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Secretory organelles are engaged in a continuous flux of membranes, which is believed to
occur mostly via transport vesicles. Being critical in maintaining several cellular functions,
transport vesicles are membrane-enclosed sacs that temporarily store and then deliver
membrane lipids, protein, and polysaccharides. SNAREs have a crucial role in vesicle traf-
fic by driving membrane fusion and conferring fidelity through the formation of specific
SNARE complexes. Additionally, specific roles of SNAREs in growth and development
implicate that they are versatile components for the life of a plant. Here, we summarize
the recent progress on the understanding of the role of SNAREs and highlight some of the
questions that are still unsolved.
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INTRODUCTION
Generally, vesicle trafficking occurs via three important steps: vesi-
cle budding from the donor organelle, movement towards a target
organelle, and fusion. Several proteins are involved in docking
and fusion of vesicles for target recognition and driving mem-
brane fusion (Malsam et al., 2008). Among the proteins for vesicle
trafficking, SNAREs (soluble N -ethylmaleimide-sensitive fusion
protein attachment protein receptors) were described a critical
role in membrane fusion (Sollner et al., 1993). SNAREs can be
categorized into two types: v-SNAREs, as SNAREs on the vesi-
cle, and t-SNAREs, as SNAREs on the target membrane. When a
vesicle moves close to its target, a v-SNARE on the vesicle inter-
acts with three t-SNAREs on the target membrane, forming a
hetero-tetrameric trans-SNARE complex that drives membrane
fusion (McNew et al., 2000). According to the core amino acid
in the hydrophobic heptad repeats in the SNARE motif, SNAREs
can be divided into four groups: Qa-, Qb-, Qc-, and R-SNAREs
(Fasshauer et al., 1998). In mammals, a typical SNARE com-
plex consists of Qa- (syntaxin 1 like), Qb- (N-terminal half of
SNAP25 like), and Qc- (C-terminal half of SNAP25 like) SNAREs
on the target membrane, and R-SNAREs on the vesicle (Bock et al.,
2001). The same combination seems to be conserved also in plants
(Sutter et al., 2006a). It has been reported that there may be as
many as 65 SNAREs in Arabidopsis (Table 1; Sanderfoot, 2007;
Saito and Ueda, 2009). A large number of SNAREs in Arabidopsis
may help facilitate trafficking in a complex endomembrane sys-
tem that include distinct secretory and vacuolar trafficking steps
mediated by two times more SNAREs than unicellular or mam-
malian systems (Sanderfoot, 2007). Studies to date on the same
family of plant SNAREs have often revealed redundancy but also
functional specificity. Here, we summarize the roles of SNAREs
in Arabidopsis and present additional thoughts for future SNARE
studies.

ROLE OF ER AND GOLGI SNAREs
In the endoplasmic reticulum (ER) and Golgi apparatus, 21
SNAREs (three Qa-SNAREs: AtSYP81 and two AtSYP3; seven
Qb-SNAREs: AtSEC20, two AtMEMB1, two AtGOS1, and two
AtUSE1; seven Qc-SNAREs: three AtSYP7, two AtBS14, and
two AtSFT1; four R-SNAREs: two AtSEC22, AtVAMP714, and
AtVAMP723) have been localized at a subcellular level by
microscopy with fluorescent protein fusions along with in silico
analyses (Uemura et al., 2004; Chatre et al., 2005; Sanderfoot,
2007; Bubeck et al., 2008). In general, a Qa-SNARE is the core
SNARE that regulates a SNARE complex formation at the target
membrane. Interestingly, several Qa-SNARE null mutants have
been reported to be lethal, supporting that Qa-SNAREs are essen-
tial (Sanderfoot et al., 2001b). Two Qa-SNAREs (AtSYP81 and
AtSYP31) have been shown to be involved in ER–Golgi traffic
(Bubeck et al., 2008). When secretory and ER retention mark-
ers were used to investigate alteration of ER–Golgi traffic, it was
found that AtSYP81 overexpression inhibited both anterograde
and retrograde membrane traffic, while AtSYP31 overexpression
only inhibited anterograde traffic (Bubeck et al., 2008). In yeast,
the ortholog of AtSYP31 has been reported to interact with the
yeast counterparts of AtSEC22 and AtMEMB11 (Tsui et al., 2001).
Interestingly, in tobacco leaf epidermis a strong redistribution of
Golgi proteins into the ER was also observed in conditions of
overexpression of AtSEC22 or AtMEMB11 (Chatre et al., 2005),
implicating also these proteins in traffic at the ER/Golgi interface.
At least for AtSEC22, this may be a conserved function. For exam-
ple, yeast Sec22p was found to have a role in both anterograde
and retrograde traffic between ER and Golgi (Spang and Schek-
man, 1998). Furthermore, components of the COPII machinery
in mammalian cells, Sec24a and Sec24b, were found to interact
directly with Sec22p (Mancias and Goldberg, 2008). In plants,
we do not know whether AtSEC22 interacts with either COPI or
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Table 1 | Localization of SNAREs.

ER/Golgi Dual

localization

Reference

Qa AtSYP81

AtSYP31

AtSYP32

Qb AtSEC20

AtMEMB11

AtMEMB12

AtGOS11

AtGOS12

AtUSE11

AtUSE12

Qc AtSYP71 PM/endosome Suwastika et al. (2008)

AtSYP72

AtSYP73

AtBS14a

AtBS14b

AtSFT11

AtSFT12

R AtSEC22

AtSEC22-like

AtVAMP714

AtVAMP723

TGN/ENDOSOME/VACUOLE

Qa AtSYP41

AtSYP42

AtSYP43

AtSYP21 PVC/vacuole Uemura et al. (2010)

AtSYP22 PVC/vacuole Uemura et al. (2010)

AtSYP23 Cytosol/PVC/

vacuole

Shirakawa et al. (2010)

Qb AtVTI11 PVC/vacuole Ebine et al. (2008)

AtVTI12

AtVTI13

AtVTI14

Qc AtSYP61 TGN/endosome/

PM

Drakakaki et al. (2011)

AtSYP51 PVC/vacuole Sanderfoot et al. (2001a),

Ebine et al. (2008)

AtSYP52 PVC/vacuole Sanderfoot et al. (2001a)

AtSYP5-like

AtSYP5-like

R AtYKT61

AtYKT62

AtVAMP711

AtVAMP712

AtVAMP713

AtVAMP727 Endosome/

PM/vacuole

Ebine et al. (2011)

PLASMA MEMBRANE

Qa AtSYP111

AtSYP112

AtSYP121

(Continued)

Table 1 | Continued

ER/Golgi Dual

localization

Reference

AtSYP122

AtSYP123

AtSYP124

AtSYP125

AtSYP131

AtSYP132

Qb AtNPSN11

AtNPSN12

AtNPSN13

Qb + Qc AtSNAP29

AtSNAP30

AtSNAP33

R AtVAMP721

AtVAMP722

AtVAMP723

AtVAMP724

AtVAMP725

AtVAMP726

TOMOSYNa

TOMOSYNb

Localization of SNAREs are either experimentally investigated or predicted

(Uemura et al., 2004; Sanderfoot, 2007; Saito and Ueda, 2009). SNAREs with

multiple localization are specified in the table with references.

COPII; however, an essential role in ER/Golgi membrane traf-
fic has been further supported by analyses of loss-of-function
mutants. Specifically, the atsec22 mutation was reported to affect
Golgi morphology and cause ER retention of a plasma mem-
brane (PM) SNARE in pollen (El-Kasmi et al., 2011). Similarly to
mammalian cells, AtSEC22 might interact with COPII coat com-
ponents; however, in general, an interaction between coat proteins
and SNAREs has not been reported in plants yet. The Arabidopsis
genome encodes a large number of genes for coat proteins, often
outnumbering other eukaryotes isoforms (Robinson et al., 2007).
Possibly, specific SNARE–COPII protein interactions may at least
partially explain the diversification of the ER and Golgi SNAREs
and coat proteins in plants.

Evidence is emerging that some of the plant SNAREs may have
dual localization. For example, AtSYP71 is distributed both at the
ER and PM. Although in conditions of overexpression AtSYP71
was found in the ER, AtSYP71 expressed using its endogenous
promoter was found to localize at PM in the Arabidopsis root
as well as ER and PM localization in the dividing root cells
(Suwastika et al., 2008). This suggests that SYP71 might form at
least two different SNARE complexes on the ER and PM, or that
AtSYP71 is a SNARE for the ER–PM traffic during cell division.
No AtSYP71 homolog has been identified in mammals, suggest-
ing that AtSYP71 may be involved in plant-specific membrane
traffic events. Thus, identification of other SNAREs in the AtSYP71
SNARE complex may clarify the nature of the plant-specific role
of AtSYP71, perhaps by providing important insights on under-
studied traffic route(s) that may occur between the ER and PM.
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Two types of electron-dense vesicles originating from the ER have
been suggested for the transport of storage proteins or proteases
to storage or lytic vacuoles in pumpkin seeds and castor bean
(Hara-Nishimura et al., 1998; Toyooka et al., 2000; Hayashi et al.,
2001). However, trafficking components required for budding and
cargo selection in such traffic routes have not been identified yet.
Proteomics analyses of these dense vesicles may reveal impor-
tant clues on the machinery and SNAREs that allows membrane
transport to plant-specific organelles such as the protein storage
vacuole.

ROLE OF TGN, ENDOSOMAL, AND VACUOLAR SNAREs
At the TGN,endosome,and vacuoles,21 SNAREs (six Qa-SNAREs:
three AtSYP4 and three AtSYP2; four Qb-SNAREs: AtVTI1;
five Qc-SNAREs: AtSYP61, three AtSYP5, and two AtSYP5-like
proteins; six R-SNAREs: two AtYKT6, three AtVAMP71, and
AtVAMP727) have been identified (Uemura et al., 2004; Saito and
Ueda, 2009; Shirakawa et al., 2010). The TGN is a tubular and
vesicular organelle facing the trans side of the Golgi apparatus.
Mounting evidence supports that the TGN represents a cross-
road for post-Golgi protein traffic because it appears that vesicles
containing vacuolar or secretory cargo can bud from the TGN,
but also that endocytic markers such as the dye FM4-64 can be
internalized to the TGN (Nakamura et al., 1993; Ahmed et al.,
1997; Dettmer et al., 2006; Toyooka et al., 2007; Scheuring et al.,
2011). Thus, complex vesicle budding and fusion events take place
at the TGN, and it is likely that membrane transport is highly
regulated at this organelle. In this view, specific SNAREs should
facilitate anterograde or retrograde traffic between the TGN and
endosomes, vacuoles, and PM. In particular, two Qa-SNAREs,
AtSYP41 and AtSYP42 were found to form separate complexes
in distinct TGN domains (Bassham et al., 2000). Furthermore, the
corresponding knock-out mutants were found to be gametophytic
lethal, suggesting that these SNAREs have specific and essential
functions (Sanderfoot et al., 2001b). Recently, another SNARE,
AtSYP61, has been implicated in traffic at the TGN. AtSYP61 is
a component of the AtSYP4 SNARE family complexes and it is
involved in salt and drought stress tolerance (Sanderfoot et al.,
2001a; Zhu et al., 2002). Proteomic analysis of vesicles contain-
ing AtSYP61 has identified trafficking components at the TGN
and PM along with enzyme cargos (Drakakaki et al., 2011). These
results suggest that AtSYP61 has possibly a dual role as a t-SNARE
at the TGN but also as a SNARE for TGN–PM traffic. Previously,
AtSYP42 was co-immunoprecipitated with AtSYP61 (Sanderfoot
et al., 2001a), but AtSYP42 was not found in the proteomic analy-
sis in contrast to previous results. It would be interesting however
to assay the proteome of the vesicles containing either AtSYP41
or AtSYP42 because we may learn about the function of AtSYP41
and AtSYP42, and, perhaps, determine whether the TGN exists
as a uniform compartment or whether there may be TGNs with
different composition due to specific functions or maturation
stages.

Other SNAREs have been localized in post-Golgi routes.
For example, three AtSYP2 family members, AtSYP21, AtSYP22,
and AtSYP23, have been shown to localize on the prevacuolar
compartment (PVC), vacuole, and cytoplasm, respectively.
Individual single mutants are viable, with only a gravitropic

defect reported for the atsyp22 mutant (Yano et al., 2003).
However, the atsyp21/atsyp22 double mutant is known to be
lethal (Shirakawa et al., 2010). A complete complementation of
atsyp22 with AtSYP21 under AtSYP22 promoter suggests that
AtSYP21 and AtSYP22 may have redundant functions (Uemura
et al., 2010). Overexpression of SYP21 resulted in homotypic
fusion of PVC as well as the accumulation of vacuolar cargo
in the PVC and partial secretion of vacuolar proteins (Foresti
et al., 2006), suggesting that overexpression of SYP21 inhibits
anterograde trafficking in the PVC–vacuole route. These obser-
vations open the question on the molecular basis for the role
of AtSYP21 in two different biological events. In other words,
it would be interesting to test whether vacuolar trafficking
defects and homotypic fusion of PVC observed in conditions
of AtSYP21 overexpression are due to the collapse of one or
multiple fusogenic machineries. AtSYP23 has a similar protein
sequence with AtSYP21, but it does not have transmembrane
domain. AtSYP23 can make a SNARE complex with AtVTI11
and AtSYP5, and high expression of AtSYP23 can complement
an atsyp22 mutant (Shirakawa et al., 2010). Thus, AtSYP23 may
function in vacuolar trafficking like AtSYP21 and AtSYP22. Con-
sidering the lack of transmembrane domain in AtSYP23, AtSYP23
may function by specific manner differently from other Qa-
SNAREs. Therefore, either other regulatory proteins may recruit
AtSYP23 at the active site for the SNARE complex formation or
that AtSYP23 may interact with a preformed SNARE complex.
In vitro liposome fusion assays may allow distinguishing the two
models.

Similar to AtSYP61, members of the AtVAMP71 family
(AtVAMP711, AtVAMP712, AtVAMP713, and AtVAMP714) have
been found to be involved in drought stress response by regulat-
ing stoma closure (Leshem et al., 2010). Stoma aperture is directly
regulated by the volume of the vacuole (Blatt, 2000; Sirichandra
et al., 2009). Therefore, the AtVAMP71 family may be involved in
membrane fusion to tonoplast or vesicle budding from vacuole so
as to control the size of vacuole through modulating the tonoplast
size. So far, the composition of the AtVAMP71 family complexes
has not been determined, but the presence of three AtVAMP71
SNAREs (AtVAMP711, AtVAMP712, AtVAMP713) on the tono-
plast suggests that these SNAREs could have either overlapping
functions or that they may form distinct SNARE complexes on the
tonoplast for tissue- and developmental-specific roles. Another R-
SNARE, AtVAMP727 is localized on the endosome/PVC and PM
(Uemura et al., 2004; Ebine et al., 2008, 2011). It forms a com-
plex with AtSYP22, AtVTI11, and AtSYP51 on the PVC/vacuole
and forms a complex with AtSYP121 at the PM (Ebine et al.,
2008, 2011). Roles in vacuolar trafficking was shown that in the
atsyp22/atvamp727 double mutant, storage vacuolar cargo such as
2 s albumin was secreted (Ebine et al., 2008). The double mutant
contained multiple small vacuoles instead of large vacuoles found
in wild-type and in atvamp727 and atsyp22 single mutants (Ebine
et al., 2008), supporting that AtSYP22 and AtVAMP727 may form
a SNARE complex for membrane fusion between PVC and vac-
uole. In addition, Rab-GTPase,Ara6 has been identified to regulate
the formation of AtVamp727 SNARE complex with AtSYP121 at
PM under salt stress (Ebine et al., 2011), suggesting AtVAMP727
has another role in PM, presumably triggered by salt stress. These
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results are important milestones in our understanding of vacuole
biogenesis and stress response. Analyses of the diverse SNARE
complexes at the tonoplast will provide further valuable informa-
tion about vacuole biogenesis and vacuolar trafficking pathways
possibly in relation to cell type specificity, along with plant devel-
opment and growth, and plant may have developed specific traffic
route to overcome environmental stress.

ROLE OF PLASMA MEMBRANE SNAREs
A total of 23 SNAREs (nine Qa-SNAREs: two AtSYP11, five
AtSYP12, and two AtSYP13; three Qb-SNAREs: AtNPSN1; three
Qb + Qc-SNAREs: AtSNAP29, AtSNAP30, and AtSNAP33; eight
R-SNARE: six AtVAMP72 and two Tomosyn) have been localized
at the PM (Uemura et al., 2004; Sanderfoot, 2007). A large num-
ber of Qa-SNAREs at the PM may allow the delivery of different
types of vesicles to the PM in response to specific development and
biotic/abiotic cues. For example, it has been shown that AtSYP121
is involved in the regulation of K+ channels and resistance against
barley powdery mildew (Collins et al., 2003; Sutter et al., 2006b;
Honsbein et al., 2009). However, an atsyp122 mutant did not
show any defects on non-host resistance, contrary to the atsyp121
mutant, although both AtSYP121 and AtSYP122 are involved in
the regulation of salicylic acid and jasmonic acid (Assaad et al.,
2004; Zhang et al., 2007). Growth defects were only seen in the
atsyp121/atsyp122 double mutant (Assaad et al., 2004). There-
fore, AtSYP121 and AtSYP122 might have overlapping functions
in plant growth and development, but distinct roles in disease
resistance, presumably by mediating fusion of different types of
vesicles containing cargo to resist pathogens.

Two AtSYP121 SNARE complexes have been identified with
AtSNAP33 and AtVAMP721 or AtVAMP722 as components in the
complexes (Kwon et al., 2008). AtSNAP33 also forms a SNARE
complex with AtSYP111 and individual mutants showed incom-
plete cytokinesis, a process that requires massive vesicle traffic at
the cell plate (Lukowitz et al., 1996; Lauber et al., 1997; Heese et al.,
2001). The existence of multiple AtSNAP33 complexes suggests
that this protein may have multiple roles in plant development,
and transport machinery of AtSNAP33 to either cell plate dur-
ing cell division or PM may rely on specific traffic machinery.
For example, investigation on the trafficking of AtSYP111 during
cytokinesis has established that AtSYP111 is delivered to the cell
plate by secretory pathways. In mitotic cells, AtSYP111 was found
to localize at the TGN and cell plate, and inhibition of ER–Golgi
trafficking accumulated AtSYP111 in the ER (Reichardt et al., 2007;
Chow et al., 2008). These results suggest that AtSYP111 traffics
through the secretory pathway, and that distribution of AtSYP111
at the cell plate depends on a clathrin and dynamin-related protein
A dependent endocytosis (Boutte et al., 2010). However, there is
no evidence that AtSYP111 is directly delivered from TGN to cell
plate. Considering endocytosis dependent polar distribution of
auxin transporter (PIN1; Dhonukshe et al., 2008), AtSYP111 may
be secreted to PM first by the default pathway and then relocalized
to the cell plate by endocytosis.

Recent discovery for a role of Qa-SNAREs (AtSYP11, AtSYP12,
and AtSYP13 families) at the PM supports a diversified but
redundant function of Qa-SNAREs at this compartment. It was
found that AtSYP132 could complement an atsyp111 mutant

(Reichardt et al., 2011). Also, replacement of the SNARE domain
of AtSYP111 with that of AtSYP132 rescued the atsyp111 mutant.
However, neither AtSYP121 nor the AtSYP111 chimera contain-
ing the SNARE domain of AtSYP121 was able to complement
the atsyp111 mutant (Reichardt et al., 2011). These results sup-
port that while AtSYP132 may have an overlapping function with
other SNAREs at the PM, AtSYP111, and AtSYP121 may have dis-
tinct roles, perhaps by forming highly specialized complexes. For
example, although AtSYP111 and AtSYP121 interact with SNAP33
(Heese et al., 2001; Kwon et al., 2008), AtSYP111 may form a
SNARE complex with different R-SNAREs. Identification of the
R-SNAREs in the AtSYP111 and AtSYP121 complexes along with
structural analyses of the SNARE complexes by X-ray crystallog-
raphy may provide fundamental information on the difference
between AtSYP111 and AtSYP121 SNARE complexes.

CONCLUSION
The large number of SNAREs in Arabidopsis implicates diversi-
fied roles of SNARE complexes in membrane traffic events during
growth and development as well as responses to biotic and abiotic
stresses. It is also important to consider that other proteins may
contribute to the function of SNAREs, thus increasing the level
of complexity as well as fidelity and regulation of the biological
processes mediated by SNAREs. For example, the Sec1/Munc18
(SM) protein family was reported to regulate a SNARE com-
plex formation by controlling a Qa-SNARE in mammalian and
yeast cells (Malsam et al., 2008). Similarly in plants, AtSYP41 and
AtSYP42 form distinct SNARE complexes at different subdomains
of TGN with AtSYP61, AtVTI12, and a SM protein, AtVPS45
(Bassham et al., 2000; Sanderfoot et al., 2001a). AtVPS45 RNAi
plants showed decreased amount of AtSYP41 compared to wild-
type, suggesting that AtVPS45 may be important for the stability
of AtSYP41 (Zouhar et al., 2009). These findings support that SM
proteins regulate SNARE-mediated membrane fusion, as well as
stability or turnover of SNAREs. In Arabidopsis, six putative Sec1-
like proteins in the SM protein family have been predicted to exist
(Schwacke et al., 2003). Thus, investigation of the uncharacterized
SM proteins will be necessary to define one of the possible regula-
tory mechanisms of SNARE complexes. Related to this, tethering
factors and GTPases can play important roles in membrane fusion
(Malsam et al., 2008). In yeast, tethering factors are involved in
the SNARE complex assembly and docking for membrane fusion
by interacting with GTPases (Price et al., 2000; Seals et al., 2000;
Shorter et al., 2002), supporting that SNARE complex assembly is
a multifaceted process based on the interplay of multiple compo-
nents. Therefore, a study focused on SNARE specificity in vesicle
trafficking should take into account an analysis of several compo-
nents for membrane fusion to better define an overall picture of
the function of the SNAREs.

So far, valuable approaches to characterize the role of SNAREs
have been developed and have provided important data in plants.
However, there are still several unsolved questions on the func-
tion of SNAREs and the nature of the complexes that they can
form in vivo in plant cells. Arabidopsis has a large number of
SNAREs and several SNARE complexes that partially share the
same components. We need to understand the physiological rel-
evance of the number of SNARE and of the SNARE complexes.
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With no doubt, we are living in an exciting moment for research
in plants thanks to a wealth of genetics, genomics, and molecular
resources. In vitro fusion assays using SNAREs and other regu-
latory proteins may help specify the roles of SNARE complexes
with similar but not identical components. The combination of
in vitro and in vivo studies on cargo trafficking and membrane
fusion will also provide important insights into the mechanisms

and regulatory pathways of vesicle transport along with a better
understanding of their role in plant growth, development, and
response to stress.
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