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The Golgi apparatus of eukaryotic cells is known for its central role in the processing, sort-
ing, and transport of proteins to intra- and extra-cellular compartments. In plants, it has the
additional task of assembling and exporting the non-cellulosic polysaccharides of the cell
wall matrix including pectin and hemicelluloses, which are important for plant development
and protection. In this review, we focus on the biosynthesis of complex polysaccharides of
the primary cell wall of eudicotyledonous plants.We present and discuss the compartmen-
tal organization of the Golgi stacks with regards to complex polysaccharide assembly and
secretion using immuno-electron microscopy and specific antibodies recognizing various
sugar epitopes. We also discuss the significance of the recently identified Golgi-localized
glycosyltransferases responsible for the biosynthesis of xyloglucan (XyG) and pectin.

Keywords: cell wall, immunocytochemistry, glycosyltransferases, Golgi, polysaccharides, plants

INTRODUCTION
One of the most important functional properties of the plant Golgi
apparatus is its ability to synthesize complex matrix polysaccha-
rides of the cell wall. Unlike cellulose which is synthesized at the
plasma membrane and glycoproteins whose protein backbones are
generated in the endoplasmic reticulum, the cell wall matrix poly-
saccharides (pectin and hemicelluloses) are assembled exclusively
in the Golgi cisternae and transported to the cell surface within
Golgi-derived vesicles (Driouich et al., 1993; Lerouxel et al., 2006).

The synthesis of cell wall matrix polysaccharides occurs
through the concerted action of hundreds of glycosyltransferases.
These enzymes catalyze the transfer of a sugar residue from an
activated nucleotide–sugar onto a specific acceptor. The activity
of these enzymes depends, in turn upon nucleotide–sugar syn-
thesizing/interconverting enzymes in the cytosol, and also on the
nucleotide–sugar transporters necessary for sugar transport into
the lumen of Golgi stacks and subsequent polymerization.

Because cell wall matrix polysaccharides exhibit a high struc-
tural complexity, their biosynthesis must be adequately organized
and a certain degree of spatial organization/coordination must
prevail within Golgi compartments, not only between glyco-
syltransferases themselves, but also between glycosyltransferases
nucleotide–sugar transporters and nucleotide–sugar interconvert-
ing enzymes (Seifert, 2004; Reiter, 2008).

Cell wall matrix polysaccharides are known to confer impor-
tant functions to the cell wall in relation with many aspects of

plant life including cell growth, morphogenesis and responses to
abiotic, and biotic stresses. Plant cell walls are also an important
source of raw materials for textiles, pulping and, potentially, for
renewable biofuels or food production for humans and animals
(Cosgrove, 2005; Pauly and Keegstra, 2010).

THE PRIMARY CELL WALL IS COMPOSED OF DIVERSE
COMPLEX CARBOHYDRATES
Plants invest a large proportion of their genes (∼10%) in the
biosynthesis and remodeling of the cell wall (Arabidopsis Genome
Initiative, 2000; International Rice Genome Sequencing Project,
2005; Tuskan et al., 2006).

Cell walls of flowering plants are highly diverse and hetero-
geneous (Popper et al., 2011). They are composed of a variety
of complex carbohydrates whose compositional and structural
properties are controlled spatially and temporally as well as at
the tissue and cell levels (Roberts, 1990; see also Burton et al.,
2010).

The primary wall of eudicotyledonous plants comprises cel-
lulose microfibrils and a xyloglucan network embedded within a
matrix of non-cellulosic polysaccharides and proteins (i.e., glyco-
proteins and proteoglycans). Four major types of non-cellulosic
polysaccharides are found in the primary walls of plant cells (in
taxa outside the gramineae), namely the neutral hemicellulosic
polysaccharide xyloglucan (XyG) and three main pectic polysac-
charides, homogalacturonan (HG), rhamnogalacturonan I and
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rhamnogalacturonan II (RG-I and RG-II; Carpita and Gibeaut,
1993; Mohnen, 2008; Scheller and Ulvskov, 2010).

XyG consists of a β-d-(1-4)-glucan backbone to which are
attached side chains containing xylosyl, galactosyl–xylosyl, or
fucosyl–galactosyl–xylosyl residues. In eudicotyledonous plants,
XyG is the principal polysaccharide that cross-links the cellulose
microfibrils. It is able to bind cellulose tightly because its β-d-(1-
4)-glucan cellulose-like backbone can form numerous hydrogen
bonds with the microfibrils. A single XyG molecule can therefore
interconnect separate cellulose microfibrils. This XyG-cellulose
network forms a major load-bearing structure that contributes to
the structural integrity of the wall and the control of cell expansion
(Cosgrove, 1999, 2005; Scheller and Ulvskov, 2010).

The pectic matrix is structurally complex and heteroge-
neous. HG domains consist of α-d-(1-4)-galacturonic acid (GalA)
residues, which can be methyl-esterified, acetylated, and/or sub-
stituted with xylose to form xylogalacturonan (Willats et al., 2001;
Vincken et al., 2003). De-esterified blocks of HG can be cross-
linked by calcium producing a gel matrix which is believed to
be essential for cell adhesion (Jarvis, 1984). RG-I domains contain
repeats of the disaccharide [-4-α-d-GalA-(1-2)-α-l-Rha-(1-)] and
the rhamnosyl residues can possess oligosaccharide side chains
consisting predominantly of β-d-(1−4)-galactosyl- and/or α-l-
(1-5)-arabinosyl-linked residues (McNeil et al., 1982). Side chains
of RG-I can also contain α-l-fucosyl, β-d-glucuronosyl, and 4-O-
methyl β-d-glucuronosyl residues and vary in length depending
on the plant source (O’Neill et al., 1990). These chains are believed
to decrease the ability of pectic molecules to cross-link and form a
stable gel network, and are thereby able to influence the mechan-
ical properties of the cell wall (Hwang and Kokini, 1991). In
addition, the structure and tissue distribution of arabinan- or
galactan-rich side chains of RG-I have been shown to be regu-
lated during cell growth and development of many species (for
review see Willats et al., 2001; Scheller et al., 2007; Harholt et al.,
2010).

RG-II is the most structurally complex pectic polysaccharide
discovered so far in plants and is of a relatively low molecular
mass (5–10 Kda; Ridley et al., 2001). It occurs in the cell walls
of all higher plants as a dimer (dRG-II-B) that is cross-linked by
borate di-esters (Matoh et al., 1993; Ishii and Matsunaga, 1996;
Kobayashi et al., 1996; O’Neill et al., 1996). The backbone of RG-
II is composed of a HG-like structure containing at least eight
α-d-(1-4)-GalA-linked residues to which four structurally differ-
ent oligosaccharide chains, denoted A, B, C, and D, are attached.
The C and D side chains are attached to C-3 of the GalA residues
of the backbone whereas A and B are attached to C-2 of GalA
residues (O’Neill et al., 2004). The C chain corresponds to a dis-
accharide that contains rhamnose and 2-keto-3-deoxy-d-manno-
octulosonic acid (Kdo), whereas the D chain is a disaccharide
of 2-keto-3-deoxy-d-lyxo-heptulosaric acid (Dha) and arabinose
(O’Neill et al., 2004). The A and B oligosaccharide chains are both
composed of eight to ten monosaccharides and are attached by a
β-d-apiose residue to O-2 of the backbone. A D-galactosyl residue
(D-Gal) occurs on the B chain. RG-II plays an important role in
the regulation of porosity and mechanical properties of primary
cell walls (Ishii et al., 2001). This in turn has an important impact
on growth and development as has been shown from studies using

various Arabidopsis mutants (O’Neill et al., 2001; Reuhs et al., 2004;
Voxeur et al., 2011).

As for hemicellulosic polysaccharides, it is worth to note that
glucurono(arabino)xylan (GAX) does exist in the primary cell
walls of eudicotyledonous although at very limited amounts. It
is however mostly present in the secondary walls of eudicotyledo-
nous as well as in both the primary and secondary walls of grasses
(see also Vogel, 2008 for a difference in polysaccharide compo-
sition of the cell walls between grasses and eudicots). GAX of
eudicotyledonous primary cell wall is composed of a linear β-d-
(1 −4)-xylose backbone substituted with both neutral and acidic
side chains. The acidic side chains are terminated with glucurono-
syl or 4-O-methyl glucuronosyl residues, whereas the neutral side
chains are composed of arabinosyl and/or xylosyl residues (Darvill
et al., 1980; Zablackis et al., 1995; Vogel, 2008). GAX is also known
to be synthesized within Golgi stacks and significant advances have
recently been made in understanding its biosynthesis (Faik, 2010).
However, this is beyond the focus of this review and only major
polysaccharides of the primary cell walls of eudicotyledonous are
considered here below.

THE ROLE OF THE GOLGI APPARATUS IN COMPLEX
POLYSACCHARIDE BIOSYNTHESIS
THE GOLGI IMPLICATION IN THE CONSTRUCTION OF THE CELL WALL
In higher plants, the Golgi apparatus plays a fundamental role in
“the birth” of the cell wall. During cytokinesis, a new cell wall is
formed and starts to assemble with the transport of Golgi-derived
secretory vesicles to the center of a dividing cell. Fusion of these
vesicles gives rise to a thin membrane-bound structure, the cell
plate, which undergoes an elaborate process of maturation leading
to a fully functional cell wall (Staehelin and Hepler, 1996; Cutler
and Ehrhardt, 2002; Segui-Simarro et al., 2004). Also to perform
the plant cell growth, new polysaccharides are delivered to grow-
ing cell wall by fusion of Golgi vesicles with the plasma membrane
(Cosgrove, 2005).

The Golgi apparatus of plant cells is a dynamic and organized
organelle consisting of a large number of small independent Golgi
stacks that are randomly dispersed throughout the cytoplasm. At
the confocal microscopy level, individual green fluorescent protein
(GFP)-tagged Golgi stacks (around 1 μm in diameter) appear as
round disks, small rings, or short lines depending on their orienta-
tion (Nebenführ et al., 1999; Ritzenthaler et al., 2002). At the level
of transmission electron microscopy in high pressure frozen/freeze
substituted cells, each stack appears to consist of three types of cis-
ternae, designated cis, medial, and trans that are defined based
on their position within a stack and their unique morpholog-
ical features (Staehelin et al., 1990; Staehelin and Kang, 2008).
This morphological polarity reflects different functional prop-
erties of Golgi compartments (Figure 1; Staehelin et al., 1990;
Driouich and Staehelin, 1997). The number of stacks per cell,
as well as the number of cisternae within an individual stack,
varies with the cell type, the developmental stage of the cell and
the plant species (Staehelin et al., 1990; Zhang and Staehelin,
1992).

The trans Golgi network (TGN) is a branched tubulo-vesicular
structure that is frequently located close to trans cisternae. How-
ever, the TGN can be found remote from the Golgi stack located
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FIGURE 1 | (A) Electron micrograph of suspension-cultured tobacco cells
preserved by high pressure freezing showing the random distribution of
Golgi stacks throughout the cytoplasm. The bar represents 0.5 μm. (B)

Confocal microscopy image showing distribution of Golgi stacks in
suspension-cultured tobacco (BY-2) cells. Golgi stacks-expressing the Golgi
XyG-synthesizing enzyme (XyG –GalT/MUR3) fused to GFP are visible as
bright green spots. The bar represents 8 μm. (C) Two Golgi stacks and
associated trans Golgi network (TGN) in a tobacco BY-2 suspension-cultured
cell. Cis-, medial, and trans type of cisternae as well as the TGN are
indicated. The bar represents 0.1 μm. (D) Electron tomographic model of a
Golgi stack in a columella root cell of Arabidopsis. CW, cell wall; ER,
endoplasmic reticulum; G, Golgi stack; m, mitochondria; N, nucleus; P,
plastid; TGN, trans Golgi network; V, vacuole.

throughout the cytosol as an independent compartment. Two
types of TGN compartments have been described and referred
to as an early and a late TGN (see Staehelin and Kang, 2008). The
plant TGN plays a major role in sorting of proteins and it rep-
resents a meeting point of secretory, endocytosis, and membrane
recycling pathways. Recent studies have shown that certain TGN
types, can serve also as early endosomes and thus have been termed
TGN-Early endosomes (Dettmer et al., 2006; Richter et al., 2009;
Viotti et al., 2010).

In contrast to the Golgi complex in mammalian cells that has a
fixed location near the centrosomes, Golgi units in plants appear
to move actively throughout the cytoplasm (Boevink et al., 1998;
Nebenführ et al., 1999). GFP-fusions have allowed the study of
Golgi dynamics in vivo and have shown that each Golgi unit can
move at a slow or high speed (up to 5 μm/s) without loosing
structural integrity (Boevink et al., 1998; Nebenführ et al., 1999;
Brandizzi et al., 2002). In addition, cytoskeletal depolymerization
studies have indicated that the movement of Golgi stacks depends
on actin filaments rather than on microtubules (Nebenführ et al.,

1999). Indeed, it is now established that the movement of Golgi
stacks in plant cells occurs along actin filaments driven by myosin
motors (Staehelin and Kang, 2008). In the context of this review, it
is worth noting that actin filaments interact with Golgi stacks via
an actin-binding protein, KATAMARI 1/MURUS3 – that is also
known as a glycosyltransferase required for cell wall biosynthesis
(see below; Tamura et al., 2005). KATAMARI 1 has been shown
to be involved in maintaining the organization and dynamics of
Golgi membranes.

As in animal cells (Rabouille et al., 1995), the plant Golgi appa-
ratus functions in the processing and modification of N-linked
glycoproteins (Pagny et al., 2003; Saint Jore Dupas et al., 2006;
Schoberer and Strasser, 2011); but the bulk of the biosynthetic
activity of this organelle is devoted to the assembly of different
subtypes of complex, non-cellulosic polysaccharides of the cell
wall such as pectin and hemicelluloses.

The first studies implicating plant Golgi stacks in cell wall
biogenesis date back to the 60 and 70 and involved cytochemi-
cal staining as well as autoradiographic experiments with radi-
olabeled sugars (Pickett-Heaps, 1966, 1968; Harris and North-
cote, 1971; Dauwalder and Whaley, 1974). These investigations
have shown that Golgi cisternae and Golgi-derived vesicles are
rich in carbohydrates and that a similar carbohydrate content
is found in the cell plate, the cell wall and in Golgi-enriched
fractions. Additionally, biochemical evidence for the role of the
Golgi apparatus in the assembly of cell wall polysaccharides
was obtained from fractionation experiments in which several
glycosyltransferase activities (e.g., xylosyltransferase, arabinosyl-
transferase, fucosyltransferase) were detected in Golgi membranes
(Gardiner and Chrispeels, 1975; Green and Northcote, 1978;
Ray, 1980). Further biochemical investigations, reported in the
eighties and nineties, allowed the identification and partial char-
acterization of Golgi-associated enzymes specifically involved
in the synthesis of XyG and pectic polysaccharides (Cami-
rand et al., 1987; Brummell et al., 1990; Gibeaut and Carpita,
1994).

More recently, a proteomic method called LOPIT, for Localiza-
tion of Organelle Proteins by Isotope Tagging, has been developed
in order to determine the subcellular localization of membrane
proteins in organelles of the secretory pathway such as Golgi stacks
(Dunkley et al., 2004, 2006). This approach has allowed the iden-
tification of the α1,6-xylosyltransferase (AtXT1) involved in XyG
biosynthesis, in the Golgi apparatus (Dunkley et al., 2004).

In connection with XyG biosynthesis, it is remarkable to note
that the structure of XyG present in isolated Golgi membranes has
been investigated using oligosaccharide mass profiling (OLIMP)
method (Obel et al., 2009). This study has revealed subtle dif-
ferences in the structure of the polymer with XXG and GXXG
fragments being more abundant in Golgi-enriched fraction as
compared to the cell wall. However, due to the inability of sub-
fractionating plant Golgi stacks into cis, medial, and trans cis-
ternae, it is not possible to associate a XyG oligosaccharide to
a specific sub-compartment of the Golgi apparatus. For simi-
lar reasons, it is still not possible neither to determine how the
enzymes are spatially organized and how complex polysaccharides
are assembled within Golgi sub-compartments using biochemical
methods.
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SPATIAL ORGANIZATION OF THE COMPLEX POLYSACCHARIDE
ASSEMBLY PATHWAY IN GOLGI STACKS: INSIGHTS FROM
IMMUNO-ELECTRON MICROSCOPY
Progress toward understanding the compartmentalization of
matrix cell wall polysaccharide biosynthesis has come from
immuno-electron microscopical analyses with antibodies directed
against specific sugar epitopes. In most cases, these immunolabel-
ing studies have been performed on a variety of cells prepared by
high pressure freezing, a cryofixation technique that is recognized
as providing excellent preservation of Golgi stacks thereby allow-
ing different cisternal subtypes to be easily distinguished (Staehelin
et al., 1990; Zhang and Staehelin, 1992; Driouich et al., 1993;
Follet-Gueye et al., 2012). More recently, a combination of cryofix-
ation/freeze substitution with Tokuyasu cryosectioning have been
used to immunolocalize polysaccharide epitopes in Golgi stacks of
Arabidopsis (Stierhof and El Kasmi, 2010). This technology is quite
promising and should be able to provide interesting information
on the localization of epitopes within plant Golgi cisternae.

Quantitative immunolabeling experiments using antibodies
recognizing either the XyG backbone (anti-XG antibodies: Moore
et al., 1986; Lynch and Staehelin, 1992) or an α-l-Fucp-(1-2)-
β-d-Galp epitope of XyG side chains in sycamore cultured cells
have shown that the epitopes localize to trans cisternae and the
TGN (Zhang and Staehelin, 1992). These data suggested that
the synthesis of XyG occurs exclusively in late compartments
of the Golgi and that no precursor forms of XyG are made in
cis and medial cisternae. The use of these antibodies on clover
and Arabidopsis root tip cells have also suggested that the syn-
thesis of XyG takes place in trans Golgi cisternae and the TGN
(Moore et al., 1991; Driouich et al., 1994). Nevertheless, it could
be argued that the sugar epitopes recognized by both antibodies
are not accessible until they reach the trans and TGN compart-
ments, or that the antibodies do not bind XyG precursor forms in
cis and medial cisternae. More recently, Viotti et al. (2010) have
also shown that fucosylated epitopes of XyG occur preferentially
in trans cisternae and the TGN using thawed ultrathin cryosec-
tions of high pressure frozen/freeze substituted and rehydrated
Arabidopsis root tip cells. Therefore, it is necessary to localize XyG-
synthesizing enzymes within Golgi cisternae to determine whether
XyG synthesis is exclusively limited to trans and TGN cisternae.
Although no antibody against any XyG-synthesizing enzyme is
currently available, one possible approach of addressing this issue
is to produce transgenic plants expressing GFP-tagged glycosyl-
transferases, followed by localization with anti-GFP antibodies.
Such a strategy has been successfully used to study the com-
partmentation of enzymes involved in the processing of N-linked
glycoproteins, including a β-1,2-xylosyltransferase responsible for
the addition of β-1,2 xylose residues and an α-1,2-mannosidase
responsible for the removal of α-1,2 mannose residues in tobacco
suspension-cultured cells (Follet-Gueye et al., 2003; Pagny et al.,
2003; Saint Jore Dupas et al., 2006). The same strategy has
been recently applied to enzymes involved in the biosynthesis of
XyG side chains including α-1,6-xylosyltransferase (AtXT1), β-
1,2-galactosyltransferase (AtMUR3), and α-1,2-fucosyltransferase
(AtFUT1; Chevalier et al., 2010). Immunogold localization of
these GFP-tagged glycosyltransferases has demonstrated that
AtXT1–GFP is mainly located in the cis and medial cisternae,

AtMUR3–GFP is predominantly associated with medial cister-
nae and AtFUT1–GFP mostly detected over trans cisternae sug-
gesting that initiation of XyG side chains occurs in early Golgi
compartments in tobacco suspension-cultured (BY-2) cells.

Another interesting approach to study sub-Golgi localization of
glycosyltransferases is through development of in silico predictors
based on the transmembrane domain of these enzymes. Such an
approach employing a support vector machine (SVM) algorithm
has been recently used to predict the localization of several human
and mouse glycosyltransferases and glycohydrolases within Golgi
sub-compartments (van Dijk et al., 2008). This is an interesting
methodology to apply for the prediction of sub-Golgi localiza-
tion of the known plant glycosyltransferases involved in cell wall
biosynthesis. Using this approach AtRGXT1 and AtRGXT2 -two
α-1,3-xylosyltransferases involved in the synthesis of the pectic
polysaccharide RG-II- have been predicted to be confined to the
TGN (P. Ulskov, personal communication).

As for XyG synthesis, similar immunocytochemical studies
using antibodies raised against pectin epitopes (including JIM7,
anti-PGA/RG-I, and CCRCM2) has allowed a partial characteri-
zation of the assembly pathway of homogalacturonan (HG) and
RG-I within Golgi cisternae (Zhang and Staehelin, 1992). The
polyclonal anti-PGA/RG-I antibodies (recognizing un-esterified
HG) were shown to label mostly cis and medial cisternae in
suspension-cultured sycamore cells as well as in clover root cortical
cells (Moore et al., 1991; Zhang and Staehelin, 1992). In contrast,
JIM7 (specific for methyl-esterified HG) labeling was mostly con-
fined to medial and trans cisternae (Figure 2). Consistent with this
data is the localization of the putative pectin methyltransferase,
QUASIMODO2 (Mouille et al., 2007) fused to GFP which was
found mainly in medial and trans cisternae of Golgi stacks in Ara-
bidopsis root tip cells (Chevalier et al., unpublished; Figure 2). In
addition, the mAb CCRCM-2 which is believed, but not proven,
to bind RG-I side chains was found to label trans cisternae in
sycamore cultured cells (Zhang and Staehelin, 1992). These data
suggest that HG is synthesized in its un-esterified form in cis and
medial Golgi cisternae and, that (i) the methylesterification occurs
in both medial and trans compartments, and (ii) that side chains
of RG-I are added in trans cisternae. However, as discussed above
for XyG labeling, the absence of labeling in trans cisternae and the
TGN by anti-PGA/RG-I antibodies, might be due to the inaccessi-
bility of the recognized epitopes in these compartments (because
of the methylesterification for instance). This idea is supported by
the fact that the same epitopes are localized predominantly in trans
Golgi cisternae and the TGN in the epidermal cells of clover. Thus,
it is not surprising that the compartmentation of cell wall matrix
polysaccharides within Golgi cisternae varies in a cell type specific
manner. The distribution of XyG and HG in Golgi membranes has
also been investigated immunocytochemically in root hair cells
of Vicia villosa preserved by high pressure freezing (Sherrier and
VandenBosch, 1994). Although no quantitative analyses were per-
formed, methyl-esterified HG epitopes recognized by JIM7 were
detected within medial and trans cisternae, whereas the fucose-
containing epitope of XyG (recognized by CCRCM1) was found
over trans Golgi cisternae. These observations are consistent with
those made in sycamore suspension-cultured cells and clover root
cortical cells using the same antibodies (Moore et al., 1991; Zhang
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FIGURE 2 | Homogalacturonan localization in transgenic

Arabidopsis root tips expressing the QUA2–GFP fusion protein.

(A,B) Electron micrographs illustrating typical double-immunogold
labeling of Golgi stacks (G) in Arabidopsis root cells with the mAbs JIM7
(20 nm gold particles) or with anti-GFP (10 nm gold particles). HG
epitopes and the QUA2–GFP are predominantly associated with the

trans cisternae and the TGN. The cell wall (CW) is labeled with JIM 7. Bar
represents 100 nm. (C) A confocal laser fluorescence image of
Arabidopsis root tip expressing the fusion protein QUA2–GFP. Bright
spots represent GFP-stained Golgi units. Scale Bar: 16 μm (Chevalier et
al., unpublished). CW, cell wall; G, Golgi stack; MT, microtubule; PM,
plasma membrane; MZ, meristematic zone; RC, root cap.

and Staehelin, 1992). However, the V. villosa study did not address
the issue of RG-I side chain distribution within Golgi stacks
using the mAb CCRCM2. Therefore, the use of the more recently
produced monoclonal antibodies LM5 and LM6, recognizing β-
1,4-d-galactan and α-1,5-d-arabinan epitopes, respectively (Jones
et al., 1997; Willats et al., 1998) should prove very useful for extend-
ing the “current map” of the pectin assembly pathway within the
Golgi cisternae of sycamore cultured cells and V. villosa root hairs.
Both antibodies have been widely used to study the distribution
of galactan and arabinan epitopes within the cell walls, but rela-
tively very little is known concerning their localization within the
endomembrane system. In flax root cells, LM5-containing epi-
topes have been shown to be present mostly in trans cisternae
and the TGN (Vicré et al., 1998). Similarly, epitopes recognized
by LM5 and LM6 have been quantitatively localized to TGN in

tobacco (BY-2) cultures (Bernard et al., unpublished). Therefore, it
appears that galactan- and arabinan-containing side chains of RG-
I are assembled in the TGN. Whether the enzymes responsible for
the addition of these residues are confined to the same Golgi sub-
compartments remains to be determined by future studies. One
of the genes involved in the synthesis of RG-I side chains, namely
ARAD1 (encoding a putative α-1,5-d-arabinosyltransferase) has
been recently identified and cloned (see below). The generation
of specific antibodies against this glycosyltransferase, or the gen-
eration of a GFP-tagged protein should help us to understand
more about its specific localization within Golgi compartments.
To extend our understanding of RG-I synthesis within Golgi
stacks, the use of the new monoclonal antibodies specifically raised
against the RG-I backbone (Ralet et al., 2010) or the LM13 recog-
nizing longer oligoarabinosides than LM6, should be very helpful.

www.frontiersin.org April 2012 | Volume 3 | Article 79 | 5

http://www.frontiersin.org
http://www.frontiersin.org/Plant_Cell_Biology/archive


Driouich et al. Plant Golgi and polysaccharide biosynthesis

In contrast to RG-I, information on the localization and assembly
of RG-II within the endomembrane system is missing. RG-II has a
complex structure consisting of a HG-like backbone and four side
chains that contain specific and unusual sugars including Kdo and
apiose (see above). It would certainly be interesting to find out
whether the backbone is assembled in the same compartments as
the side chains and whether different side chains are assembled
in the same or distinct compartments. The elucidation of RG-
II assembly within sub-compartments of Golgi stacks requires the
generation of antibodies specific for the sugar epitopes of the back-
bone and for the epitopes associated with different side chains, as
well as the associated immuno-electron microscopy studies.

It is generally accepted that the transport of Golgi products,
including glycoproteins and complex polysaccharides, to the cell
surface occurs by bulk flow (Hadlington and Denecke, 2000).
To date, no specific signals responsible for targeting and trans-
port of such products to the cell wall have been found associated
with any protein or polysaccharide. It has been shown that Golgi-
derived secretory vesicles mediating such a transport vary in size
and are capable of carrying mixed classes of complex polysaccha-
rides (Sherrier and VandenBosch, 1994) or both polysaccharides
and glycoproteins (see Driouich et al., 1994). Nevertheless, using
secretory carrier membrane protein 2 (SCAMP2) from Nicotiana
tabacum, a mobile secretory vesicle cluster (SVC) generated from
the TGN has been recently identified in Arabidopsis tissues and
tobacco suspension-cultured BY-2 cells (Toyooka et al., 2009).
These clusters formed by budding of clathrin coated vesicles from
the late TGN, are highly labeled with antibodies specific for either
complex glycan or homogalacturonan epitopes (JIM7), suggesting
that SVC are involved in mass transport from Golgi stacks to the
cell surface. It is also possible that the processing of Golgi products
such as cell wall polymers may continue to occur within the vesicles
during their transport to the cell surface (Zhang et al., 1996).

GLYCOSYLTRANSFERASES AND SUGAR-CONVERTING
ENZYMES INVOLVED IN THE ASSEMBLY OF COMPLEX
POLYSACCHARIDES
The Golgi-mediated assembly of complex polysaccharides requires
the action of a set of Golgi glycosyltransferases, in addition to
nucleotide–sugar transporters and nucleotide–sugar interconver-
sion enzymes (Keegstra and Raikhel, 2001; Seifert, 2004; Reiter,
2008; Reyes and Orellana, 2008). It has been postulated that these
partners could interact physically to form complexes within Golgi
membranes that would coordinate sugar supply and polymer
synthesis (Seifert, 2004; Nguema-Ona et al., 2006).

XYLOGLUCAN BIOSYNTHESIS: GLYCOSYLTRANSFERASES AND OTHER
PROTEINS
XyG biosynthesis has long been an interesting, but a challenging,
area of investigation. Biosynthesis of the XyG core is expected to
require two different catalytic activities, a glucan synthase activity
for the backbone and a xylosyltransferase activity adding xylosyl
substitutions. Interestingly, Ray (1980) suggested a “cooperative
action of β-glucan synthase and UDP-xylose xylosyltransferase
in Golgi membranes for the synthesis of a XyG-like polysac-
charide.” In that study, a UDP-xylose xylosyltransferase activity
was measured in Golgi membranes isolated from pea, and the

incorporation of xylose was shown to be stimulated by the addition
of UDP-glucose. Furthermore, the stimulating effect of UDP-
glucose on xylosyltransferase activity was shown to occur only
in a pH range where β-glucan synthase is active, suggesting that
UDP-glucose stimulates UDP-xylose incorporation by promoting
β-glucan synthase activity. Here, the β-glucan synthase produces
the required β-1,4-glucan substrate molecule necessary for XyG
xylosyltransferase activity. At about the same time, Hayashi and
Matsuda (1981a,b) performed a detailed characterization of XyG
synthase activity in soybean suspension-cultured cells and demon-
strated that XyG synthesis requires the cooperation of XyG β-1,4-
glucan synthase and the XyG xylosyltransferase. The authors not
only demonstrated that the incorporation of one sugar (xylose or
glucose) depended on the presence of the other, but also that xylose
was not transferred to a preformed β-1,4-glucan. This observa-
tion strongly supports the existence of a multienzyme complex
responsible for XyG biosynthesis where glucan synthase and xylo-
syltransferase activities cooperate tightly (Hayashi, 1989). Since
then, considerable efforts have been devoted to the characteriza-
tion of XyG biosynthesis at the molecular level using functional
genomics and the model plant Arabidopsis thaliana (Lerouxel et al.,
2006; Scheller and Ulvskov, 2010).

We have currently gained a better picture of XyG biosynthe-
sis by identifying and characterizing some of the genes involved
(Table 1), although without much (if any) understanding of how
these enzymes could potentially cooperate to achieve the biosyn-
thesis. For example, the XyG fucosyltransferase AtFUT1 (CAZy
GT37, Cantarel et al., 2009) was the first type II glycosyltrans-
ferase characterized at the biochemical level (Perrin et al., 1999),
and for a long time the only member of this gene family containing
nine putative glycosyltransferases to be characterized, as analyses
of three other members failed to demonstrate any XyG fucosyla-
tion activity (Sarria et al., 2001). Wu et al. (2010) have recently
demonstrated the involvement of AtFUT4 and AtFUT6 genes in
arabinogalactan proteins fucosylation.

Later, the identification and characterization of the mur2
mutant of Arabidopsis provided the unequivocal proof that
the AtFUT1 gene encodes the unique α-1,2-fucosyltransferase
activity responsible for XyG fucosylation in Arabidopsis plants
(Vanzin et al., 2002). Likewise, one XyG β-1,2-galactosyltransferase
(AtMUR3; CAZy GT47) activity was successfully characterized
using both mutant analysis (mur3) and heterologous expression
of the enzyme (Madson et al., 2003). Nevertheless, as the galac-
tose residue of the XyG molecule can be found in two different
positions, it seems that at least one XyG galactosyltransferase
remains to be identified and characterized. The galactosyl-residues
of XyG are known to be O-acetylated and only one XyG-O-
acetyltransferase (AXY4) has been identified so far (Gille et al.,
2011) and found to be localized within Golgi stacks.

An important contribution to understanding XyG biosyn-
thesis was also made by the characterization of two α-1,6-
xylosyltransferase activities required for XyG xylosylation (CAZy
GT34). First, one xylosyltransferase activity (named AtXT1) was
identified based on sequence homology with a previously iden-
tified α-1,6-galactosyltransferase from fenugreek (Edwards et al.,
1999), and characterized as an α-1,6-xylosyltransferase using het-
erologous expression in Pichia pastoris (Faik et al., 2002). Cavalier
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and Keegstra (2006) extended this work to the characterization of
a second xylosyltransferase activity (named AtXT2), encoded by
a gene closely related to AtXT1, that promotes an identical reac-
tion to the one catalyzed by AtXT1. Interestingly, the authors also
demonstrated that both AtXT1 and AtXT2 are able to catalyze mul-
tiple addition of xylosyl residues onto contiguous glucosyl residues
of a cellohexaose acceptor in vitro (even though the β-linkage
introduce a 180˚ rotation from one glucosyl residue to the other),
but non-xylosylated cellohexaose was the preferred acceptor. The
observation that both AtXT1 and AtXT2 xylosyltransferase activ-
ities were able to perform multiple xylosylation might indicate a
reduced substrate specificity of these enzymes as compared to the
high specificity of the XyG fucosyl- or galactosyl-transferases. Nev-
ertheless, these results raise the intriguing possibility that AtXT1
and AtXT2 would be fully redundant in planta and that both would
be able to perform multiple xylosylation. Such a hypothesis is con-
sistent with the characterization of an Arabidopsis double mutant
for AtXT1 and AtXT2 genes (named xxt1 xxt2; xyloglucan xylosyl-
transferase 1 and 2), which is lacking detectable amounts of XyG
in planta (Cavalier et al., 2008).

Another enzyme involved in XyG biosynthesis is glucan syn-
thase. While XyG glucan synthase activity has long been studied
biochemically (discussed above), efforts to purify and ultimately
characterize this enzyme have not been successful. A gene from
the Cellulose Synthase-Like C family (AtCSLC4; CAZy GT2) was
shown to encode a Golgi-localized β-1,4-glucan synthase activity
providing a strong candidate for the, as yet, unidentified XyG β-
glucan synthase (Cocuron et al., 2007). The candidate gene was
identified using a transcriptional profiling strategy taking advan-
tage of nasturtium’s capacity to perform rapidly XyG biosynthesis
during seed development (Desveaux et al., 1998). This observation
supports the hypothesis that the β-1,4-glucan synthase activity
identified was involved in XyG biosynthesis. Interestingly, this
study also indicates that AtCSLC4 is co-regulated with AtXT1 at the
transcriptional level and that some degree of interaction occurs at
the protein level could possibly alter the length of the β-1,4-glucan
synthesized by the AtCSLC4 protein (Cocuron et al., 2007). The
results of this study are consistent with earlier reports showing that
in vitro synthesis of XyG was shown to involve a cooperative action
between the glucan synthase and the xylosyltransferase activities
(Hayashi, 1989). Recently, the topology of AtCSLC4 was examined
using protease protection experiments (Davis et al., 2010). AtC-
SLC4 was predicted to have six transmembrane domains and the
active site facing the cytosol. These data suggest that AtCSLC4 pro-
tein would delimitate a pore, the glucan chain being synthesized at
the cytosolic side of Golgi cisternae, translocated into the lumen
and further substituted by an α-1,6-xylosyltransferase to prevent
β-1,4-glucan chain aggregation. A physical cooperation between
AtCSLC4 and AtXT1 or AtXT2 could then be envisioned to ratio-
nalize this process. Recently, Chevalier et al. (2010) have shown
that AtXT1–GFP is mainly associated with cis and medial Golgi
cisternae in transformed tobacco suspension-cultured (BY-2) cells.
A similar approach to localize the AtCSL4 would be highly instruc-
tive. Another approach would be the design of a tagged version of
either AtXT1 or AtXT2, taking advantage of the characterization of
xxt1/xxt2 double mutant (Cavalier et al., 2008) and further use the
tagged version of the xylosyltransferases to pull down interacting

candidate proteins. Then the interaction could be examined using
bimolecular fluorescence complementation (BiFC) approach as
previously performed for cellulose biosynthesis (Desprez et al.,
2007).

XyG biosynthesis does not only depend upon the cooperation
between glycosyltransferase activities, but might also require close
interaction between glycosyltransferases and nucleotide–sugar
interconversion enzymes. The study on the reb1/rhd1 mutant of
Arabidopsis, deficient in one of the five UDP-glucose 4-epimerase
isoforms (UGE4) involved in the synthesis of UDP-d-galactose,
provided indirect evidence for a possible interaction between
UGE4 and a XyG-β-1,2-galactosyltransferase (Nguema-Ona et al.,
2006). The authors showed that the galactosylation of XyG, unlike
that of pectins (RG-I and RG-II), was absent in specific cells of
the mutant and that UGE4 and XyG- β-1,2-galactosyltransferase
are co-expressed at the transcriptional level in the root. Thus,
it was postulated that the two enzymes might be associated in
specific protein complexes involved in the galactosylation of XyG
within Golgi membranes. Such an association could be required
for an efficient galactosylation of XyG, where UGE4 would chan-
nel UDP-Gal to XyG-galactosyl-transferases. The existence of such
a hypothetical association was supported by the demonstration
that UGE4 was not only present in the cytoplasm but also found
associated with Golgi membranes (Barber et al., 2006).

Although it is not the focus of this review, it is of interest to
note that some glycosylhydrolases involved in XyG modification
have been identified and characterized (Sampedro et al., 2001,
2012; Günl and Pauly, 2011; Günl et al., 2011). These are known
to be transported via Golgi-derived vesicles to the apoplastic com-
partment where they act on the polymers. However, whether
these enzymes are transported in the same Golgi vesicles and
whether they are able to act on polymers within the vesicles during
transport remain to be elucidated.

PECTIN BIOSYNTHESIS: TOWARD IDENTIFICATION OF THE
GLYCOSYLTRANSFERASES INVOLVED
Because there is a considerable diversity of monosaccharide units
and glycosidic linkages making up pectic polysaccharides, it has
been proposed that a minimum of 67 glycosyltransferases would
be needed for pectin biosynthesis (Mohnen, 2008). In addition,
the complexity of pectic polysaccharides has made the identifica-
tion and characterization of such glycosyltransferases difficult and,
consequently, only a handful have been assigned precise biochemi-
cal functions (Egelund et al., 2006; Sterling et al., 2006; Jensen et al.,
2008) or suggested to have certain functions (Iwai et al., 2001, 2002;
Bouton et al., 2002; Harholt et al., 2006, 2010; Egelund et al., 2007;
Fangel et al., 2011; Held et al., 2011; Liu et al., 2011). An additional
degree of complexity in pectin synthesis is related to the control of
the homogalacturonan methylesterification that requires specific
methyltransferase activities, but also specific esterases to adjust
methyl-esterification level during plant development (Wolf et al.,
2009).

As for XyG biosynthesis, many biochemical studies have been
devoted to the characterization of the enzymes involved in
HG biosynthesis (Doong and Mohnen, 1998; Scheller et al.,
1999). These studies showed that α-1,4-galacturonosyltransferase
(GalAT) and HG methyltransferase activities are located in the
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lumen of isolated Golgi membranes (Goubet and Mohnen, 1999;
Sterling et al., 2001). A HG-GalAT activity was partially puri-
fied from solubilized membrane proteins isolated from Ara-
bidopsis suspension-cultured cells and trypsin-digested peptides
sequencing led to the identification of a candidate gene, named
AtGAUT1 for GAlactUronosylTransferase1 (Sterling et al., 2006).
Genome analysis revealed that AtGAUT1 belongs to a large gene
family comprising 25 members in Arabidopsis that is present
in CAZy GT8 along with galactinol synthases and bacterial α-
galactosyltransferase (Yin et al., 2010). Among the 25 homolog
genes to AtGAUT1 in the Arabidopsis genome, two distinct group
have been described for the GAUT genes and the GAUT-related
genes (GATL), which comprise 15 and 10 genes, respectively
(Sterling et al., 2006). Heterologous expression of AtGAUT1 in
human embryonic kidney cells, showed that AtGAUT1 cDNA
encodes a galacturonosyltransferase activity able to transfer radi-
olabeled GalA onto α-1,4-oligogalacturonide acceptors, whereas
the heterologous expression of AtGAUT7 cDNA (36% amino-
acid sequence identity with AtGAUT1) carried out in parallel
did not yield any transferase activity. More recently, Atmodjo
et al. (2011) have demonstrated that the association of AtGAUT1
with AtGAUT7 is necessary to retain GAUT1 galacturonosyltrans-
ferase activity in Golgi membranes. In that study the authors have
proposed that two GAUT1 proteins would remain associated to
each other (and thus retain) via one GAUT7 protein anchored in
the Golgi membrane. However, whether the AtGAUT1 activity is
directly responsible for the biosynthesis of the backbone of HG
or that of RG-II polysaccharide in Arabidopsis has not been deter-
mined. Characterization of cell wall composition of Arabidopsis
mutants altered for 13 out of the 15 GAUT genes and 3 of the 10
GATL genes has failed to clearly establish which polysaccharide is
affected (Caffal et al., 2009; Kong et al., 2011).

The Arabidopsis mutant quasimodo1 (qua1) is characterized by
a reduced cell adhesion phenotype combined with a 25% decrease
in cell wall galacturonic acid content, supporting the hypothesis
that the AtQUA1 gene encodes a putative glycosyltransferase activ-
ity involved in pectin biosynthesis (Bouton et al., 2002; Durand
et al., 2009). AtQUA1 (also named AtGAUT8) belongs to CAZy
GT 8 family and shows 77% similarity to AtGAUT1 which has
a characterized HG-galacturonosyltransferase activity (Sterling
et al., 2006). In addition, α-1,4-galacturonosyltransferase activity
was shown to be significantly reduced in qua1 providing further
support for AtQUA1 involvement in pectin biosynthesis (Orfila
et al., 2005). Another Arabidopsis mutant quasimodo2 (qua2), hav-
ing a 50% decrease in HG content, has been described (Mouille
et al., 2007). Interestingly, AtQUA2 does not show any similarity
with other glycosyltransferases, but it is a Golgi-localized protein
(Figure 2) that contains a putative S-adenosyl methionine depen-
dent methyltransferase domain, and appears strongly co-regulated
with AtQUA1. This study supports the hypothesis that AtQUA2 is
a pectin methyltransferase required for HG biosynthesis and that
both enzymes work interdependently. The observation that an
alteration in a putative methyltransferase can impair HG synthe-
sis led the authors to suggest the existence of a protein complex
containing galacturonosyltransferase and methyltransferase where
the latter enzyme would be essential for the functioning of the pro-
tein complex (Mouille et al., 2007). Whereas Arabidopsis genome

contains 29 putative genes encoding for pectin methyltransferases
(Krupková et al., 2007), in addition to the AtQUA2,a novel putative
S-adenosyl methionine dependent HG methyltransferase, show-
ing a high amino-acid similarity with AtQUA2, the AtQUA3 has
been recently characterized (Miao et al., 2011). AtQUA3 is a Golgi-
localized type II membrane protein which is highly expressed and
abundant in Arabidopsis suspension-cultured cells. More recently,
it has been shown that AtQUA3 is co-expressed with AtGAUT1
and AtGAUT7; supporting the idea that HG methylation is closely
associated with HG synthesis (Atmodjo et al., 2011). In addition,
Held et al. (2011) have identified an Arabidopsis ortholog of a cot-
ton protein containing a domain similar to SAM methyltransferase
domain named cotton Golgi-related 3 (CGR3) involved in the
methylesterification of HG. Finally, a third Arabidopsis mutant –
ectopically parting cells 1 (epc1) – was characterized on the basis of
cell adhesion defects, however cell wall analyses did not support
the hypothesis that pectin biosynthesis was specifically altered in
epc1 (Singh et al., 2005).

The HG backbone in Arabidopsis can also be decorated with
β-1,3-xylose residues thus forming a xylogalacturonan domain
(Zandleven et al., 2007). The characterization of the xylogalac-
turonan deficient1 (xgd1) Arabidopsis mutant along with the het-
erologous expression of XGD1 protein in Nicotiana benthamiana
led to the demonstration that the XGD1 gene is involved in XGA
biosynthesis (Jensen et al., 2008).

Four other genes involved in pectin biosynthesis, encoding a
small glycosyltransferase family with four members named RG-II
xylosyltransferase (RGXT1–4; CAZy GT77), have been described
(Egelund et al., 2006, 2008; Fangel et al., 2011; Liu et al., 2011).
The authors convincingly demonstrated that AtRGXT1, AtRGXT2,
AtRGXT3, and AtRGXT4 encode α-1,3-xylosyltransferase activi-
ties that are involved in the synthesis of the pectic polysaccharide
RG-II. Whereas no mutant has been found for RGXT3 (Egelund
et al., 2008), Arabidopsis mutants have been described for RGXT1,
RGXT2 (Egelund et al., 2006) and RGXT4 (Liu et al., 2011). Among
these, only rgxt4 mutant, also named male gametophyte defective
4 (mgd4), presents visible phenotypes in both RG-II structure and
pollen tube growth (Liu et al., 2011). The peculiar role of RGXT4
could be explained by its ubiquitous expression in vegetative and
reproductive organs whereas RGXT1 and RGXT2 expression is
restricted to the vegetative organs. Other genes have also been
proposed to function in pectin biosynthesis although their involve-
ment has not been firmly established. Mutant lines altered in pectin
biosynthesis have been screened based on cell adhesion defects – a
process that involves pectin (Iwai et al., 2001, 2002; Bouton et al.,
2002; Mouille et al., 2007). A gene named NpGUT1, for Nicotiana
plmbaginifolia glucuronyltransferase 1, has been identified using
nolac-H18, a tobacco callus mutant line that exhibits a “loosely
attached cells” phenotype (Iwai et al., 2002). It was proposed
that NpGUT1 encodes a putative glucuronyltransferase involved
in RG-II biosynthesis based on the analysis of nolac-H18 mutant
cell walls. However, recent studies have shown that homologs of
Arabidopsis NpGUT1 are related to the biosynthesis of the hemi-
cellulosic polysaccharide glucuronoxylan rather than to that of
RG-II (Wu et al., 2009).

As compared to HG and RG-II biosynthesis, relatively lit-
tle is known about the glycosyltransferases involved in RG-I
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biosynthesis and only one glycosyltransferase has been charac-
terized so far. A reverse genetics approach with putative gly-
cosyltransferases from the CAZy GT47 family led to the iden-
tification of the arabinan deficient 1 (arad1) mutant of Ara-
bidopsis showing a reduced arabinose content in the cell wall
(Harholt et al., 2006) Characterization of the arad1 cell wall
demonstrated that the ARAD1 gene probably encodes an arabinan
α-1,5-arabinosyltransferase activity important for RG-I biosyn-
thesis. Another Golgi glycosyltransferase of GT47 family shar-
ing a high homology with ARAD1, named ARAD2, has been
recently characterized (Harholt et al., 2012). Using biochemi-
cal and microscopical approaches, the study has revealed that
ARAD1 and ARAD2 form homo and heterodimers when they
are co-expressed in N. benthamiana plants (Harholt et al., 2012).
It is interesting to note that although arabinofuranose is nor-
mally incorporated in RG-I during its biosynthesis in planta,
it is the arabinopyranose that is actually incorporated during
in vitro assays, using detergent-solubilized membranes. To explain
this discrepancy between in planta and in vitro observations,
it has been hypothesized that a mutase activity responsible for
the conversion is lost upon solubilization (Nunan and Scheller,
2003). A UDP-arabinose mutase (UAM) that converts UDP-
arabinopyranose into UDP-arabinofuranose was characterized in
rice (Konishi et al., 2007) and found to share more than 80%
identity with the reversibly glycosylated proteins (RGPs) of Ara-
bidopsis that have long been known to be cytosolic proteins
capable of associating with Golgi membranes (Dhugga et al.,
1991, 1997; Delgado et al., 1998). Based on the fact that RGPs
can be reversibly glycosylated by glucose, xylose, and galactose
residues, it has been postulated that they could be involved in
XyG or xylan biosynthesis. Among the five isoforms of RGPs
(RGP1–5) identified in the Arabidopsis genome, the mutase activ-
ity has been recently shown for AtRGP1, AtRGP2, and AtRGP3
(Rautengarten et al., 2011). This UAM activity of RGPs sug-
gests their potential role in the biosynthesis of arabinofuranosyl-
containing polymers such pectin or arabinogalactan proteins. A
double mutant rgp1/rgp2 was shown to harbor pollen develop-
ment defects, thereby leading the authors to hypothesize that
RGPs might be involved in cell wall polysaccharide biosynthe-
sis (Drakakaki et al., 2006). Moreover, Rautengarten et al. (2011)
analyzed the phenotype of homozygous T-DNA insertion mutants
(rgp1–1 and rgp1–2), and described severe developmental pheno-
types associated with subsequent reduction (≥69%) in cell wall
arabinose content.

CONCLUDING REMARKS
The knowledge of XyG and pectin biosynthesis has progressed sig-
nificantly over the past 10 years with respect to the identification
of the enzymes involved in their biosynthesis, using functional
genomics. The challenge now is, to determine how these play-
ers (and partners) cooperate, in a timely and probably spatially
resolved manner, in order to achieve the coordinated and efficient
synthesis of these polymers.

In plants, the only approach that has so far provided evidence
for the compartmental organization of the Golgi with regards to
complex polysaccharide biosynthesis is immunogold microscopy
using antibodies raised against specific sugars of different poly-
saccharides (Follet-Gueye et al., 2012). Now we need to move
forward with studies addressing how the glycosyltransferases are
distributed within plant Golgi stacks and to determine whether
distinct enzymes are preferentially compartmentalized within dis-
tinct Golgi cisternae, or if they are always localized in all Golgi
sub-compartments and in all cell types. Another interesting issue
relates to whether glycohydrolases are able to act on polysac-
charides within Golgi-derived vesicles before secretion. Finally,
in light of the recent identification of glycosyltransferase com-
plexes involved in HG and arabinan synthesis (Atmodjo et al.,
2011; Harholt et al., 2012), as well determination of their mem-
brane topologies (Søgaard et al., 2012), it is of special interest to
understand location and interactions of glycosyltransferases with
partners including nucleotide–sugar interconversion enzymes and
sugar transporters within Golgi membranes. Clearly, a better
understanding of such interactions, their dynamics along with
membrane topologies of the enzymes and their distribution within
Golgi cisternae will provide new mechanistic insights into the
biosynthesis and secretion of cell wall polysaccharides in flowering
plants.
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