–0.1× SSC, 65˚C) to allow the detection of
homologous sequences.

QUANTITATIVE RT-PCR
The samples used in quantitative RT-PCR (qPCR) analyses were
collected from at least six individual plants grown in a glasshouse
and the tissue pooled before RNA isolation. All experiments con-
tain at least two biological replicates, where a second population
of plants were grown, and the RNA isolated, independently from
the first. We show the biological replicate data in Figures 4 and 8
as some differences were noted between replicates (discussed in
the main text). The wild-type samples for the experiment shown
in Figure 4 were collected from plants that had been grown in
a glasshouse, the first replicate in late winter, and the second in
spring. The development series plants (Figure 8) were grown in
a glasshouse over summer, with the replicate start dates offset by
1 week. The data in Figure 4 was derived from the following sam-
ples: fine lateral roots, R; low internodes (below node five) on the
main stem LIN; nodes 3–4 on the main stem, N; high internodes
(above node 12) on the main stem, HIN; fully expanded leaves, L;
axillary bud, AXB; shoot apex, SA. The SA sample contained the
shoot apical meristem and approximately 5 mm of stem and asso-
ciated young leaves. All stem samples had leaves and associated
axillary buds removed. The data in Figure 5 was derived from:
fine lateral roots, R; 2 cm of stem above the cotyledons (nodes
and internodes), S; axillary bud, AXB; shoot apex, SA. The data
in Figure 6 was derived from three experiments. In Experiment
1 leaves were sampled from four positions on the plants; position
A is 1 cm above the cotyledons, position D is two nodes below
the first flower, positions B and C are equally spaced between these
samples. In Experiments 2 and 3 leaves were sampled at four nodes:
4, 6, 8, and 10. Figure 8 data: Wild-type petunia plants were grown
in conditions which limited axillary bud outgrowth (long days,
crowded, sparing application of water and fertilizer) to maximize

expression of strigolactone pathway genes. Samples were taken at
four time points - 3, 5, 7, and 9 weeks post-germination. The sam-
ples were: fine lateral roots (RL); the primary root immediately
below the hypocotyl (up to 3 cm in length, RP); for the 3-week
sample the entire stem (S); for the remaining time points 2 cm of
stem above node 1 (SL) where branching generally occurs; 2 cm
of stem above node eight (SM) where branching is generally sup-
pressed; a young leaf (L) sample was taken from the 3-week-old
plants; and a flower bud (FB) sample from the 9-week-old plants.

RNA was isolated using the RNeasy Plant Mini Kit (Qiagen)
following the manufacturer’s instructions. Some samples were
additionally purified using a standard phenol: chloroform, ethanol
precipitation method. Genomic DNA contamination was removed
using Turbo DNase (Ambion), and the RNA quality tested using
a Bioanalyzer 2100 (software version 2.5), before production of
cDNA using Superscript III (Invitrogen) with an anchored dT23V
primer.

Quantitative RT-PCR was carried out for each target gene and
three internal control genes Actin, EF-1a, and Histone 4 for each
sample on a single plate using the Lightcycler 480 machine, 384-
well plates,and SYBR green I Master reagents (Roche). The primers
used to amplify the previously described genes are listed in Snow-
den et al. (2005) and Drummond et al. (2009c). The primers
for PhMAX1 are oM1–9/oM1–10, for PhMAX2A were oM2A–
9/oM2A–10, for PhMAX2B were oM2B–1/oM2B–2, and for CAB
were oCAB-1/oCAB-2 (Table 1). The Cq values were calculated
using the second derivative maximum method as implemented
in the Lightcycler 480 software. PCR efficiencies were calculated
using LinRegPCR (v11; Ruijter et al., 2009) for each reaction
and averaged over each amplicon (Karlen et al., 2007), before
the relative expression was calculated using the comparative cycle
threshold method (Pfaffl, 2001), with normalization of data to the
geometric average of the internal control genes (Vandesompele
et al., 2002). Expression levels were then rescaled relative to the
sample with the greatest expression for each gene in each qPCR
experiment (where biological replicates are shown together expres-
sion levels were rescaled relative to the sample with the greatest
expression in replicate one).

STATISTICAL TESTS
ANOVAs were performed for statistical analyses of phenotypic
data using the GenStat statistical software package (12th Edn).
Appropriate transformations were used to ensure that model
assumptions were met where necessary. Mean separation tests were
performed using Tukey’s least significant difference (LSD) test at
the 5% level of significance.

The data in Figure 8 was assessed in two ways. First the
reproducibility between the biological replicates was quantified
by determining the intra-class correlation coefficients (ICC) as
calculated from a one way ANOVA model in SAS 9.2 (Lu and
Nawar, 2009). Second, an analysis of the time dependent trends
was conducted using Proc Mixed, the linear mixed model (LMM)
procedure, in SAS 9.2. The S and SL sample types were combined
for these tests. A model that included replicate and sample type as
factors with day as a covariate was fitted separately to data from
each gene. A sample type and day interaction was also included to
allow for differing slopes over time for each sample type. The slopes
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and respective SE for each sample type were calculated by taking
the appropriate linear combinations of the model coefficients. A
t -test was then used to assess if there was evidence that each of
these slopes differed from zero. P-values less than 0.05 (∗) or less
than 0.01 (∗∗) are indicated in Figure 8 and can be interpreted as
evidence of an increasing (or decreasing) linear trend.

SEQUENCE DATA
The nucleotide sequences reported in this paper have been
deposited in the GenBank database under the accessions
HM117628 (PhMAX1), HM117629 (PhMAX2A), and HM117630
(PhMAX2B). Table 1 lists the names and sequence of the DNA
primers developed as a part of this research.

RESULTS
PhMAX1 IS ORTHOLOGOUS TO MAX1 (CYP711A1)
Degenerate primers designed to conserved regions of AtMAX1
were used to isolate a fragment of PhMAX1 from petunia genomic
DNA by PCR. Using iPCR, this sequence was extended to a total
of 4254 bp of genomic sequence that contained the putative petu-
nia PhMAX1 gene (GenBank Accession: HM117628). A full-length
cDNA clone of the gene was amplified from petunia cDNA, cloned,
and sequenced to confirm intron–exon boundaries. Figure 2A
shows the gene structure for the putative petunia PhMAX1 locus.

The CYP711A family has expanded in some plant species, for
example the rice genome contains five CYP711A genes (Nelson
et al., 2004). To determine if this is the case in petunia, we investi-
gated the copy number of PhMAX1 using Southern analysis. Probe
1, made against a region of the gene likely to only detect CYP711A
sub-family genes, detected one band of the expected size in each
digest, suggesting that no closely related sequences exist in this
genome (Figure 2B). However, Probe 2 made to a sequence con-
served across a wider range of cytochrome P450 genes detected
up to three bands in a single digest, suggesting that petunia does
have a significant number of cytochrome P450 genes more dis-
tantly related to PhMAX1 (Figure 2C). Using the 454PetuniaDB
sequence database1, we were unable to identify any sequence with
sufficient similarity to suggest paralogy.

To determine the phylogenetic relationships between the puta-
tive petunia MAX1 and other similar proteins, the predicted pro-
tein sequence was used in BLAST searches against the Arabidopsis
proteome. We identified a number of closely related sequences; as
expected, all were cytochrome P450 monooxygenases. We selected
14 closely related (E > 4e−25) proteins covering six families for
further analysis. As shown in Figure 2D the protein from petunia
is most similar to MAX1 (CYP711A1) and is 72% identical at the
amino acid level. Together, these results suggest that PhMAX1 is
likely to be a single copy gene that is orthologous to AtMAX1.

PhMAX2A AND PhMAX2B ARE ORTHOLOGOUS TO MAX2
Degenerate primers designed to conserved regions of AtMAX2
were used to isolate a fragment of PhMAX2A from petunia
genomic DNA by PCR. A series of PCR and iPCR reactions were
then performed to isolate 2329 bp of genomic DNA sequence

1http://biosrv.cab.unina.it/454petuniadb/

FIGURE 2 |The PhMAX1 gene. (A) Structure of the gene, exons are
shown in red, probes and restriction enzymes used in the Southern analysis
are shown in blue. (B,C) A petunia genomic DNA Southern blot probed with
a fragment of PhMAX1 with either (B) high, probe 1, or (C) low, probe 2,
variability amongst cytochrome P450 genes. The image shown in (B) is
from a high stringency wash (0.1× SSC, 65˚C), a prior medium stringency
wash (0.5× SSC, 65˚C) showed no additional bands. The image in (C) is
from a medium stringency wash. The lanes are: +, positive control; Ss, SspI
digest; Sp, SpeI digest. The line indicates where intervening lanes have
been removed for clarity. (D) A maximum likelihood phylogeny showing the
petunia MAX1 protein in relation to similar CYP450 proteins in Arabidopsis.
Sequences have been labeled with their TAIR locus number and any
CYP450 name associated with the sequence. CYP711A1 is MAX1. The tree
is unrooted and the values indicated on branches are bootstrap
percentages (out of 1000 replicates).

(GenBank Accession: HM117629). The transcript of PhMAX2A
was confirmed by PCR amplifying and cloning a cDNA copy of
the gene. The PhMAX2A gene consists of a single exon as shown
in Figure 3B.

We investigated the copy number of MAX2 in petunia using
Southern analysis. The probe detected single bands in the MfeI and
EcoRI digests, but two bands in the digests using NcoI (Figure 3C),
suggesting that there might be a closely related gene in petunia.
Using the 454PetuniaDB sequence, we identified a second gene
in petunia with sequence similarity to MAX2. Using iPCR, we
have cloned and sequenced DNA fragments covering 2660 bp of
genomic sequence at the PhMAX2B locus (GenBank Accession:
HM117630). The two genes are 77% identical at the nucleotide
level over the coding sequence and 78% identical at the protein
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FIGURE 3 |The PhMAX2A and PhMAX2B genes. (A) An alignment of
the MAX2, PhMAX2A, and PhMAX2B predicted proteins, sequences are
shaded by similarity. (B) Structure of the PhMAX2 genes, the black line
represents the DNA sequence, both genes consist of a single exon, the
PhMAX2A exon (2127 bp) is shown in red. The PhMAX2B exon is 45 bp
larger. The restriction sites used in the Southern blot are shown above the
sequence in blue for PhMAX2A and below the sequence in orange for
PhMAX2B. The Southern blot probe, created from PhMAX2A, is shown

above the sequence as a blue bar. (C) A petunia genomic DNA Southern
blot probed with a fragment of PhMAX2A. The lanes are: M, MfeI; N, NcoI
digest; E, EcoRI digest; MN, MfeI NcoI double digest. (D) A maximum
likelihood phylogeny showing the PhMAX2A and PhMAX2B proteins in
relation to the LRR7 F-Box proteins in Arabidopsis. Sequences have been
given their TAIR locus number and any gene name associated with the
sequence. The tree is unrooted and the values indicated on branches are
bootstrap percentages over 1000 replicates.
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level. An alignment of the two petunia proteins and MAX2 from
Arabidopsis is shown in Figure 3A. PhMAX2A is 60% identical to
MAX2 at the amino acid level and PhMAX2B is 59% identical to
MAX2.

The evolutionary relationships of the F-box super family have
recently been examined by Xu et al. (2009). The MAX2 protein
belongs to the LRR_7 family. In Arabidopsis there are 13 subfam-
ilies in this group. When compared with the proteins from the
LLR_7 group, the putative petunia MAX2 proteins are most sim-
ilar to one another and form a monophyletic clade with MAX2
(Figure 3D).Taken together, these results suggest that PhMAX2A
and PhMAX2B are paralogous genes that are orthologous to
AtMAX2.

Due to the similarity of the grafting results for the max2 and
dad2 mutants we investigated the possibility that the PhMAX2A
or PhMAX2B genes could be DAD2. However, sequencing of these
two genes in the dad2 mutant did not uncover any differences
in sequence to the gene in wild-type plants (2.3 and 2.6 kb was
sequenced respectively for PhMAX2A and PhMAX2B covering the
regions represented in the GenBank Accessions HM117629 and
HM117630).

STEADY STATE mRNA LEVELS IN MATURE WILD-TYPE AND DAD
MUTANT PETUNIA
It has been suggested that the differences between species are most
frequently derived from changes in gene expression, timing, and
localization rather than changes in protein function (King and Wil-
son, 1975). To investigate whether the morphological differences
between petunia and Arabidopsis might be explained by changes
in the expression of the PhMAX1, PhMAX2A, or PhMAX2B genes,
we used qPCR to examine the steady state mRNA levels of these
genes in mature wild-type and dad mutant petunia.

Publically available microarray data suggest that AtMAX1 is
expressed throughout the plant2. This was refined by Booker et al.
(2005) using a promoter GUS reporter system to show that the
expression is restricted to vascular bundles. We detected PhMAX1
transcripts in all seven organs of the wild-type petunia we tested
and found the greatest abundance in the low stem samples, with
the difference between the highest and lowest abundance being a
single order of magnitude; a biological replicate showed a similar
trend (Figure 4A).

The expression of MAX2 orthologs has been investigated in
rice, pea, sorghum, and Arabidopsis. In all four plants gene tran-
scripts were detected in all the organs tested. In rice and Arabidopsis
there was little sign of variation in transcript abundance with
respect to organ type (Shen et al., 2007; Stirnberg et al., 2007;
Mashiguchi et al., 2009). However, in pea, mRNA levels were at
least 3.5 times greater in stipules than any other tested material
(Johnson et al., 2006), and in sorghum mRNA levels were greatest
in roots (Kebrom et al., 2010). In petunia we detected PhMAX2A
and PhMAX2B transcripts in all seven samples tested. The pattern
of transcript levels varied both between the genes and between
the biological replicates (Figures 4B,C). PhMAX2B shows vari-
ability between replicates in root, leaf, and shoot apex, whereas

2http://arabidopsis-p450.biotec.uiuc.edu/microarray.shtml

FIGURE 4 | Relative transcript abundance in 11-week-old wild-type

petunia. Values are means ± SEM and indicate technical variation over
triplicate reactions. Two independent biological replicates are shown. R, fine
lateral roots; LIN, low internodes (below node five) on the main stem; N,
nodes 3–4 on the main stem; HIN, high internodes (above node 12) on the
main stem; L, fully expanded leaves; AXB, axillary bud; SA, shoot apex.
Relative transcript abundance as rescaled against the sample with the
greatest expression in replicate one for each gene (A) PhMAX1, (B)

PhMAX2A, (C) PhMAX2B.

PhMAX2A shows variability only in root and leaf samples. Some
consistent similarities are also apparent – the abundance of both
genes’ transcripts in leaves is greater in replicate two than in repli-
cate one, and the abundance of both genes’ transcripts is greatest in
axillary buds (and leaves in replicate two), having approximately
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twofold greater abundance than most other organs. With regard to
absolute transcript levels, our analysis suggests that the PhMAX2A
and PhMAX2B transcripts are present at similar levels to each
other (data not shown).

No changes in the transcript abundance of MAX2 (or the
orthologous gene D3 in rice) were detected in any of the branching
mutants tested (Arite et al., 2007; Stirnberg et al., 2007; Mashiguchi
et al., 2009). The expression of the PhMAX1, PhMAX2A, and
PhMAX2B genes was not eliminated in any of the petunia dad
mutants, including dad2 (Figure 5). However, PhMAX2A and
PhMAX2B transcript abundance was reduced in dad1 and dad2
axillary buds (Figures 5B,C), but not in dad3 axillary buds, which
may be because the dad3 mutant phenotype is less severe than that
of dad1 or dad2 (Snowden and Napoli, 2003). PhMAX1 transcript
abundance may be slightly elevated in stem samples in all three
dad mutants (Figure 5A). The small differences in mRNA levels
observed may be indirect effects from altered plant morphology
in the dad mutants.

PhMAX2A mRNA LEVELS ARE CORRELATED WITH LEAF AGE/POSITION
The variability in leaf expression seen above and the knowledge
that the MAX2 gene of Arabidopsis is involved in leaf senescence
led us to hypothesize that the MAX2 genes of petunia might show
altered transcription over leaf development.

A series of leaves were collected from wild-type petunia plants
that represented a progression of leaf ages/positions (Figure 6D).
As a molecular measure of leaf age we used the Chlorophyll AB
binding protein transcript as a well described marker; younger
leaves have greater abundance of the transcript (Hensel et al.,
1993). The abundance of the CAB transcript was negatively cor-
related with leaf age as expected (Figure 6A). The abundance
of the PhMAX2A and PhMAX2B transcripts were measured in
the same samples. PhMAX2A transcript levels (Figure 6B) were
highest in older leaves, decreasing in progressively younger, more
apical leaves. PhMAX2B mRNA levels did not show any consis-
tent changes, remaining largely unchanged across the samples
(Figure 6C).

THE PhMAX1 AND PhMAX2A PROTEINS FUNCTION IN THE CONTROL OF
BRANCHING
The different transcript abundance patterns of the PhMAX2A and
PhMAX2B genes suggested that the function of the genes may
have diverged, perhaps separating the control of senescence from
the control of branching. To determine if the PhMAX2A gene still
controls branching in petunia we attempted to remove this gene’s
transcripts by RNAi knockdown. In tandem with the PhMAX2A
experiment we attempted to knockdown PhMAX1 expression as
the function of MAX1-like genes has only been described in Ara-
bidopsis. Wild-type petunia were transformed with Cauliflower
mosaic virus 35S (35S) promoter-expressed RNAi hairpin knock-
out constructs targeting either the PhMAX1 or PhMAX2A genes.
Plants carrying the transgenes were characterized for branching
phenotypes and for mRNA levels of the PhMAX1 or PhMAX2A
gene as appropriate. In the best case, PhMAX1 transcript abun-
dance, as measured by qPCR, was lowered to 20% of the control
and PhMAX2A transcript abundance lowered to 40% of the con-
trol (Figure A1 in Appendix). Branching was increased in these

FIGURE 5 | Relative transcript abundance in 8-week-old wild-type and

dad mutant petunia. Values are means ± SEM and indicate technical
variation over triplicate reactions. R, fine roots; S, 2 cm of stem above the
cotyledons (nodes and internodes); AXB, axillary bud; SA, shoot apex.
Relative transcript abundance as rescaled against the sample with the
greatest expression for each gene (A) PhMAX1, (B) PhMAX2A, (C)

PhMAX2B.

lines and height decreased but the effect was subtle, generally not
statistically significant, and was poorly correlated with the change
in mRNA levels (Figure A1 in Appendix).

As an alternate method to test whether these petunia genes
could still function in the control of branching we stably
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FIGURE 6 | PhMAX2A and PhMAX2B transcript abundance in petunia

leaves. In the first experiment (Experiment 1) leaves were sampled from
four positions on 8-week-old plants. Position A is 1 cm above the
cotyledons, position D is two nodes below the first flower, positions B and
C are equally spaced between these samples. In the second and third
experiments (Experiments 2 and 3) leaves were sampled at nodes 4, 6, 8,
and 10 on 9-week-old plants. Relative transcript abundance was rescaled
against the sample with the greatest expression for each gene in each
experiment (A) CAB, (B) PhMAX2A, (C) PhMAX2B. Values are
means ± SEM and indicate technical variation over triplicate reactions. (D)

Diagram showing the sampling methodology, for simplicity branches and
spiral phyllotaxy of leaves are not shown.

FIGURE 7 | Complementation of max mutants by petunia genes. (A)

Representative late flowering stage (8-week-old) Arabidopsis plants are
shown for the genotypes: “Columbia” (Col) wild-type, max1 mutant, and
the fourth of the T3 transgenic max1/35S: PhMAX1 lines (a–c). (B) Col,
max2, and the second of the T3 max2/35S: PhMAX2A lines (a–c). (C,D)

Graphs showing the mean branch number (±SEM, n ≥ 6) of transgenic,
wild–type, and mutant Arabidopsis. Values with the same lowercase
identifier are not significantly different (P = 0.05). (C) Five independent T3
lines of max1/35S: PhMAX1 compared with Col, C, and max1, m, plants.
(D) Five independent T3 lines of max2/35S: PhMAX2A compared with Col,
C, and max2, m, plants.

transformed the Arabidopsis max1 mutant with a full-length cDNA
copy of PhMAX1, and the Arabidopsis max2 mutant with a full-
length cDNA copy of PhMAX2A. The PhMAX1 and PhMAX2A
genes were able to complement the equivalent max mutant in Ara-
bidopsis (Figures 7A,B). In five T3 homozygous lines the PhMAX1
gene was able to decrease the branch number of max1 plants to
wild-type (Figure 7C). In three of five lines PhMAX2A was able
to revert max2 to wild-type (Figure 7D). These results show that
PhMAX2A has retained the ability to function in the control of
branching.

CONTROLLING BRANCH OUTGROWTH DURING VEGETATIVE
DEVELOPMENT
Developmental changes in branching may be due to changes in
abundance of strigolactones or sensitivity to the strigolactone
signal. Some of these changes could be regulated at the tran-
scriptional level. If strigolactone levels increase with plant age
then the biosynthetic genes CCD7, CCD8, and MAX1 would be
expected to increase in expression over time. As MAX2 is involved
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in strigolactone signal transduction then expression of MAX2 may
be altered in stem regions that are more sensitive to branch inhibi-
tion. To test this hypothesis, we investigated whether the transcript
abundance of the PhMAX1, PhMAX2A, PhMAX2B, PhCCD7, and
PhCCD8 genes increased during development.

The transcript abundance of PhMAX1 increased during the
development series (see Figure 8A for photographs of represen-
tative plants sampled) in the primary root (RP) and stem (S/SL
and SM) samples, and there was good correlation, ICC = 0.97,
between the replicates (Figure 8B). Similar trends were seen
in the abundance of the PhCCD8 transcript (Figure 8F), again

with good correlation between replicates (ICC = 0.82). However,
in the low stem (S/SL) sample type the correlation was non-
significant due to the variation between the replicates in this
tissue type. An increase in the amount of PhMAX2A transcript
over time was seen in the mid-stem (SM) samples, whilst the
transcript levels in the remaining samples were largely unal-
tered during development (Figure 8C). The amount of PhMAX2B
transcript increased during development in the low stem (S/SL)
sample type but was unchanged across the remaining samples
(Figure 8D). The ICC values for PhMAX2A and PhMAX2B sam-
ples were 0.74 and 0.69 respectively. The mRNA levels of PhCCD7

FIGURE 8 | A developmental series of petunia. (A) Petunia plants at:
3 weeks old (scale bar 2 cm), 5, 7, and 9 weeks old (scale bar 5 cm). (B–F)

Relative transcript abundance. Values are means ± SEM and indicate technical
variation over triplicate reactions. Two independent biological replicates are
shown. The values on the x -axis indicate number of weeks post-germination.
Samples are RL, fine lateral roots; RP, 2 cm of the primary root immediately
below the hypocotyl; S entire stem; SL, 2 cm of stem above node 1; SM,

2 cm of stem above node eight; L, leaves 2–4; FB, flower buds less than
5 mm in length. Changes in transcript abundance for each sample type over
time were significant at P < 0.01 (**) or P < 0.05 (*) as indicated (the S
sample was grouped with the other SL samples for this analysis). Relative
transcript abundance as rescaled against the sample with the greatest
expression in replicate one for each gene (B) PhMAX1, (C) PhMAX2A, (D)

PhMAX2B, (E) PhCCD7, (F) PhCCD8.
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displayed greater variability between replicates than the other
genes (ICC = 0.54), and no indication of statistically significant
time dependent changes were detected (Figure 8E).

DISCUSSION
We have cloned three genes from petunia; one is orthologous to
MAX1 (CYP711A1) and the other two are orthologous to MAX2.
All four MAX genes in Arabidopsis now have orthologs identified
in petunia. We have shown that a number of genes implicated
in strigolactone production and reception have altered mRNA
levels during plant development. PhMAX2A mRNA levels are cor-
related with leaf age or position in petunia, yet this gene was
able to complement the increased branching phenotype of max2
in Arabidopsis, suggesting MAX2 and PhMAX2A have the same
biochemical function.

Southern analysis suggested that there might be homologous
sequences to the PhMAX1 gene in the petunia genome (Figure 2C).
However, these are likely to be more distantly related cytochrome
P450 genes that are not orthologous to AtMAX1. In addition,
searches of sequence databases have not revealed any additional
petunia candidate genes with a high degree of similarity. During
the cloning of the PhMAX1 gene from petunia we used degen-
erate primer PCR and iPCR, both of which frequently yield off-
target sequence of closely related genes, but the only sequences
we obtained belonged to PhMAX1. Taken together, these results
suggest that PhMAX1 is a single copy gene in petunia.

The two MAX2 genes of petunia are candidates for the
DAD2 gene. Aside from similar phenotypes (decreased height
and increased branching) the max2 and dad2 mutants share the
feature that mutant scions cannot be reverted to wild-type by
grafting to wild-type rootstocks (Booker et al., 2005; Simons et al.,
2007). Additionally, combining either the max2 or dad2 mutants
with the ccd7 or ccd8 mutants did not produce additive double
mutant phenotypes also indicating that both genes act in the same
pathway (Booker et al., 2005; Simons et al., 2007). We sequenced
the genomic loci containing the PhMAX2A and PhMAX2B genes,
and have cloned wild-type cDNA copies of each. No alterations
to the sequence were detected between the genomic loci from
wild-type or dad2 mutant petunias. Additionally we show that
the mRNA levels for the PhMAX2A and PhMAX2B genes occur
in the dad2 mutant in a pattern similar to that seen for dad1
(Figure 5). This demonstrates that the expression of these genes
has not been eliminated, and suggests that their regulation has
not been grossly perturbed in the dad2 mutant. These results
lead us to conclude that it is unlikely that either PhMAX2A or
PhMAX2B is the DAD2 gene. However, there remains the possibil-
ity that a cis-regulatory polymorphism or epigenetic modification
leading to more subtle changes in the timing or localization of
PhMAX2A or PhMAX2B expression could account for the dad2
mutant phenotype.

Wild-type petunias produce a limited number of branches from
near the base of the plant during vegetative growth. The dad1
and dad2 mutants have an increased branching phenotype such
that in many environmental conditions all of the axillary buds on
the main stem become branches. The dad3 mutant has a branch-
ing phenotype intermediate between wild-type and the other dad
mutants. As such all axillary buds on the main stems of dad1 and

dad2 plants are actively growing whilst those on wild-type and
dad3 plants are a mixture of dormant and growing. Our data on
the expression of PhMAX1, PhMAX2A, and PhMAX2B in the axil-
lary buds of petunias (Figure 5) suggests that expression of these
genes may be correlated with dormancy, the expression of the three
genes is low in dad1 and dad2 axillary buds but high in wild-type
and dad3.

In petunia there are two copies of the MAX2 gene. This sort of
duplication has the potential to allow the unconstrained mutation
of one copy; however our observations suggest in this case that
both copies are being maintained in a functional state. Although
a large number of nucleotide differences are apparent, the petunia
proteins produced are more similar to one another than either
is to the Arabidopsis MAX2 protein. None of the changes has
led to either petunia copy becoming obviously non-functional
as most changes are silent or conservative at the protein level
and none are non-sense mutations. The PhMAX2A gene has
retained its ability to function in the control of branching, as we
have demonstrated the complementation of max2 by this gene,
at least when expressed from the 35S promoter (Figure 7). It
is possible that PhMAX2A or PhMAX2B are functionally redun-
dant, however, given that we were unable to produce plants with
less than 40% the normal PhMAX2A mRNA levels and that the
genes have different transcript abundance profiles (Figures 4–6
and 8) it seems likely that the genes do not have entirely redun-
dant functions. Isolation and characterization of single and double
mutants for the PhMAX2A and PhMAX2B genes might uncover
which functions, if any, are shared by or are unique to these
genes.

In Arabidopsis, MAX2 is involved in at least three developmental
processes; axillary branching, leaf senescence, and photomorpho-
genesis of seedlings (Woo et al., 2001; Stirnberg et al., 2002; Shen
et al., 2007). The involvement of this gene in three developmen-
tal processes makes it a good candidate for evolving under the
mosaic pleiotropy principle (Carroll, 2008), with evolutionary
change resulting from changes in expression rather than protein
function. By contrast the evolution of the petunia genes is not
constrained by having multiple functions dependent on a sin-
gle MAX2 protein and it is possible that protein function is also
diverging. Our evidence suggests that the transcript abundance
of PhMAX2A increases with leaf age or position (while that of
PhMAX2B is not), and could be hypothesized to be increasing the
sensitivity of older leaves to senescence inducing signals. However
the gene is still capable of functioning in the control of branching
in Arabidopsis. In future work an examination of any differentia-
tion in the function of the promoters or proteins of the AtMAX2,
PhMAX2A, and PhMAX2B genes or orthologs from other species
that differ in MAX2 copy number may contribute to evolutionary
theory in this area.

Petunia typically produces a small number of branches from
adjacent basal axillary nodes. New basal branches are initiated dur-
ing vegetative development and this process is generally complete
before flowering commences. One hypothesis that may explain the
inhibition of axillary meristems above this basal branching is that
there is a molecular mechanism in petunia that produces more of
a branch inhibiting signal as development progresses or increases
sensitivity to such a signal. Two genes proposed to be involved in
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the production of strigolactone (PhMAX1 and PhCCD8; Figure 8)
have increased mRNA levels during development, suggesting that
strigolactone levels also increase during development. In kiwifruit,
a woody perennial plant, CCD8 mRNA levels have also been shown
to vary during the growing season (Ledger et al., 2010). The mRNA
levels of PhMAX2A (Figure 8), also increase during development,
but only in the stem within a zone that in wild-type petunia only
rarely produces branches. This suggests the possibility of increased
sensitivity to a branching inhibitor in this region. Together, these
changes may account for some of the differences in branching that
occur in different zones of the stem of the plant (Snowden and
Napoli, 2003), or at different times during plant growth. It would
be valuable to obtain further resolution of the regulation of this
pathway, by determining which cells within the plant are express-
ing these genes and extending this work to understanding what
regulation occurs at the protein level. To that end, an important
goal is to understand the signal transduction pathway for strigo-
lactones. In the future it will be important to demonstrate the
presence of the strigolactone molecule itself in the stems of plants
and whether this level is somehow altered during development.

An interesting possibility is that the strigolactone pathway genes in
other plant species might show quite different expression patterns
during development resulting in different architectures. Consid-
ering the strigolactone signaling pathway with respect to both
ontogeny and environmental inputs will yield information about
how plant architecture has diversified between species.
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APPENDIX

FIGURE A1 | Branching phenotype and target gene transcript levels in

petunia PhMAX1 or PhMAX2A RNAi lines. After selection on
kanamycin-containing media 13 lines of V26 petunia carrying the PhMAX1
RNAi hairpin construct and 19 lines carrying the equivalent PhMAX2A
construct were transferred to soil in a greenhouse. Of these lines only four
PhMAX1 RNAi lines and three PhMAX2A RNAi lines showed any indication of
increased branching. These plants were self crossed and the seeds sown to
soil in the glasshouse. These plants were tested for the presence of the
transgene by PCR and those plants not carrying the transgene excluded from
further analysis. The PhMAX1 RNAi lines were grown along with wild-type,
35S:GUS, and dad3 control plants. Separately the PhMAX2A RNAi lines were
grown with wild-type and 35S:GUS control plants. The number of primary and
secondary branches and plant height was recorded for each plant at

approximately 8 weeks of age for PhMAX1 (A,C) and approximately 12 weeks
of age for PhMAX2A (B,D), values are means ± SEM (n ≥ 7). The branching
data (A,B) are shown as the number of primary branches (light gray bars) and
secondary branches (dark gray bars). Separate statistical tests were done for
primary and secondary branches. Different lowercase letters indicate
statistically significant differences (P = 0.05). The results for the statistical
tests performed on the data for the number of primary branches in (A) and
the numbers of secondary branches in (B) are not shown as no means were
found to be significantly different from each other (P = 0.05). Samples (leaf for
PhMAX2A, low stem for PhMAX1) were taken from six plants of each line,
pooled, and the RNA extracted. The relative transcript abundance of PhMAX1
(E) or PhMAX2A (F) was quantified by qPCR as described in the methods,
although with only technical replication.
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