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There is a wealth of molecular informa-
tion that has enhanced the reconstruction 
of regulatory networks and pathways in 
plants, specially in Arabidopsis thaliana due 
to its central role as a model system. Most 
of this information, however, has proven 
to be insufficient to construct quantitative 
models due to the absence of sufficiently 
accurate measurements of kinetic constants. 
Hence, there have been efforts to develop 
qualitative methodologies that permit the 
use of the vast information regarding the 
regulatory interactions among molecules.

Of special interest is the increasing 
use of Boolean models to analyze the 
dynamic behavior of regulatory networks 
(Bornholdt, 2008), with an emphasis in the 
description of the steady states of activation, 
as well as the characterization of their basins 
of attraction. The accuracy of these models 
at describing the experimentally observed 
set of molecular markers characteristic of 
observed cell types is the central argument 
to validate the use of a Boolean approach. 
These discrete-state models are thereafter 
used to make specific predictions about 
the dynamical behavior of the network and 
about missing links or nodes in its topology.

The methodology known as standard-
ized qualitative dynamical systems, SQUAD 
(http://www.enfin.org/Wiki/SQUAD/
about-squad; Mendoza and Xenarios, 2006; 
Di Cara et al., 2007), was developed to cre-
ate a continuous dynamical system with 
a set of differential equations of a regula-
tory network using exclusively topological 
information. This was possible by devising 
a set of ordinary differential equations with 
properties similar to a Boolean system. Such 
characteristic has two main advantages; 
first, the user does not need to provide any 
kind of kinetic parameters; and second, the 
methodology provides a way to make a fully 
automated analysis of the dynamical behav-
ior of the model. As a result, the original ver-
sion of the methodology makes it suitable 
to obtain a continuous  qualitative model of 

a given network. For example, the SQUAD 
methodology has been used to study the 
auxin and brassinosteroid pathways in A. 
thaliana (Sankar et al., 2011). This meth-
odology allowed the analysis of several 
models with varying network topologies, 
thus explaining the effect of certain muta-
tions. Importantly, the model permitted 
the generation of a prediction regarding a 
regulatory interaction that was confirmed 
experimentally (Scacchi et al., 2010).

Despite its advantages, the SQUAD 
method as described in its original form 
does not allow the user to specify the logical 
rules for each node. The algorithm assumes 
that any positive regulator is strong enough 
to activate its target in the absence of an 
inhibitor. Also, it assumes that any negative 
regulator is stronger that any combination 
of positive regulators. These two assump-
tions are not necessarily true for a particular 
network. Indeed, the flower organ specifi-
cation gene regulatory network of xtit A. 
thaliana does not conform to the previous 
assumptions, and therefore it was necessary 
to modify the SQUAD methodology so as 
to permit the use of arbitrary regulatory 
rules in a network (Sánchez-Corrales et al., 
2010). This modification is important since 
it provides the modelers with a way to incor-
porate relevant experimental data into the 
model. At the same time, the incorporation 
of specific logical rules for each node in a 
network makes the new version of SQUAD 
a methodology that requires the use of more 
information than the sole topology of the 
network.

Figure 1 shows the general characteristics 
of the first and second versions of SQUAD, 
as well as some of its possible developments. 
In the original version, indicated by the flux 
of information with gray arrows, the meth-
odology accepts as input the topology of 
the network, which includes the nodes, as 
well as their signed interactions. With such 
information, the algorithm creates a set of 
Boolean rules with the two assumptions 

described in the previous paragraph. Then, 
the steady states of the Boolean model are 
found with the use of binary decision dia-
grams (Garg et al., 2007), which are repre-
sentations of Boolean functions in the form 
of graphs. Next, a continuous dynamical 
system with the form of a set of ordinary 
differential equations is created with prede-
fined sigmoid functions. And finally, the set 
of equations is solved numerically using as 
initial conditions the steady states recovered 
from the Boolean model.

The second version of SQUAD, where the 
Boolean rules can be customized, is shown 
in Figure 1 with the flux of information 
as thin black arrows. In this case, the user 
specifies the Boolean actualization rules, 
usually because there is enough experimen-
tal information showing the inadequacy of 
the assumptions of the original version 
of SQUAD. Then, the Boolean rules are 
transformed into their continuous equiva-
lents with the use of fuzzy logic, which is 
an extension of two-valued logic such that 
statements need not be true or false, but 
may have a degree of truth between 0 and 
1. Such rules are then inserted into a prede-
fined skeleton of a system of ordinary dif-
ferential equations, and the resulting system 
is numerically integrated using a large set of 
random initial states (thick black arrows).

We hereby propose further modifica-
tions to the SQUAD methodology, so as to 
make it more flexible, and therefore more 
amply used for qualitative modeling. First, it 
would be valuable to incorporate a defined 
level of noise to the numerical solutions, 
shown as thick broken arrows in Figure 1. 
In this way, it would be possible to incor-
porate the stochastic effects observed in 
experimental settings due to variations in 
the concentration of molecules, as well 
as due to uncontrolled variables. Also, we 
think that it would be beneficial to reimple-
ment SQUAD as a software package from 
scratch, with code optimization in mind, 
thus making it suitable for simulating large 
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Due to the large diversity of biologi-
cal systems, modeling methods must be 
tailored to make the best use of the avail-
able experimental information, as well as 
to answer specific biological questions, 
which can span from the understand-
ing of the function of a pathway and its 
evolution to the global molecular mecha-
nisms underlying cellular events such as 
cell differentiation. One of these modeling 
methods, SQUAD, is in its present form a 
straightforward tool that has been applied 
mainly for the qualitative modeling of 
regulatory networks of plants (Sánchez-
Corrales et al., 2010; Sankar et al., 2011). 
These models show that there is a corre-
spondence in the number and location of 
stable steady states found by SQUAD and 
classic Boolean modeling. However, due to 
its formulation as a set of ordinary differen-
tial equations, SQUAD may find additional 
unstable steady states, cyclic behavior, and 
different attractor basin sizes with respect 
to Boolean approaches. These differences 
have allowed SQUAD to be a tool suitable 
to study the effect of extracellular signals 
on the determination in the order of attrac-
tors reached during a differentiation pro-
cess (see for example Mendoza and Pardo, 
2010; Sánchez-Corrales et al., 2010).

but one possible implementation worth 
exploring is describing the rate of change 
of activation of a node with the use of the 
following equation:

dX

dt
k U Xi

i i i= −( )
 

(1)

Where X
i
 is the activation state of node i. 

0 < k
i
 < = 1 is a constant that controls how 

fast the state of the node X
i
 changes. Finally, 

U
i
 is the state the node i would reach if the 

conditions remain as they are now; in other 
words, it is the value returned by the update 
rule of the multivalued discrete model.

Now, given that noise is a very impor-
tant factor in the dynamical behavior of 
biological systems, and that most systems 
resist a certain amount of noise while others 
require noise to function correctly (Eldar 
and Elowitz, 2010), the previous equation 
may be extended to add noise:

dX

dt
k U X z rndi

i i i= −( ) + ∗( )
 

(2)

Where z is a positive real constant that 
defines the noise level, and rnd is a random 
number generator that returns a value in the 
interval [−1, 1].

regulatory networks. Moreover, a future 
version of SQUAD may be benefited by the 
incorporation of logical actualization rules 
with multiple thresholds, shown as thin 
broken arrows in Figure 1. Some regulatory 
networks need to be modeled with multi-
ple levels of activation for some nodes (see 
for example Mendoza, 2006), and thus it 
would be desirable to extend the methodol-
ogy to create a set of ordinary differential 
equations based on a multivalued discrete 
model. Finally, it would be very useful to 
incorporate the capability on the program 
to suggest new interactions or logical rules, 
indicated with thin dotted broken arrows in 
Figure 1, which might fit a regulatory net-
work to a set of target expected attractors, 
obtained from experimentally observed 
stable patterns of expression.

Of special interest to us at the present 
time is the incorporation of multiple states 
of activation into a regulatory network. If 
a multivalued discrete system is going to 
be transformed into a set of differential 
equations, it would be important for the 
continuous system to preserve the attrac-
tors obtained from a multivalued discrete 
system. Transforming multivalued logic 
update rules into their continuous fuzzy 
logic counterparts is not straightforward, 

Figure 1 | The use of SQuAD in the analysis of regulatory networks (see main text for explanation).
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Despite its usefulness, it is clear that 
there is ample room for refinement and 
generalization of the SQUAD method. We 
hereby sketched some of the possible ways 
in which the modeling methodology may 
be extended, and thus broaden its range of 
applications. Nonetheless, SQUAD in its 
present form complements other packages 
or platforms like Antelope (Arellano et al., 
2011), BoolNet (Müssel et al., 2010), and 
GINsim (Chaouiya et al., 2012), to analyze 
dynamics (Machado et al., 2011), robust-
ness (Kitano, 2004), modularity (Ravasz 
et al., 2002), and evolvability (Mugler et al., 
2009), among other network properties.
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