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Intracellular pH homeostasis is an essential process in all plant cells.The transport of H+ into
intracellular compartments is critical for providing pH regulation. The maintenance of cor-
rect luminal pH in the vacuole and in compartments of the secretory/endocytic pathway is
important for a variety of cellular functions including protein modification, sorting, and traf-
ficking. It is becoming increasingly evident that coordination between primary H+ pumps,
most notably the V-ATPase, and secondary ion/H+ exchangers allows this endomembrane
pH maintenance to occur.This article describes some of the recent insights from the studies
of plant cation/H+ exchangers and anion/H+ exchangers that demonstrate the fundamental
roles of these transporters in pH homeostasis within intracellular compartments.
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INTRODUCTION
Many metabolic and enzymatic processes are dependent on spe-
cific pH conditions, due in part to the regulation of protein
structure and function by pH, therefore intracellular pH regu-
lation is an essential process in all organisms (Casey et al., 2010;
Orij et al., 2011). In eukaryotes, various cellular processes are com-
partmentalized within the organelles, each with distinct functions
and distinct pH requirements. Most notably, pH has a major role
in secretory function where it regulates protein modification and
sorting via a gradient of pH along the secretory pathway (Paroutis
et al., 2004).The cell must therefore maintain and control the
distinct pH environments within the various compartments. pH
regulation also allows a cell or organism to tolerate potentially toxic
external acidic or alkaline conditions, and to cope with the large
amounts of H+ that are produced during metabolic reactions.
Furthermore, many essential transport processes depend on the
proton motive force which is generated largely by the transmem-
brane H+ gradient (Gaxiola et al., 2007). There is also speculation
that a change in pH may act as a signal (Orij et al., 2011). While
cytosolic pH levels are tightly regulated (see below), free H+ may
be modulated in a highly localized and transient manner to act as
a signal. The ability to quantify cytosolic pH using highly pH-
sensitive reporters has demonstrated that dynamic changes in
cytosolic pH do occur in many plant cell types and in response to
conditions such as salt stress, anoxia, and during growth (Swanson
et al., 2011). For example, controlled H+ fluxes have been observed
in response to environmental signals, such as pathogen infection
and gravitropic stimulation (Felle, 2001; Roos et al., 2006). In addi-
tion, pH changes can trigger downstream responses, such as the
activation of transporters (Tournaire-Roux et al., 2003; Pittman
et al., 2005).

The mechanisms of cytosolic pH regulation can be essentially
divided into two types. A metabolic-based regulatory mechanism,

referred to as the biochemical pH-stat, is a critical component in
cytosolic pH regulation (Sakano, 2001). It relies on metabolites
acting as strong pH buffers and pH-dependent metabolic reac-
tions such as the carboxylation and decarboxylation of organic
acids like malate to produce or consume H+. Correct partitioning
of malate in the cell is therefore likely to be an important deter-
minant of cytosolic pH. Indeed it has been demonstrated that
the tonoplast dicarboxylate transporter AttDT which transports
malate into the vacuole is critical for pH regulation (Hurth et al.,
2005). Furthermore, the amount of organic acids such as citrate or
malate that accumulate into the vacuole may also be a determinant
of vacuolar acidity and thus vacuolar lumen pH (Muller and Taiz,
2002). The second major regulatory mechanism is the membrane
transport of H+ between the cytosol and the two main acidic com-
partments, the apoplast and vacuole. This is primarily facilitated
by directly energized H+ pumps, including the P-type H+-ATPase
at the plasma membrane, which pumps H+ into the apoplast, and
the V-type H+-ATPase (V-ATPase) at the tonoplast, which in tan-
dem with a second vacuolar H+ pump, the H+-pyrophosphatase
(H+-PPase), pumps H+ into the vacuolar lumen (Gaxiola et al.,
2007). However, it is becoming increasingly apparent that a larger
number of distinct transport pathways are involved in intracel-
lular pH regulation in plant cells, in particular for the regulation
of organelle luminal pH. This article will provide an overview
of the roles that various endomembrane-localized H+ and ion
transporters play in mediating pH regulation within intracellu-
lar compartments including the secretory/endocytic pathways and
vacuole, and will concentrate on some of the very recent insights
from the study of plant ion/H+ exchangers. The mechanisms for
the regulation and maintenance of cytosolic pH in plant cells
are not the main focus of this review, and the reader is referred
to the references provided in this paragraph, and the references
therein.
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VACUOLAR AND ENDOMEMBRANE H+ PUMPS: V-ATPase
AND H+-PPase
The V-ATPase is a large, abundant, multi-subunit protein that is
ubiquitous throughout eukaryotes (Sze et al., 2002; Schumacher
and Krebs, 2010). It is thought to play a major role in maintain-
ing cytosolic pH at slightly alkaline levels (∼pH 7.2–7.5) and in
regulating vacuolar pH. Vacuolar pH can vary markedly between
plant species, as low as pH 2.0 in some citrus fruit (Muller and
Taiz, 2002), but is generally maintained around pH 5.5, despite
the potential of the V-ATPase to decrease the vacuolar pH to 1.0–
2.0 (Sze et al., 1999). The V-ATPase is thus regulated to prevent
maximal lumen acidification in the vacuoles of most species. The
V-ATPase is regulated by cytosolic pH, with maximal activity at
neutral pH (Dietz et al., 2001), but less is clear regarding the poten-
tial regulation by luminal pH. It may be expected that V-ATPase
activity is regulated in part by altered luminal pH, such as increased
acidification of the lumen. Several regulatory mechanisms of the
V-ATPase have been proposed (Dietz et al., 2001). One potential
mechanism by which the V-ATPase could be regulated is by alter-
ation to the coupling ratio which is the number of H+ pumped
per ATP hydrolyzed. Studies in red beet have indicated that the
V-ATPase may alter this ratio depending on cytosolic and luminal
pH (Davies et al., 1994). Regulation of the V-ATPase via protein
interactions or phosphorylation have also been indicated (Hong-
Hermesdorf et al., 2006) but the specific details of such regulation
are not fully clear.

It has been often proposed that the combined action of the
V-ATPase and the vacuolar H+-PPase generates the vacuolar
proton motive force and regulates vacuolar pH, and that these
pumps have partially redundant function (Gaxiola et al., 2007).
Indeed Arabidopsis AVP1 encoding the vacuolar H+-PPase is able
to complement a yeast V-ATPase vma mutant and recover vac-
uole acidification (Perez-Castineira et al., 2011). But a number of
recent observations suggest that there are clear differences between
the two vacuolar pumps. Tonoplast-specific deletion of the Ara-
bidopsis V-ATPase generated by vha-a2 vha-a3 double knockouts
leads to an increase in vacuolar pH from pH 5.9 to 6.4 (Krebs
et al., 2010). In contrast, two independent AVP1 knockout alleles
both display a very minor increase in vacuolar pH by only 0.2–
0.3 pH units (Li et al., 2005; Ferjani et al., 2011). Furthermore,
H+-PPase activity was found not to increase in the vacuolar V-
ATPase mutant (Krebs et al., 2010). A recent study of AVP1 has led
to the suggestion that the major role of this protein might be in
the hydrolysis and removal of otherwise metabolically toxic inor-
ganic pyrophosphate rather than vacuolar acidification (Ferjani
et al., 2011). This has led to the speculation that other processes
may also contribute toward vacuolar acidification, such as via the
fusion of acidic secretory pathway vesicles (Schumacher and Krebs,
2010).

The vesicular bodies of the secretory and endocytic path-
ways are also thought to be acidified. The luminal pH of secre-
tory/endocytic compartments are challenging to measure and have
not yet been experimentally determined in plants. However, pH
values have been measured in animal secretory compartments (Wu
et al., 2001; Nakamura et al., 2005) and more recently in yeast
Golgi (Braun et al., 2010; Tarsio et al., 2011). These measure-
ments indicate that the pathway becomes increasing acidic from

the endoplasmic reticulum (ER) toward the vacuole (Figure 1). In
animal cells, the ER has a neutral pH, while the luminal pH drops
to ∼pH 6.0 in the trans-Golgi and the trans-Golgi network (TGN),
then between pH 6.0 and 5.0 in the late secretory granules (Paroutis
et al., 2004). Likewise in the endocytic pathway, luminal pH ranges
from pH 6.3 in the early endosome (EE), pH 6.0 in the late endo-
some to pH 5.5 in the lysosome (equivalent to the plant vacuole).
This reduction in pH regulates the proper processing, targeting,
and sorting of cargo proteins through the secretory/endocytic
pathways, therefore when the components that control luminal pH
of these pathways are perturbed, many defects occur. The presence
of H+ pumps throughout the plant secretory/endocytic pathways
(Figure 1), and the requirement of these pumps for proper func-
tion of these pathways, strengthens the concept that plants, like
animals and yeast,maintain acidic endomembrane compartments.
In plants, as in yeast, the V-ATPase is found at both the vacuole
and the TGN/EE, indicating that it is likely to be a key compo-
nent in causing acidification of these endosomal compartments
(Dettmer et al., 2006), and therefore critical for plant protein traf-
ficking. The use of V-ATPase mutants has begun to confirm this
critical role (reviewed in Schumacher and Krebs, 2010); for exam-
ple, a number TGN/EE V-ATPase mutants yield phenotypes such
as perturbed cell expansion, abnormal endosomal structure, and
cell wall defects (Strompen et al., 2005; Padmanaban et al., 2007;
Brux et al., 2008). A K+-independent (Type II) H+-PPase, dis-
tinct from the K+-dependent (Type I) vacuolar H+-PPase AVP1,
has been shown to be Golgi localized in Arabidopsis (Segami et al.,
2010) indicating that it acts as a H+ pump to acidify Golgi vesicles,
although this activity has yet to be confirmed.

FINE TUNING OF VACUOLAR AND ENDOMEMBRANE pH BY
ION/H+ EXCHANGERS
Although the V-ATPase is clearly an important component in the
regulation of intracellular pH, there is increasingly strong evi-
dence from plant studies that other endomembrane-localized H+
transport pathways play important pH regulatory roles. Ion/H+
exchangers directly couple the transport of an ion, either a cation
or an anion, across the membrane, and into the endomembrane
compartment, with the counter-exchange of H+ and thus are ener-
gized by the proton motive force generated by the V-ATPase and
H+-PPase. Although such H+ exchanger pathways are considered
as “H+ leaks,” they may provide a means to fine tune the action
of the H+ pumps to prevent maximal acidification of a compart-
ment lumen. A large number of putative ion/H+ exchanger genes
have been identified in the genomes of sequenced plant species
like Arabidopsis, which include members of the CPA1, CPA2, and
CaCA gene superfamilies (Mäser et al., 2001; Cai and Lytton, 2004;
Brett et al., 2005a). Many of these genes have yet to be character-
ized in any detail, but a few ion/H+ exchangers have begun to be
identified that localize at various endomembranes (Figure 1) and
which may provide one of the mechanisms by which a range of
luminal pH values in different endomembrane compartments can
occur.

pH REGULATION BY NHX-TYPE Na+, K+/H+ EXCHANGERS
Cell membrane/plasma membrane Na+/H+ exchangers have long
been known to play a key role in regulation of cytosolic pH
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FIGURE 1 |The endomembrane compartments of a plant cell and their

putative pH regulators. The different colors of the endomembrane
compartments indicate different luminal pH values of organelles. The
secretory compartments are proposed to increase in acidity from the ER (at
near neutral pH) to the vacuole (∼pH 5.5), as determined from
measurements in secretory compartments of other eukaryotes. V-ATPase
and H+-PPase H+ pumps, K+/H+ exchangers, Ca2+/H+ exchangers, Cl−/H+

exchangers, and a malate transporter that are involved or implicated in
intracellular pH regulation in Arabidopsis are shown. ER, endoplasmic
reticulum; TGN, trans-Golgi network; PVC, pre-vacuolar compartment.

in bacteria and in animals (reviewed in Krulwich et al., 2011),
but there is increasing evidence that internally localized Na+/H+
exchangers are involved in luminal pH regulation in eukaryotes.
Four mammalian Na+/H+ exchangers (NHE6–NHE9) localized
in the Golgi, TGN, early, and late endosomes appear to be involved
in maintenance of specific luminal pH values (Nakamura et al.,
2005). A similar role was uncovered for the yeast endosomal
Na+/H+ exchanger Nhx1. Deletion of Nhx1 causes slight acid-
ification of the cytosol and significant acidification of the vacuolar
lumen, from nearly pH 4.8 in the wild type to below pH 4.0 in the
nhx1 mutant when grown in external acidic conditions (pH 2.7;
Ali et al., 2004; Brett et al., 2005b). This causes defective vesicular
trafficking between the vacuole and the endosome, indicating the
essential role of Nhx1 in generating alkalinization of intracellular
compartments.

NHX/NHE genes of the CPA1 superfamily are divided phyloge-
netically into two subgroups, which correspond to plasma mem-
brane and intracellular isoforms (Brett et al., 2005a). A number of

plant NHX genes have been identified that fall within the intra-
cellular NHX/NHE subgroup and are related to yeast Nhx1 and
mammalian NHE6–NHE9 (Brett et al., 2005a; Pardo et al., 2006).
The most extensively characterized of these is the Arabidopsis
vacuolar Na+/H+ exchanger AtNHX1 which has been examined
predominantly on the basis of vacuolar Na+ sequestration and its
ability to provide tolerance to salt stress (Apse et al., 1999, 2003).
However, AtNHX1 can also transport K+ and K+ homeostasis is
likely to be a major physiological role of this protein under non-
stress conditions (Venema et al., 2002; Bassil et al., 2011b). It was
studies of NHX1 orthologs from the flowers of the morning glory
plant (Ipomoea species) that first clearly demonstrated a function
of the plant Na+/H+ exchangers in vacuolar pH regulation and
flower coloration.

Vacuolar pH is important for flower coloration since the color
that vacuolar-localized anthocyanins give is dependent on pH. A
mutant Japanese morning glory (Ipomoea nil) flower which does
not show the characteristic petal color change during flower open-
ing from purple to blue was found to have a mutated NHX1-like
gene (InNHX1), which was the cause of the color change mutation
(Fukada-Tanaka et al., 2000; Yamaguchi et al., 2001). InNHX1, and
related ItNHX1 from the Heavenly Blue morning glory (I. tricolor),
mediate vacuolar alkalinization from pH 6.6 to 7.7 to allow the
color change of the HBA pigment (Yamaguchi et al., 2001; Yoshida
et al., 2005; Figure 2). Furthermore, increased activation of the V-
ATPase and vacuolar H+-PPase was shown to occur during flower
opening and color change (Yoshida et al., 2005), indicating that
the exchanger works in concert with the H+ pump presumably to
prevent excessive alkalinization. This demonstrates that a balance
between H+ pump and cation/H+ exchange activity carefully reg-
ulates vacuolar pH. It was also confirmed that it is the flux of H+
in exchange with K+ rather than Na+ that increases the vacuo-
lar pH (Yoshida et al., 2009). These authors also suggested that
this increased vacuolar accumulation of K+ may contribute to the
increase in vacuolar osmoticum for cell expansion growth and
thus drive flower opening in a manner that is directly coordinated
with color change. However, cell expansion and flower opening
still occurs in the nhx1 mutant plants, therefore NHX1 K+/H+
exchange activity is not essential for this process, suggesting that
other regulators of cell expansion such as the uptake of organic
compounds or other K+ transport pathways are also involved.

This concept of vacuolar NHX transporters as mediators of K+
homeostasis and vacuolar pH control is not restricted to flower
vacuoles. Analysis of Arabidopsis vacuolar NHX knockout mutants
has found developmental phenotypes that are unlikely to be just
a consequence of altered Na+ transport but appear to be due to
altered K+ and pH homeostasis (Apse et al., 2003; Sottosanto et al.,
2004; Bassil et al., 2011b). In a nhx1 nhx2 double mutant lacking
two of the vacuolar exchangers, vacuolar pH of mature root cells
was reduced from pH 6.3 in wild type to pH 5.8, and reduced
from pH 5.5 to 5.2 in hypocotyl cells (Bassil et al., 2011b). The
particular importance of vacuolar pH in cell expansion and vesic-
ular trafficking is not fully clear, but the observation that the nhx1
knockout has altered expression of genes involved in intravesicular
trafficking (Sottosanto et al., 2004), indicates that like yeast Nhx1,
via control of vacuolar pH, AtNHX1 is a determinant in protein
trafficking.
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FIGURE 2 |The effect of NHX1 deletion and altered vacuolar pH on flower

petal coloration in morning glory flowers. The contrast between flower
coloration and vacuolar H+ fluxes in nhx1 mutant (A) and wild type (B) plants
is diagrammatically represented. In wild type plants (B), as the flowers open
there is a color change from purple to blue which is dependent on an

alkalinization of the vacuolar lumen causing a change in the ionic form of the
pigment HBA. When NHX1 is deleted (A) the color change does not occur
when the flowers open as the lack of NHX1-dependent K+/H+ exchange
activity means that the acidification of the vacuolar lumen by the H+ pumps is
not reduced. Figure adapted from Yoshida et al. (2009).

Unlike vacuolar AtNHX1 and AtNHX2, some of the Arabidopsis
NHX proteins are endosomal and may play a role more analo-
gous to the mammalian endosomal NHE proteins. AtNHX5 and
AtNHX6 co-localize with known Golgi and TGN markers, and
with the secretory pathway V-ATPase (VHA-a1), and protein traf-
ficking defects were observed in an nhx5 nhx6 mutant (Bassil et al.,
2011a). An alteration in luminal pH was not measured in this
study, but the data infers a role of these exchangers in allowing H+
leak to counter V-ATPase-mediated acidification and maintain the
required luminal pH.

Na+ gradients are established in animal cells through the
action of Na+ pumps to drive secondary active transport, and
thus can be utilized by Na+/H+ exchangers for pH regulation.
However, higher plant cells do not generate Na+ gradients. As
described above, plant and yeast NHX proteins are now known
to be able to transport K+ in addition to Na+, and therefore
it is likely that K+/H+ exchange is the predominant means by
which NHX-mediated endomembrane and vacuolar alkaliniza-
tion occurs (Brett et al., 2005b; Martinez-Munoz and Pena, 2005;
Yoshida et al., 2009; Bassil et al., 2011b). However, this require-
ment of K+ in pH regulation has consequence for cellular K+
homeostasis as K+/H+ exchange activity will potentially lead to
a significant reduction in cytosolic K+ concentration. K+ is an

ion of central importance in plant cells. In addition to mediating
osmotic adjustment, cellular K+ flux acts as a counterbalance for
the fluxes of other ions, particularly protons (Amtmann and Blatt,
2009). In order to allow K+ to play such a role, cellular K+ trans-
port is carefully regulated through the action of multiple plasma
membrane and tonoplast K+ permeable channels and transporters
(Maathuis, 2007; Karley and White, 2009). Despite a high concen-
tration of K+ within plant cells there is a strong driving force for
K+ influx into the cytosol across the plasma membrane, and there-
fore cytosolic K+ concentration is unlikely to significantly reduce
through endomembrane K+/H+ exchange activity. Furthermore,
there are many endomembrane-localized K+ release channels that
will prevent excessive intracellular K+ accumulation (Maathuis,
2007).

It is less clear whether plant NHX-type exchangers are involved
in cytosolic pH regulation. This is thought to be unlikely as
cytosolic pH is very tightly controlled by the H+ pumps and the
biochemical pH-stat (see above). However, it has been observed
that in poppy, the product (lysophosphatidylcholine) of microbial
elicitor-activator phospholipase A2 induces a cytosolic acidifica-
tion via activation of a vacuolar Na+/H+ exchanger, giving rise
to an estimated cytosolic pH shift from pH 7.3 to 6.7 (Viehweger
et al., 2002). Such a cytosolic pH change may be the signal to induce
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the biosynthesis of phytoalexins. This study implicates a vacuolar
ion/H+ exchanger not only in the modulation of cytosolic pH, but
in the generation of a pH signal.

pH REGULATION BY CHX-TYPE TRANSPORTERS
CHX genes belonging to the CPA2 superfamily of ion exchangers
encode putative K+, Na+/H+ exchangers (Brett et al., 2005a). A
CHX transporter from yeast, Kha1, is an endomembrane K+/H+
exchanger that has a growth defect to high external pH when
deleted, suggestive of a role in pH control (Maresova and Sychrova,
2005). Plants possess a very high number of CHX genes; for exam-
ple, there are 28 in Arabidopsis and 17 in rice, which are localized in
different tissues and probably at different cellular membranes (Sze
et al., 2004; Pardo et al., 2006) but the transport characteristics and
roles of most of these proteins are unknown. Some of the CHX
proteins have been shown to be localized at endomembrane com-
partments. Five related CHXs (AtCHX16–AtCHX20) and Kha1
were shown to be able to rescue the alkaline pH (pH 7.5) sensitiv-
ity of a yeast mutant, implicating them as possible pH regulators
(Chanroj et al., 2011). AtCHX17, which has been previously shown
to function as a K+ transporter and be important in plant K+
homeostasis (Cellier et al., 2004; Maresova and Sychrova, 2006),
was shown to co-localize with pre-vacuolar compartment (PVC)
markers, and from a yeast-based protein sorting assay, AtCHX17
was shown to affect protein sorting at alkaline pH but did not alter
cytosolic or vacuolar pH in yeast (Chanroj et al., 2011). In contrast,
AtCHX20, which is also involved in K+ homeostasis (Padmana-
ban et al., 2007), was found to induce vacuolar alkalinization when
expressed in yeast (Chanroj et al., 2011). AtCHX20 co-localized
with an ER marker and was also able to affect protein sorting.
Some CHX transporters are therefore clearly important in regu-
lating endosomal protein sorting and trafficking, but only specific
CHX isoforms modulate endomembrane pH.

THE ROLE OF ANION/H+ EXCHANGERS FOR COUNTER-ION
BALANCE AND pH REGULATION
The transport of H+ into the lumen of acidic endomembrane
compartments by the V-ATPase generates an inside positive elec-
trical potential that will increase the electrochemical gradient and
therefore inhibit further inward movement of H+ and promote
outward H+ leak. The luminal influx of anions acting as counter-
ions will prevent the build up of an electrical potential, maintain
H+ accumulation, and thus lumen acidification. Anion transport
pathways therefore also have an important role in intracellular
pH regulation. Studies in a variety of eukaryotic systems have
identified Cl− channels (CLC) and exchangers, in particular those
that are members of the CLC family, as key players in secre-
tory/endocytic pathway pH regulation (Jentsch, 2007; Zifarelli and
Pusch, 2010). Yeast possess a single CLC called Gef1 which is a late
Golgi/PVC-localized Cl−/H+ exchanger and exhibits phenotypes
when deleted which are consistent with a role in maintaining Golgi
lumen acidification (Gaxiola et al., 1998; Schwappach et al., 1998;
Braun et al., 2010). In order to properly regulate the membrane
potential, the CLC exchanger requires a Cl−:H+ stoichiometry
of at least 2:1, which is the ratio that has been experimentally
confirmed for an algal CLC (Feng et al., 2010). Arabidopsis has
seven CLC genes, four of which encode vacuolar proteins and

function predominantly as NO−
3 /H+ exchangers (Zifarelli and

Pusch, 2010). However, two of the Arabidopsis CLCs AtCLC-
d and AtCLC-f are analogous to Gef1, are able to complement
the pH-dependent growth phenotype of the gef1 yeast mutant
and are Golgi-localized (Gaxiola et al., 1998; Marmagne et al.,
2007; von der Fecht-Bartenbach et al., 2007), suggesting that they
also have Cl−/H+ exchange activity, although NO−

3 instead could
conceivably act as a counter-ion if it was the substrate. More specif-
ically, AtCLC-d is present at the TGN where it co-localizes with
the VHA-a1 V-ATPase subunit (von der Fecht-Bartenbach et al.,
2007). Furthermore, this study found that a clcd-1 mutant had
reduced root growth when grown on acidic pH conditions com-
pared to wild type. Defective TGN acidification due to a lack of
anion accumulation may therefore impair vesicular trafficking and
subsequently root growth.

AN INDIRECT ROLE FOR Ca2+/H+ EXCHANGERS IN pH
REGULATION
While some alkali cation Na+, K+/H+ exchangers are implicated
in direct intracellular pH regulation, there is no clear evidence
to suggest that divalent ion/H+ exchangers such as Ca2+/H+
exchangers likewise play a pH regulatory role. NHX- or CHX-
mediated K+/H+ exchange can be maintained by a high cytosolic
K+ concentration, but the low (sub-micromolar) resting cytoso-
lic Ca2+ concentration suggests against Ca2+/H+ exchange as
a significant component for pH modulation. As the Ca2+/H+
exchanger requires 3H+ to drive the vacuolar accumulation of
1 Ca2+ ion, as calculated from stoichiometric analysis (Blackford
et al., 1990), large elevations in cytosolic Ca2+ during a stimulus-
induced Ca2+ signaling event leading to activation of Ca2+/H+
exchange may have a significant, although probably transient effect
on intracellular pH. There is no evidence that Ca2+/H+ exchange
activity can alter cytosolic pH, but it has been observed in isolated
Catharanthus roseus vacuoles that sustained Ca2+/H+ exchange
activity at the tonoplast can cause a long-lasting increase in vac-
uolar pH, from pH 5.6 to 6.2 (Guern et al., 1989). However, it is
unknown whether this Ca2+-mediated disturbance in vacuolar pH
also occurs within intact cells or whether it has any physiological
relevance.

The vacuolar membrane has Ca2+/H+ exchangers encoded by
CAX genes that play a major role in cellular Ca2+ homeostasis and
are implicated in Ca2+ signaling function (Cai and Lytton, 2004;
McAinsh and Pittman, 2009; Manohar et al., 2011). However, by
modulating Ca2+ signal generation, these exchangers may indi-
rectly be involved in pH regulation. In addition, the activity of
Ca2+/H+ exchangers can themselves be regulated by pH change
(Pittman et al., 2005). It is well known that Ca2+ plays an indi-
rect role in pH regulation through Ca2+ signaling (Felle, 2001),
such as through the modulation of H+ pumps (Fuglsang et al.,
2007). Indeed Arabidopsis knockout lines mutated in CAX genes
display phenotypes that suggest impaired pH control. For exam-
ple, the cax3 mutant shows hypersensitivity to low pH, displayed
by reduced root growth on acidic medium (pH 4.5) which is not
seen in the wild type (Zhao et al., 2008). However, it is unclear
whether this pH sensitivity is due directly to altered CAX3 Ca2+
transport activity or an indirect affect, as P-type H+-ATPase activ-
ity is also reduced in the cax3 mutant. Other CAX mutants display
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morphological and developmental phenotypes: cax1 plants have a
reduction in root growth and inflorescence stem growth (Cheng
et al., 2003), while a cax1 cax3 double mutant has a dramatic
reduction in plant growth including impaired cell wall exten-
sibility (Cheng et al., 2005; Conn et al., 2011). Although these
phenotypes are correlated with impaired vacuolar Ca2+ seques-
tration, it is unknown whether perturbed pH maintenance may
also contribute to some of the phenotypes.

POTENTIAL OF COORDINATION BETWEEN H+ PUMPS AND
ION/H+ EXCHANGERS
Endomembrane ion/H+ exchangers are dependent on the pro-
ton motive force generated by the primary V-ATPase and H+-
PPase H+ pumps. But it is still unclear from many of these
gene knockout and heterologous expression studies described in
this article, whether the ion/H+ exchangers play an active role
in mediating endomembrane pH homeostasis or whether they
effect luminal pH in a passive manner by merely acting as a H+
leak to reduce luminal pH. Furthermore, it is unknown whether
there is direct coordination between the H+ pump and ion/H+
exchanger to generate the required luminal pH, such as whether
both sets of transporters directly interact to allow dynamic coor-
dination. There is no clear-cut evidence of direct interaction
between an ion/H+ exchanger and a V-ATPase. However, such
coordination might be indirect. For example, the Arabidopsis
CIPK24/SOS2 kinase regulates NHX Na+/H+ exchange activity
(Qiu et al., 2004) and also regulates and interacts with the V-
ATPase, through interaction with VHA-B subunits (Batelli et al.,
2007).

Ca2+/H+ exchangers appear to modulate V-ATPase activity
by an as yet unknown mechanism (Barkla et al., 2008). In cax1,
cax2, and cax3 mutants a significant decrease in V-ATPase activ-
ity was measured and this reduction in V-ATPase activity was
exacerbated in the cax1 cax3 double mutant (Cheng et al., 2003,
2005; Pittman et al., 2004). In contrast, over-expression of AtCAX1

or AtCAX2 increased V-ATPase activity (Barkla et al., 2008).
These results suggest that there may be a feedback mechanism
to dampen H+ pump activity when vacuolar H+ leak by the
cation/H+ antiporter is reduced,possibly to prevent excessive acid-
ification. This feedback may involve direct interaction between the
cation/H+ antiporter and the V-ATPase although as yet there is no
evidence to support this. However, the V-ATPase-interacting pro-
tein CIPK24, also interacts with AtCAX1 (Cheng et al., 2004) so
possibly this feedback might also be indirect. There was no signifi-
cant alteration to vacuolar H+-PPase activity following CAX gene
manipulation (Cheng et al., 2003; Pittman et al., 2004). It is pos-
sible that only the V-ATPase is normally involved in providing the
H+ gradient to energize CAX-mediated Ca2+/H+ exchange activ-
ity, although under some circumstances H+-PPase activity can
energize Ca2+/H+ exchange such as when AVP1 is over-expressed
leading to enhanced Ca2+ transport (Park et al., 2005).

PERSPECTIVES
It is becoming clear that pH regulation of endomembrane secre-
tory compartments and the vacuole is essential for a range of
critical processes, including osmoregulation, membrane traffick-
ing, and fusion, which subsequently control plant growth and
development. The V-ATPase has a significant role in endomem-
brane acidification, but much less is known regarding how the
V-ATPase is regulated or the role of other components in pH reg-
ulation. There is now strong evidence that a number of ion/H+
exchangers notably K+/H+ exchangers, and anion/H+ exchangers
are equally important for intracellular pH regulation, yet there
are many exchanger isoforms that remain to be assessed. The
availability of genomic resources to systematically examine all
ion/H+ exchangers in plants, and the development of sensitive
and dynamic reporters for intracellular pH measurements, should
allow us to determine in full the components required for intra-
cellular pH regulation. This should then allow us to understand
the importance of cellular pH homeostasis in better detail.
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