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Alternative precursor mRNA splicing is a widespread phenomenon in multicellular eukary-
otes and represents a major means for functional expansion of the transcriptome. While
several recent studies have revealed an important link between splicing regulation and
fundamental biological processes in plants, many important aspects, such as the under-
lying splicing regulatory mechanisms, are so far not well understood. Splicing decisions
are in general based on a splicing code that is determined by the dynamic interplay of
splicing–controlling factors and cis-regulatory elements. Several members of the group of
heterogeneous nuclear ribonucleoprotein (hnRNP) proteins are well known regulators of
splicing in animals and the comparatively few reports on some of their plant homologs
revealed similar functions.This also applies to polypyrimidine tract-binding proteins, a thor-
oughly investigated class of hnRNP proteins with splicing regulatory functions in both
animals and plants. Further examples from plants are auto- and cross-regulatory splicing
circuits of glycine-rich RNA binding proteins and splicing enhancement by oligouridylate
binding proteins. Besides their role in defining splice site choice, hnRNP proteins are also
involved in multiple other steps of nucleic acid metabolism, highlighting the functional
versatility of this group of proteins in higher eukaryotes.
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INTRODUCTION
The majority of plant genes contain intronic regions, which need
to be removed with a high degree of precision and efficiency in
the process of precursor messenger RNA (pre-mRNA) splicing. In
the recent years, the tremendous increase in plant transcript data
has revealed that a significant proportion of all genes generates
transcript variants due to alternative splicing (AS) of pre-mRNAs
(Wang and Brendel, 2006; Filichkin et al., 2010; Zhang et al., 2010).
This enormous expansion of the transcriptome has major implica-
tions for both proteome diversity and gene regulation via altered
mRNA features, such as the mRNA turnover rate, and essential
functions have been ascribed to splicing variants in the context of
manifold biological processes in plants (Reddy, 2007).

Numerous AS events have been demonstrated to be regulated
in a spatial–temporal manner or by exogenous stimuli, requiring
complex control mechanisms for correct splice site choice. While
regulation of AS has been intensively studied in animals (Chen
and Manley, 2009), only few reports are available that describe
cis-regulatory sequences and trans-acting factors controlling AS
in plants (Reddy, 2007; Barbazuk et al., 2008; Wachter, 2010). Two
major classes of universal splicing regulatory factors are consti-
tuted by the serine/arginine-rich (SR) proteins and members of
the heterogeneous nuclear ribonucleoprotein (hnRNP) protein
family, which have been reported to act antagonistically in sev-
eral AS events. For example, in case of the Dscam exon 6 cluster,
the specific interplay between the hnRNP protein HRP36 and an
SR protein is required for correct inclusion of a single cassette
exon (Olson et al., 2007). Whereas earlier studies had indicated

that hnRNP and SR proteins typically act as repressors and acti-
vators of splicing, respectively, it is now becoming evident that
the mode of action of splicing regulatory factors often is context-
dependent. On one hand, the effect of splicing factors can vary
dependent on their binding position within the pre-mRNA. On
the other hand, the splicing outcome is often established by the
interaction of multiple components of the splicing machinery and
additional regulatory factors.

The original definition of hnRNP proteins was based on their
experimental identification as major protein constituents of high
molecular weight RNA complexes. Subsequently, further proteins
with similar characteristics or homology to a previously described
hnRNP protein were added to this list, which nowadays comprises
a diverse group of proteins that do not share one certain struc-
tural or functional feature (Martinez-Contreras et al., 2007; Han
et al., 2010). However, given their ability to associate with RNA and
single-stranded (ss) DNA, all hnRNP proteins contain RNA recog-
nition motifs (RRMs) or other functionally equivalent domains,
including KH domains, quasi-RRMs, and additional types of atyp-
ical RRMs (Han et al., 2010). Due to the presence of those domains,
most hnRNP proteins can bind to a broad spectrum of ss nucleic
acid, however, more stringent experimental conditions allowed
the definition of specific binding sequences (Martinez-Contreras
et al., 2007; Han et al., 2010). Furthermore, numerous cellular
parameters such as the physico-chemical environment, local pro-
tein concentration, and interaction with additional factors can
critically alter the binding characteristics of hnRNP proteins,
thereby providing additional layers of their regulatory potential.
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Interestingly, a recent study by Mackereth et al. (2011) has revealed
that the U2 auxiliary splicing factor (U2AF) 65 undergoes multi-
domain conformational selection, dependent on the strength of
the bound polypyrimidine tract. According to their model, with
increasing strength of the polypyrimidine tract, a larger frac-
tion of U2AF65 proteins is captured in their open conformation,
which represents the domain arrangement that efficiently trig-
gers spliceosomal assembly. A similar mechanism might also be
found for some hnRNP proteins, given their nature as multi-
domain proteins and their ability to bind diverse sequence motifs.
Besides nucleic acid binding domains, most hnRNP proteins con-
tain additional domains linked to their multifaceted functions in
nucleic acid metabolism, including chromatin remodeling, pre-
mRNA splicing, control of mRNA stability and modifications,
and mRNA transport (Martinez-Contreras et al., 2007; Han et al.,
2010). This complexity is further increased by the occurrence of
both AS of many hnRNP pre-mRNAs and different types of post-
translational protein modifications with important implications
for hnRNP functions (Martinez-Contreras et al., 2007; Han et al.,
2010).

Most of the currently available information on hnRNP proteins
is based on studies in the mammalian system. However, homology-
based searches for related proteins from plants (Wang and Brendel,
2004) and first reports on the functional characterization of some
of them have highlighted the presence and important roles of
hnRNP proteins in plants. In this review, we will discuss the poten-
tial of hnRNP proteins in plant splicing regulation. First, a brief
insight into the most prevalent splicing regulatory mechanisms of
hnRNP proteins will be given. Most of these studies have been
performed in human or animal systems, however, it seems likely
that similar mechanisms are also used by plant hnRNP proteins.
Second, the current state of the art on the functions and biologi-
cal implications of polypyrimidine tract-binding (PTBs) proteins,
an example of extensively studied hnRNP proteins with splicing
regulatory functions in both animals and plants, will be reviewed.
Third, an overview of the experimental reports on other plant
hnRNP proteins, with a focus on their role in the regulation of
splicing, will be presented. In summary, this review will highlight
the recent progress in studying the role of hnRNP proteins in plant
splicing regulation. Further, by comparison with the mammalian
system, it will be pointed out that hnRNP proteins might play
an even more widespread role in controlling splicing decisions in
plants, than reflected by the currently available data.

MECHANISMS OF hnRNP PROTEIN-MEDIATED SPLICING
REGULATION
Several types of hnRNP proteins are well known regulators of
AS and some of them have also been reported to play a role in
constitutive splicing. The depletion of hnRNP F (Gamberi et al.,
1997) or hnRNP Q (Mourelatos et al., 2001), for instance, resulted
in diminished in vitro splicing activity. Furthermore, using mass
spectrometry, hnRNP proteins were identified as components of
purified ribosomes in mammals (Neubauer et al., 1998). A role of
hnRNP proteins in generic splicing is also supported by the find-
ing that introduction of intronic binding sites for hnRNPs A/B and
F/H triggered splicing in vitro and in vivo, and that computational
prediction revealed an overrepresentation of the corresponding

binding sites at both ends of human introns (Martinez-Contreras
et al., 2006). Based on these discoveries, it was suggested that some
hnRNP proteins might play a more general role in the recognition
of splice sites that could be brought together by the interaction of
hnRNP proteins bound to flanking intronic regions.

The regulatory outcome of splicing factor binding can be highly
position-dependent, as was revealed by several recent studies.
Transcriptome-wide maps of RNA binding sites for the neuron-
specific splicing factor Nova, for instance, revealed that binding
around the alternative 5′ or constitutive 3′ splice site typically
induces exon inclusion, whereas exon skipping is often associ-
ated with binding sites around the constitutive 5′ splice site or the
alternative exon (Ule et al., 2006; Licatalosi et al., 2008). Binding
position-dependent splicing regulatory functions have also been
described for FOX proteins (Zhang et al., 2008; Venables et al.,
2009; Yeo et al., 2009), Mbnl1 (Du et al., 2010), and PTB (Xue et al.,
2009; Llorian et al., 2010). Furthermore, in the case of mutually
exclusive splicing, where only one of two or more alternative exons
is included, hnRNP proteins can induce skipping of one exon and
stimulate inclusion of another one. This has been reported for the
human pyruvate kinase pre-mRNA, the mutually exclusive splic-
ing of which is regulated by hnRNPs A1 and A2, and PTB (David
et al., 2010). It is also more frequently observed that two or more
types of hnRNP proteins act in a combinatorial manner, further
expanding the repertoire of hnRNP protein-mediated modes of
action and functions.

Precursor messenger RNA splicing is confined to the nuclear
compartment, in which some hnRNP proteins are highly abun-
dant. However, many hnRNP proteins display nucleo-cytoplasmic
shuttling that has been demonstrated to be regulated by posttrans-
lational modifications. Shuttling between those compartments
might represent a means to limit their splicing regulatory activ-
ity in the nucleus. Furthermore, transport of hnRNPs out of
the nucleus might be a prerequisite for the cytosolic functions,
ascribed to some hnRNP proteins. For example, mammalian PTB
was shown to be specifically phosphorylated by the 3′,5′-cAMP-
dependent protein kinase, which is required for export of the
protein into the cytosol (Xie et al., 2003). In addition to pro-
tein phosphorylation, the methylation of arginine residues (Chang
et al., 2011) has also been described as a type of posttranslational
modification with implications for the subcellular distribution of
hnRNP proteins. It can be concluded that the splicing regulatory
activity of hnRNP proteins can be subject to tight control, and, fur-
thermore, that hnRNP proteins typically act together with other
splicing factors to alter splicing decisions. Numerous models for
mechanisms of AS control by hnRNP proteins have been sug-
gested and, based on recent findings, it seems likely that they are
not mutually exclusive, but rather reflect the versatility of splic-
ing regulation. In the following paragraphs, the most commonly
proposed modes of action will be briefly discussed.

hnRNP-MEDIATED DISPLACEMENT OR RECRUITMENT OF SPLICING
FACTORS
The most straightforward mode of action is based on a com-
petition between hnRNP proteins and other splicing factors for
binding to cis-elements having a splicing regulatory function
(Figure 1A). Negative regulation can be achieved by occlusion

Frontiers in Plant Science | Plant Genetics and Genomics May 2012 | Volume 3 | Article 81 | 2

http://www.frontiersin.org/Plant_Science
http://www.frontiersin.org/Plant_Genetics_and_Genomics
http://www.frontiersin.org/Plant_Genetics_and_Genomics/archive


Wachter et al. hnRNP proteins in plant splicing

AG

hnRNP hnRNP
hnRNP

hnRNP
hnRNP

ESEGU AGISE5’

SF

silencing zone

SF

hnRNP

U2 U2AF U1

GU A (Py)n GU

hnRNP hnRNP hnRNP

ISE5’ AG

hnRNP

hnRNP

ESE

U1 hnRNP

GU (Py)n AGISE5’

SF

SF

GUAG

GU AG5’

hnRNP hnRNP

hnRNP hnRNP

cassette exon
inclusion

GU AGG
U

G
A

hnRNP
hnRNP

GU AG5’

U2U1

GU

cassette exon
skipping

hnRNP hnRNP

GU AG5’

GUAG

ESS

RNA Pol IIDNA

MRG

P
TB

5’

U2AFU1

hnRNP

intron definition

GU (Py)n AG5’ AG

U2AF U1

hnRNP

exon definition

GU (Py)n AGGU5’ AG

A B C

D E F

G H I

FIGURE 1 | Mechanisms of hnRNP-mediated splicing regulation. (A)

Competition of hnRNP proteins with components of the spliceosome (U1,
U2, U2AF) or a positive splicing factor (SF) results in skipping of a cassette
exon (gray box). Exons and introns are depicted as boxes and lines,
respectively. Negative interactions and disabled splice sites are shown in
orange, positive interactions and activating factors or elements are in
green. ISE, intronic splicing enhancer. Symbols and color code apply to all
panels. (B) Activation of cassette exon inclusion by hnRNP-mediated
recruitment of spliceosomal components or positive factors, or by
displacement of a negative factor. ESE, exonic splicing enhancer. (C)

Cooperative binding of hnRNP proteins establishes a zone of silencing,
inducing cassette exon skipping. (D) Occlusion of splice sites by RNA
structures stabilized by hnRNP proteins. (E) hnRNP-mediated looping of
the cassette exon prevents its inclusion, whereas looping of a region
upstream of the cassette exon can bring splice sites together and induce
exon inclusion (F). (G) Interference of an hnRNP protein with intron
definition interactions between U1 and downstream bound U2AF, or
inhibition of exon definition (H). (I) Histone modification (small circles
below DNA)-dependent recruitment of the hnRNP protein PTB via MRG to
an exonic splicing silencer (ESS).

of 5′ or 3′ splice sites, branch point and polypyrimidine tract,
or binding sites of activating SR proteins. For example, hnRNP
L has been shown to suppress the recognition of either 5′ or 3′
splice sites by binding to adjacent, intronic CA-rich motifs (Heiner
et al., 2010). In contrast, hnRNP L binding to an intronic CA
repeat within human endothelial nitric oxide synthase pre-mRNA
stimulates splicing from a nearby 5′ splice site (Hui et al., 2003).
This might be explained by an hnRNP protein-mediated recruit-
ment of the U1 small nuclear ribonucleoprotein (snRNP) complex
(Figure 1B), as shown for hnRNP H-regulated splicing of HIV-1
(Caputi and Zahler, 2002). Alternatively, a positive effect might
also be caused by displacement of a splicing repressor, as it has
been reported for PTB that can antagonize the splicing suppress-
ing function of SRp30c in the hnRNP A1 pre-mRNA (Paradis et al.,
2007). Thus, depending on the binding position, hnRNP proteins
can displace or recruit spliceosomal core components and other
regulatory factors, thereby altering the splicing outcome.

Often, splicing control by hnRNP proteins not only involves a
single binding site within the pre-mRNA, but rather several motifs,
for which cooperative binding behavior can occur (Figure 1C). For

example, upon hnRNP A1 binding to a high-affinity site within
HIV-1 pre-mRNA, cooperative binding to additional sites was
observed (Okunola and Krainer, 2009). The cooperative spread-
ing of hnRNP A1 preferentially takes place in a 3′- to 5′-direction,
resulting in unwinding of RNA structures and removal of bound
proteins, thereby establishing a zone of silencing.

MODULATION OF PRE-mRNA STRUCTURES BY hnRNP PROTEINS
Several recent studies argue for a more widespread role of pre-
mRNA structures in the regulation of splicing (Warf and Berglund,
2010). Eukaryotic riboswitches represent one example, in which
alternate RNA structures play an active role in both signal sens-
ing and splicing regulation via controlling splice site accessibil-
ity (Wachter, 2010). In most other reported cases of structure-
dependent splicing, however, alternate RNA folds are enforced
by the binding of proteins, including members of the group of
hnRNP proteins. Looping of RNA regions can lead either to acti-
vation or suppression of a certain splicing event. Accordingly,
negative control often is mediated by occlusion of cis-elements
that need to be recognized to enable a certain splicing outcome
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(Figure 1D). In contrast, RNA structures can also disable binding
of splicing suppressors, or expose splicing enhancers, resulting in
splicing activation. Finally, formation of RNA folds can alter crit-
ical distances, thereby influencing the recognition of splice sites
by the spliceosomal machinery (Figures 1E,F). Interestingly, RNA
looping might be stabilized by a single hnRNP protein containing
several RRMs, as suggested for PTB, the RRMs 3 and 4 of which
were shown to interact with each other on their dorsal faces, result-
ing in an antiparallel orientation of bound RNA (Oberstrass et al.,
2005; Vitali et al., 2006). Structure-dependent AS control was also
proposed for hnRNP C, which can trigger cassette exon skipping
or inclusion in a binding position-dependent manner (Konig et al.,
2010).

INTERFERENCE OF hnRNPs WITH INTERACTIONS BETWEEN
SPLICEOSOMAL COMPONENTS
Besides competition with or recruitment of singular factors,
hnRNPs can also interfere with protein interactions that are
required for the formation of a functional spliceosomal complex.
Different steps in spliceosome assembly can be affected, as nicely
illustrated by PTB-regulated AS events. On one hand, PTB can
suppress intron definition (Figure 1G) by preventing the 5′ splice
site-dependent assembly of U2AF into the spliceosomal E complex
(Sharma et al., 2005). On the other hand, PTB can also inhibit exon
definition (Figure 1H), as in the example of Fas exon 6 (Izquierdo
et al., 2005). The inclusion of this cassette exon is stimulated by an
interaction of U1 snRNP at the 5′ splice site and U2AF at the 3′
splice site, downstream and upstream, respectively. Furthermore,
splicing can also be controlled in the phase of transition from
exon definition to an intron-defined spliceosome, as was proposed
based on proteomic analyses of spliceosomal complexes formed in
the presence of PTB (Sharma et al., 2008).

COUPLING OF SPLICING WITH OTHER STEPS IN GENE EXPRESSION
Numerous studies have revealed that splicing can occur co-
transcriptionally, and, more recently, examples for functional cou-
pling of splicing and transcription have been described (Oesterre-
ich et al., 2011). Importantly, the rate of transcriptional elongation
can influence the availability of competing splice sites and other
cis-regulatory elements. For example, RNA polymerase II pausing
can delay transcription of competing splice sites, thereby trigger-
ing inclusion of a cassette exon with weak splice sites. Several RNA
binding proteins, including PTB, were found to be associated with
the transcriptional complex, with striking differences in their dis-
tribution along different regions of the genes (Swinburne et al.,
2006). Furthermore, a correlation between the association of PTB
and RNA polymerase II was revealed, and it was hypothesized
that transcriptional complexes containing certain RNA binding
proteins might display altered elongation rates, having important
implications for AS decisions (Swinburne et al., 2006). Similarly,
hnRNP proteins might also interfere with other steps in mRNA
processing, such as 3′ end processing, and thereby regulate AS.

Furthermore, a recent study also described a direct link between
epigenetic modifications and PTB-dependent splicing regulation
in human (Luco et al., 2010). Luco et al. (2010) found a correla-
tion between certain histone modifications and the AS outcome for
various genes, which was attributed to the histone mark-specific

recruitment of PTB via the chromatin-binding protein MRG15
that serves as adaptor (Figure 1I). Based on these findings, it
is tempting to speculate that further links between epigenetic
modifications and AS might exist.

SPLICING REGULATORY FUNCTIONS OF POLYPYRIMIDINE
TRACT-BINDING PROTEINS
Polypyrimidine tract-binding proteins represent one of the best
studied families of hnRNPs that fulfill diverse functions in mRNA
metabolism (Spellman and Smith, 2006; Sawicka et al., 2008),
including regulation of pre-mRNA splicing and polyadenylation,
translation of viral RNAs from internal ribosomal entry sites
(IRES), and mRNA transport. Numerous reports have highlighted
the critical role of PTBs in controlling AS decisions, thereby
providing important insights into both mechanistic aspects and
functional implications of regulated AS events.

In line with the findings for other splicing regulatory factors, the
mode of action of PTB is highly dependent on the binding position
within the pre-mRNA. Best studied is splicing inhibition by PTB,
resulting in skipping of cassette exons (Spellman and Smith, 2006).
For some other AS events, however, a stimulatory effect of PTB on
exon inclusion was revealed, as for example in the case of the
pre-mRNA of calcitonin and calcitonin gene-related peptide (Lou
et al., 1999). To address the binding position-dependent splicing
action of PTB, Xue et al. (2009) applied cross-linking immunopre-
cipitation coupled with high-throughput sequencing (Clip-seq) to
identify PTB binding sites within the transcriptome. Based on their
findings, it was suggested that PTB binding close to alternative
sites generally induces exon skipping, whereas binding close to the
constitutive sites typically is linked to inclusion of an alternative
exon. This model is in line with the classical view of PTB as a gen-
eral splicing repressor, where weakening of constitutive splice sites
allows inclusion of a cassette exon. However, a different model of
position-dependent AS regulation by PTB was put forward by Llo-
rian et al. (2010), who employed high-resolution splice-sensitive
microarrays to study AS upon PTB knockdown. A majority of the
discovered PTB-dependent AS events were PTB-repressed cassette
exons, which typically had PTB binding sites upstream of or within
the respective exon. In contrast, PTB-stimulated exons possessed
polypyrimidine motifs downstream of the cassette exon, indicat-
ing a direct activation of exon inclusion by PTB rather than acting
by weakening of neighboring constitutive sites. The discrepancies
between these two studies might be explained, at least partially, by
the different methods that were applied, as well as by the distinct
sets of analyzed AS events. Accordingly, analysis of the Clip-seq
data from the study by Xue et al. (2009) with respect to the PTB
regulation targets identified by Llorian et al. (2010) further sup-
ported the model suggested in the latter work. Moreover, previous
studies had highlighted that PTB can regulate splicing via different
mechanisms, and, similarly, also the position-dependent splicing
outcome might vary between AS events.

Most of the work on the mechanistic aspects of splicing regula-
tion by PTB has focused on the repression of exon inclusion (Spell-
man and Smith, 2006), which still appears to be the dominant
type of PTB-controlled AS. Several of the aforementioned mech-
anisms of AS control have also been proposed to underlie PTB-
mediated splicing control, the studies of which have made major
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contributions to our current understanding of regulated splicing.
Again, it should be highlighted that these models are not mutually
exclusive, but rather might be implemented in the context of dif-
ferent AS events. PTB displays a high-affinity for pyrimidine-rich
sequences, and, therefore, can compete with U2AF65 for binding
to the polypyrimidine tract (Singh et al., 1995; Sauliere et al., 2006),
which is typically present in the region between the intronic branch
point and the 3′ splice site. However, given that most pre-mRNAs
with PTB-regulated exons contain several PTB motifs, many of
which are not located within the polypyrimidine tract (Wagner
and Garcia-Blanco, 2001; Amir-Ahmady et al., 2005), additional
mechanisms of PTB-mediated AS must exist. Proposed models
include propagation of PTB protein binding between high-affinity
sites on the pre-mRNA, and RNA looping, both of which can estab-
lish a zone of silencing, where cis-regulatory elements are masked,
leading to skipping of the respective exon (Wagner and Garcia-
Blanco, 2001; Spellman and Smith, 2006). Due to its RRM domain
organization (Oberstrass et al., 2005; Vitali et al., 2006), PTB might
cause RNA looping by binding to two distinct sites within the
same pre-mRNA molecule. However, artificial tethering of PTB
domains to a pre-mRNA via the phage MS2 RNA-protein interac-
tion system preserved PTB-mediated splicing control, indicating
that, at least in some instances, PTB action can be uncoupled from
the mode of RNA binding (Robinson and Smith, 2006). Besides
direct occlusion of cis-elements, PTB was demonstrated to disturb
the interaction of protein factors at different steps of spliceosome
assembly, thereby suppressing splicing (see above). While several
models exist that describe splicing inhibition by PTB, only few
studies have addressed the mode of action of this protein as a
positive splicing regulator, as in the case of the alternative exon
7B of the hnRNP A1 pre-mRNA (Paradis et al., 2007). Here, the
stimulatory effect was found to originate from PTB counteracting
the splicing inhibitory activity of the SRp30c protein. Mechanis-
tic studies of further PTB-stimulated exons might reveal if this
anti-repressor activity of PTB is more widespread in AS control.

Polypyrimidine tract-binding protein contributes to the regu-
lation of numerous AS events in mammals, as revealed by studies
applying splice-sensitive microarrays to compare transcriptome-
wide splicing patterns between control and PTB knockdown sam-
ples (Boutz et al., 2007; Xing et al., 2008; Llorian et al., 2010).
Upon down-regulation of PTB, Llorian et al. (2010), for instance,
identified 196 repressed and 67 activated exons, a major fraction
of which showed neuronal and striated muscle specificity. Further
important insights into biological functions of PTB-controlled AS
programs in mammals were gained by analysis of tissue-specific
expression of PTB and its neuronal homolog nPTB. In neu-
ronal cells, PTB is down-regulated by a tissue-specific microRNA
(Makeyev et al., 2007), leading to a switch from PTB to nPTB, coin-
ciding with an altered splicing program in developing neurons
(Boutz et al., 2007; Makeyev et al., 2007). Direct comparison of
RNA binding affinities and in vitro splicing regulation of PTB and
nPTB (Markovtsov et al., 2000),as well as knockdown of individual
or in parallel both PTB isoforms followed by transcriptome-wide
splicing studies revealed both specific and redundant functions of
those proteins (Boutz et al., 2007; Spellman et al., 2007). Inter-
estingly, PTB and nPTB levels are subject to feedback control
via auto-regulation, whereas PTB also negatively regulates nPTB

expression (Wollerton et al., 2004; Boutz et al., 2007; Makeyev
et al., 2007; Spellman et al., 2007). These auto-and cross-regulatory
circuits involve formation of splicing variants that are targeted
by nonsense-mediated decay (NMD). In addition, evidence for
splicing-independent repression of PTB protein generation has
been provided, however, the underlying mechanism remained ill-
defined. Moreover, cross-regulation of mammalian PTBs is not
limited to PTB and nPTB, but also includes the less-studied,
hematopoietic cell-specific PTB homolog ROD1, the splicing of
which is altered upon simultaneous knockdown of PTB and nPTB
(Spellman et al., 2007).

By far most of the work on PTBs was performed in mammalian
systems, however, homologs of those proteins are also present
and have been studied in other eukaryotic clades. For example, in
Drosophila, the PTB gene was shown to encode a germline-specific
mRNA isoform that is required for male fertility by contributing to
spermatid individualization (Robida et al., 2010). Recently, PTBs
have also been described in plants (Ham et al., 2009; Wang and
Okamoto, 2009) and, in the case of three PTB homologs from
Arabidopsis, evidence for their splicing regulatory functions has
been provided (Stauffer et al., 2010). Ham et al. (2009) identified
a pumpkin PTB as a constituent of a phloem-mobile ribonu-
cleoprotein complex, the assembly of which depends on PTB
phosphorylation (Li et al., 2011). A study of the two closely related
Arabidopsis PTB homologs, AtPTB1 and AtPTB2, suggested a role
of those proteins in pollen germination, as mutants displayed
diminished germination efficiency (Wang and Okamoto, 2009).
However, the molecular basis of this phenotype and the mode of
action of AtPTB1 and 2 remained unsolved.

The work by Stauffer et al. (2010) delivered the first insights
into the splicing regulatory potential of all three Arabidopsis PTB
homologs, the expression of which is controlled by auto- and cross-
regulation, akin to the mammalian PTBs. Analysis of the splicing
patterns for all three genes revealed the existence of two major
splicing products, of which one encodes the full-length protein,
whereas the other contains a premature termination codon (PTC)
and is targeted by NMD (Figure 2). Splicing to the NMD target
transcript can be triggered in an auto-regulatory feedback loop,
where an elevated level of one PTB alters splicing of its corre-
sponding pre-mRNA. Additionally, cross-regulation between the
two close homologs AtPTB1 and 2, but not the distantly related
AtPTB3, was observed. These findings revealed not only the splic-
ing control functions of AtPTBs, but also that regulation of PTBs
via auto- and cross-regulatory feedback loops is present in both
mammals and plants. Future work will reveal if plant PTBs, as
their mammalian counterparts, also contribute to complex splic-
ing programs, and, if so, what the biological implications of those
AS events are. AtPTB1 and 2 are close homologs, with more than
80% of their amino acid residues conserved, and, in both cases,
retention of a cassette exon with a PTC results in formation of
the NMD-targeted splicing variant (Stauffer et al., 2010). In con-
trast, AtPTB3 is more distantly related, displaying a comparable
degree of protein homology of ∼50% to the other two Arabidopsis
and the human PTB homologs. Furthermore, as for human PTB,
feedback regulation of AtPTB3 gives rise to skipping of a cassette
exon, resulting in a downstream PTC and NMD targeting. Thus,
AS of plant PTB pre-mRNAs can serve as a model to study both

www.frontiersin.org May 2012 | Volume 3 | Article 81 | 5

http://www.frontiersin.org
http://www.frontiersin.org/Plant_Genetics_and_Genomics/archive


Wachter et al. hnRNP proteins in plant splicing

??

2

AtPTB1

2 ▼

2 ▼

Translation

PTB1

NMD

AtPTB2

3 ▼

3

3 ▼

Translation

PTB2

NMD

AtPTB3

5 ▼

5

5 ▼

Translation

PTB3

NMD

?

FIGURE 2 | Auto- and cross-regulation of the Arabidopsis PTB homologs.

Exon-intron organizations of the Arabidopsis genes AtPTB1, AtPTB2, and
AtPTB3 are shown for the regions giving rise to alternative splicing (dotted
lines). Exons and introns are depicted as boxes and lines, respectively. Gray
boxes refer to cassette exons, which are either skipped or included. Numbers
of first displayed exons are given for all three genes. Black triangles indicate
premature termination codons, rendering the respective splicing variants

degradation via nonsense-mediated decay (NMD, bottom). The splicing
variants shown on top of each gene model are translated into PTB proteins,
which can interfere with translation of PTB mRNAs (for simplicity, only the
effect on their own mRNAs is shown). PTB proteins also trigger splicing of
their own pre-mRNAs to the NMD target variants (auto-regulation).
Additionally, cross-regulation between PTB1 and PTB2 occurs. The model is
based on the work from Stauffer et al. (2010).

positive and negative effects of PTBs on exon inclusion. Inter-
estingly, in vivo splicing reporter assays indicated that AtPTB2-
and AtPTB3-mediated exon inclusion and skipping, respectively,
can be counteracted by elevated levels of U2AF65 (Stauffer et al.,
2010). These findings are in line with competition between PTBs
und U2AF65 in splice site choice, but further work is needed to
elucidate the molecular basis of those findings.

Auto- and cross-regulation of Arabidopsis PTB homologs does
not only affect AS, but also acts downstream of it. Co-expression
of PTBs with reporter constructs containing the 5′ region of
mature PTB mRNAs resulted in reduced accumulation of the
translation products, whereas processing and levels of the corre-
sponding transcripts appeared unchanged (Stauffer et al., 2010).
Interestingly, Arabidopsis PTBs fused to fluorescent proteins were
found to localize to the nucleus, cytosol, and processing bodies (P-
bodies). Thus, as an intriguing possibility, PTBs might interfere
with expression of their own and also other mRNAs by retracting
them from the polysomal pool, followed by storage in P-bodies.
Splicing-independent functions of PTBs have also been described
in other species, including repression of translation in Drosophila
(Besse et al., 2009) and human (Boutz et al., 2007), as well as the
widespread positive role in translation from IRES (Auweter and
Allain, 2008; Sawicka et al., 2008). Further work will be required
to understand those diverse regulatory functions of PTBs in more
detail.

SPLICING REGULATION AND FURTHER FUNCTIONS OF
OTHER PLANT hnRNP PROTEINS
Besides PTB homologs, several other types of hnRNP proteins
from different plant species have been investigated. These studies
provided important insights into the mode of action and biolog-
ical functions of this versatile group of proteins, and, given that

many other hnRNP homologs from plants still are at best partially
characterized, an even wider scope of hnRNP-dependent functions
in plants can be anticipated. As reported for their animal counter-
parts, hnRNP proteins from plants can regulate splicing, but also
affect other nucleic acid metabolic processes, a brief summary of
which will be provided in the following sections.

REGULATION OF ALTERNATIVE SPLICING BY AtGRP7 AND AtGRP8
AtGRP7 and AtGRP8 are glycine-rich RNA binding proteins
(GRPs) from Arabidopsis that regulate AS of their corresponding
pre-mRNAs in auto- and cross-regulatory circuits (Staiger et al.,
2003; Schoning et al., 2008) in a similar manner as described in the
previous section for PTBs. Constitutive overexpression of AtGRP7
promotes usage of a cryptic splice site within an intron of the pre-
mRNA derived from the endogenous AtGRP7 locus, giving rise to
a splicing variant with a decreased half-life (Staiger et al., 2003).
The authors further demonstrated that AtGRP7 overexpression
affects the AS of the AtGRP8 pre-mRNA, which encodes an RNA
binding protein closely related to AtGRP7 and exhibits a cryptic
splice site conserved with that of AtGRP7. Similarly to the AtGRP7
regulatory circuit, AtGRP8 can regulate splicing of its own and the
AtGRP7 pre-mRNA by triggering the use of an alternative splice
site (Schoning et al., 2008). Both AS variants derived from AtGRP7
and AtGRP8 harbor PTCs, targeting them for rapid degradation
via NMD, as confirmed by their accumulation in NMD-impaired
mutants and upon cycloheximide treatment (Staiger et al., 2003;
Schoning et al., 2007). By promoting unproductive splicing cou-
pled to a decay of transcripts via the NMD pathway, the interlocked
regulatory circuits might be a means to integrate diverse stimuli,
thereby fine tuning the expression of their components, and even
to influence common downstream targets. Moreover, Schoning
et al. (2007) could substantiate that the binding of AtGRP7 to its
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target transcripts is necessary for the described negative regulation.
By introducing a single arginine to glutamine point mutation into
the AtGRP7 RRM, the in vitro RNA binding affinity of the protein
was reduced, disrupting the AtGRP7-mediated auto-regulation as
well as the regulation of downstream targets in vivo (Schoning
et al., 2007).

AtGRP7 has been demonstrated to be regulated by the circa-
dian clock and contributes to the control of flowering time. Both,
an atgrp7 T-DNA insertion mutant, and independent RNA inter-
ference lines with reduced levels of AtGRP7 and the closely related
AtGRP8, showed a late flowering phenotype, whereas AtGRP7
overexpressing plants were reported to flower early (Streitner
et al., 2008). Changes in flowering time were found to be medi-
ated by altered transcript levels of the key regulator FLOW-
ERING LOCUS C (FLC), displaying elevated, and diminished
FLC transcript levels, respectively, in AtGRP7 loss-of-function
and overexpression mutants (Streitner et al., 2008). Interestingly,
disturbing AtGRP7 levels did not interfere with the photoperi-
odic response and the effects on flowering time were overridden
by vernalization, both of which are features of the autonomous
pathway.

To gain further insights into the functions of AtGRP7, global
transcript profiles of an overexpression mutant in comparison to
wild type plants were analyzed (Streitner et al., 2010). Thereby,
around 300 transcripts showing altered levels upon AtGRP7 over-
expression were found, of which one third is under control of
the circadian clock. Additionally, transcripts responsive to abiotic
and biotic stimuli were identified as putative targets of AtGRP7,
as well as components involved in ribosome function and RNA
metabolism, consistent with its role in post-transcriptional regu-
lation. These findings suggest a complex set of AtGRP7 regulation
targets, the number of which might further increase, if splicing-
sensitive transcriptome studies would be applied. An involvement
of AtGRP7 in diverse biological processes is also supported by the
altered performance of misexpression lines under biotic and abi-
otic stress conditions. AtGRP7 plays a role in plant immunity, as
knockout of this hnRNP resulted in increased susceptibility to the
pathogen Pseudomonas syringae (Fu et al., 2007). Fu et al. (2007)
found that suppression of plant immunity by P. syringae involves a
mono-ADP-ribosyltransferase as an effector protein, which modi-
fies RNA binding proteins including AtGRP7. Recently, Jeong et al.
(2011) identified a conserved arginine residue within the RRM of
AtGRP7 as the site of ADP-ribosylation, resulting in diminished
RNA binding affinity in vitro. Interestingly, earlier studies had
revealed that mutation of this residue also disrupts the activities of
AtGRP7 in vivo (Schoning et al., 2007), highlighting its critical role
in protein functioning. In addition to its role under biotic stress,
AtGRP7 also has been reported to play a role in seed germina-
tion, seedling growth, and under various abiotic stress conditions,
including high salt and freezing (Kim et al., 2008b).

ARGININE METHYLATION AFFECTS AS IN PLANTS
Arginine methylation occurs not only in histones, but also has been
described for many other protein classes, including transcription
factors and certain types of hnRNP proteins (Lee and Stallcup,
2009). In Arabidopsis, mutation of the arginine methyltransferase 5
(AtPRMT5) was found to cause pleiotropic phenotypes, including

late flowering, growth retardation, and a reduced vernalization
sensitivity (Pei et al., 2007; Wang et al., 2007; Schmitz et al., 2008).
Deng et al. (2010) demonstrated that AtPRMT5 not only methy-
lates histones but also has a variety of non-histone substrates,
including RNA binding or processing factors, like the hnRNPs
AtGRP7 and AtGRP8, as well as several U snRNP core pro-
teins. Using a high-throughput sequencing approach, hundreds of
genes involved in multiple biological processes, displaying splic-
ing changes upon mutation of AtPRMT5 were identified (Deng
et al., 2010). Based on these results, the authors could attribute the
late flowering phenotype of atprmt5 mutants to AS of transcripts
encoding for RNA processing factors involved in flowering time
regulation (Figure 3). In particular, the described AS event resulted
in decreased levels of the transcript variant encoding the functional
form of the hnRNP E homolog FLK, an autonomous pathway pro-
tein known to promote flowering by repressing the expression of
FLC (Lim et al., 2004; Mockler et al., 2004). Therefore, in addi-
tion to regulating transcription through histone modifications,
AtPRMT5 may contribute directly or indirectly to the regula-
tion of pre-mRNA splicing through modifications of non-histone
proteins.

In another study of the same arginine methyltransferase,
Sanchez et al. (2010) showed that AtPRMT5 also provides a link
between AS and the circadian clock (Figure 3). In line with the
results obtained by Deng et al. (2010), Sanchez et al. (2010)

PRMT5

Non-histone
targets

Additional 
factorsGRP7/8

AS processes

Transcriptional regulation

Other targets

Unknown 
processes

FLK

FLC

Flowering

Histones

Circadian
 rhythms

PRR9

Arginine

?

?

methylation

?

Diverse biological processes

FIGURE 3 | Arginine methylation and alternative splicing are linked in

Arabidopsis. The arginine methyltransferase PRMT5 modifies both histone
and non-histone targets, including the splicing factors GRP7 and GRP8
(Deng et al., 2010). Changes in alternative splicing (AS) affect diverse
biological processes, such as FLK/FLC-mediated flowering control (Deng
et al., 2010) and regulation of circadian rhythms via PRR9 (Sanchez et al.,
2010). A connection between histone modifications and AS has been
demonstrated in mammals (Luco et al., 2010), but so far not in plants.
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uncovered numerous splicing changes in the atprmt5 mutant,
including AS of the core-clock gene PSEUDO RESPONSE REG-
ULATOR 9 (PRR9). The altered splicing of PRR9 might at least
partially explain the impairment of several circadian rhythms in
the atprmt5 mutant. Interestingly, the expression of AtPRMT5
underlies circadian oscillations, which are reflected in expression
and splicing patterns of a subset of genes. The authors further
found an enrichment of alternative 5′ splice sites among the splic-
ing events altered in the atprmt5 mutant, indicating a role of this
factor in 5′ splice site recognition. Thus, analyses of splicing pat-
terns in atprmt5 mutants provided an intriguing link between
this protein and AS control in plants. However, the molecular
mechanisms of this post-transcriptional regulation as well as fur-
ther physiological processes that AtPRMT5 might be involved in,
remain to be uncovered.

UBP1 AND UBP1-ASSOCIATED PROTEINS
The oligouridylatebinding protein 1 (UBP1) from Nicotiana
plumbaginifolia has been characterized as a nuclear RNA binding
protein that associates with polyA-RNA in vivo and can be cross-
linked to U-rich intron and UTR sequences in vitro (Lambermon
et al., 2000). UBP1 was found to enhance the splicing efficiency
of otherwise inefficiently processed introns, as well as to increase
the accumulation of reporter mRNAs that are intronless or bear
suboptimal introns. Only the UBP1-mediated accumulation of
reporter mRNAs was shown to be promoter dependent, suggest-
ing independent activities of UBP1 at more than one level of plant
nuclear pre-mRNA maturation. UBP1 homologs are also present
in Arabidopsis, however, so far no splicing functions of these pro-
teins have been reported. In a follow-up study by Lambermon
et al. (2002), two UBP1-associated proteins, UBA1a and UBA2a,
were identified that also can stabilize mRNAs in the nucleus. How-
ever, in contrast to UBP1, these hnRNP proteins show no effect
on pre-mRNA splicing. Expression studies of three UBA2 genes
from Arabidopsis revealed AS of their corresponding pre-mRNAs,
which is regulated in response to wounding and alters the 3′ UTRs
of the respective transcripts (Bove et al., 2008).

Further investigations of hnRNP proteins from N. plumbagini-
folia resulted in the identification of the two structurally related
proteins RBP45 and RBP47, which display, similar to UBP1, speci-
ficity for oligouridylates (Lorkovic et al., 2000). RBP45 and RBP47
are also localized in the nucleus and associate with polyA-RNA.
However, no stimulation of splicing or accumulation of mRNAs
could be observed upon overexpression of RBP45 and RBP47 in
a protoplast system (Lorkovic et al., 2000), suggesting a participa-
tion of these proteins in a different step of pre-mRNA maturation.
Alternatively, the absence of splicing effects might also be explained
by saturating levels of the respective factors already without their
overexpression in this particular experimental system, and, thus,
does not generally exclude a role of those proteins in splicing.
In line with this hypothesis, both UBP1 and RBP45 were able
to enhance intron recognition upon overexpression in an artifi-
cial mini-exon system (Simpson et al., 2004). Furthermore, in an
approach to determine proteins affecting plant U12-dependent
intron splicing, no effect of RBP45 or UBP1 on splicing effi-
ciency for this rare intron type was observed (Lewandowska et al.,
2004).

PLANT hnRNP PROTEINS WITH UNKNOWN OR SPLICING-UNRELATED
MODES OF FUNCTION
Biological roles have been ascribed to several other plant hnRNP
proteins, e.g., by analyzing biological consequences upon alter-
ing their expression. The mode of action for many of these
factors, however, remains largely unknown. For example, the
AAPK-interacting protein 1 (AKIP1) of Vicia faba, a protein with
sequence homology to hnRNP A/B, was revealed to be a sub-
strate of the abscisic acid-activated protein kinase (AAPK; Li et al.,
2002). This kinase is localized in guard cells, where it regulates
plasma membrane ion channels in response to the stress hormone
abscisic acid (ABA). Both AKIP1 and AAPK were shown to be
nuclear localized, but upon in vivo treatment with ABA, AKIP1
increasingly localized to speckle-like structures within the nucleus.
Additionally, upon ABA-mediated phosphorylation of AKIP1 by
AAPK, AKIP1 displayed an increased affinity for its interaction
target, the mRNA of dehydrin, a protein reported to be involved in
cell protection under stress conditions. As mentioned before, post-
translational modifications have been described for several other
hnRNP proteins and, thus, might play a more widespread role in
defining their RNA target specificity.

The closest homolog of V. faba AKIP1 is the previously
described protein UBA2a from Arabidopsis, showing a similar
nuclear reorganization to speckles in response to ABA (Riera et al.,
2006). However, in contrast to AKIP1, UBA2a is, if at all, only
weakly phosphorylated by OPEN STOMATA 1 (OST1), the Ara-
bidopsis ortholog of AAPK. Overexpression of the three Arabidop-
sis UBA2a genes was demonstrated to be lethal, while expression
under control of an inducible system triggered leaf senescence and
hypersensitive-like cell death (Kim et al., 2008a). Further work
will be required to reveal if these phenotypes are linked to altered
metabolism of distinct target transcripts.

A possible link between polycomb regulation, which is based on
polycomb complex-mediated control of gene expression via mod-
ulation of epigenetic patterns (Schwartz and Pirrotta, 2007), and
RNA processing was indicated by investigation of LIF2, a putative
RNA binding protein of the hnRNP family. LIF2 interacts with the
chromo domain protein Like Heterochromatin Protein 1 (LHP1;
Latrasse et al., 2011), which is a subunit of a polycomb repres-
sive complex (PRC) in Arabidopsis. LHP1 recognizes histone H3
lysine 27 trimethylation, an epigenetic silencing signal, deposited
by the PRC2 complex. Its interaction partner LIF2 was described
to be able to either antagonize or act with LHP1, suggesting that
it may modulate LHP1-activity at specific loci or in response to
environmental changes, in order to control cell fate determination.

Besides their function in RNA metabolism, hnRNP proteins
can also bind to DNA and affect diverse processes, such as replica-
tion, DNA repair, and transcription. One example from plants
is the G-strand specific single-stranded telomere binding pro-
tein GTBP1 from Nicotiana tabacum, which negatively regulates
telomere length (Lee and Kim, 2010). Using an RNA interfer-
ence approach to downregulate expression of GTBP1, Lee and
Kim (2010) found severe developmental abnormalities in the
mutant plants, as well as signs of genome instability, including
longer telomeres, formation of extrachromosomal telomeric cir-
cles and abnormal anaphase bridges. Subsequently, they could
reveal a function of GTBP1 in inhibiting telomeric strand invasion,
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the initial step in interchromosomal homologous recombination,
thus indicating that GTBP1 is a negative regulator of telomere
length, being essential for both structure and function of tobacco
telomeres.

Interestingly, hnRNP protein homologs are also found in
plant organelles. Chloroplastidic ribonucleoproteins (cpRNPs)
have been described to play a role in chloroplast RNA process-
ing steps (Tillich et al., 2010), such as 3′ end processing (Schuster
and Gruissem, 1991) and RNA editing (Hirose and Sugiura, 2001),
as well as in regulating transcript stability (Nakamura et al., 2001).
For example, knockout of the cpRNP C31A gave rise to alterations
in both editing and steady state levels of distinct sets of chloro-
plast mRNAs (Tillich et al., 2009). cpRNPs possess twin RRMs
and are subject to light-dependent phosphorylation (Tillich et al.,
2010), which has been demonstrated to reduce the RNA in vitro
binding affinity in case of CP28 (Lisitsky and Schuster, 1995).
Furthermore, analysis of mutants suggests that cpRNPs have both
specific and combinatorial functions, as it is also observed for
many hnRNPs.

CONCLUSION
Global analyses of transcript data have revealed the widespread
occurrence of AS in plants, bearing an enormous potential for
a functional expansion of the transcriptome. Although at this

point it remains unclear which fraction of all AS events plays
a role in plant gene expression, a steadily growing list of stud-
ies provides compelling evidence for important implications of
AS in numerous fundamental biological processes. Thus, one of
the most intriguing questions in current AS research in plants
is how AS can be regulated and how it can be coordinated with
other processes to trigger specific splicing programs in response to
internal and external cues. Important lessons can be learned from
splicing research performed in animal systems, however, previous
studies also have highlighted numerous distinct features of splic-
ing in plants and animals. Recent progress in the characterization
of SR and hnRNP proteins from plants represents an important
step toward deciphering the plant splicing code. It can be antici-
pated that the combinatorial action of those splicing factors play
a pivotal role in determining the complex AS patterns observed in
plants, and thereby critically contributes to the regulation of gene
expression in the context of diverse intrinsic processes as well as
in response to external signals.
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