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Horsetail (Equisetum hyemale) is a widespread vascular plant species, whose reproduction
is mainly dependent on the growth and development of the rhizomes. Due to its key evo-
lutionary position, the identification of factors that could be involved in the existence of the
rhizomatous trait may contribute to a better understanding of the role of this underground
organ for the successful propagation of this and other plant species. In the present work, we
characterized the proteome of E. hyemale rhizomes using a GeLC-MS spectral-counting
proteomics strategy. A total of 1,911 and 1,860 non-redundant proteins were identified
in the rhizomes apical tip and elongation zone, respectively. Rhizome-characteristic pro-
teins were determined by comparisons of the developing rhizome tissues to developing
roots. A total of 87 proteins were found to be up-regulated in both horsetail rhizome tis-
sues in relation to developing roots. Hierarchical clustering indicated a vast dynamic range
in the regulation of the 87 characteristic proteins and revealed, based on the regulation
profile, the existence of nine major protein groups. Gene ontology analyses suggested
an over-representation of the terms involved in macromolecular and protein biosynthetic
processes, gene expression, and nucleotide and protein binding functions. Spatial differ-
ence analysis between the rhizome apical tip and the elongation zone revealed that only
eight proteins were up-regulated in the apical tip including RNA-binding proteins and an acyl
carrier protein, as well as a KH domain protein and a T-complex subunit; while only seven
proteins were up-regulated in the elongation zone including phosphomannomutase, galac-
tomannan galactosyltransferase, endoglucanase 10 and 25, and mannose-1-phosphate
guanyltransferase subunits alpha and beta. This is the first large-scale characterization of
the proteome of a plant rhizome. Implications of the findings were discussed in relation to
other underground organs and related species.
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INTRODUCTION
Biological invasions are usually defined as the introduction, estab-
lishment, and spread of a species outside their native range,
being recognized as a major threat to the economy and envi-
ronment worldwide (Prentis et al., 2008). With the increase in
the environmental pressure for reduction in overall pesticide
use, there is a great effort to find sustainable, non-chemical
alternatives for weed control (Grundy, 2003). Rhizomes are dia-
geotropic subterranean stems of fundamental importance to plant
competitiveness and growth (Jang et al., 2009). They are key
elements for propagation and persistence of many weeds (Hu
et al., 2003). While rhizomes are an important component of
the invasive nature of many noxious aliens; in other species,
they are a valuable trait in the establishment, persistence, and
massive growth of forage biomass (Jang et al., 2006, 2009). A
deeper understanding of the factors that regulate and affect rhi-
zome differentiation and development could impact important
sectors of agriculture such as weed management and biofuel
production.

Fossils of Equisetum species indicate the first appearance of the
genus in the Cretaceous Period, probably being the oldest lineage
of extant vascular plants (Gierlinger et al., 2008). Equisetum is
a genus of approximately 30 species of non-seed plants, includ-
ing several widespread and common hybrids (des Marais et al.,
2003; Large et al., 2006). Species from this genus are mainly found
between 40 and 60˚ north latitude and generally restricted to sea-
sonally or sometimes perennially wet ground (des Marais et al.,
2003). Most Equisetum species, including the extremely weedy E.
arvense and the very widespread E. hymale, are recorded as having
the potential to become persistent weeds in wetlands (Large et al.,
2006). E. hymale also has a long history of use by humans because
of the high concentration of silica crystals in its stems, leading to its
common name: scouring rush. Ecological success of the dispersion
of these species and their occurrence in non-native regions (e.g.,
tropics) can be attributed to the rhizomatous growth habit and
associated vegetative propagation (des Marais et al., 2003). Due to
their invasive behavior and the key evolutionary position of the
genus within the plant kingdom, the study of the rhizome biology
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of Equisetum species may allow the identification of unique char-
acteristics of this organ that contributed to the ecological success
of modern rhizomatous species and may contribute to the imple-
mentation of strategic control programs against rhizome-driven
propagation of weeds.

Because proteins play an essential role in biological processes,
the characterization and understanding of the proteomic compo-
sition of any biological sample can provide important information
about complex cellular regulatory networks (Domon and Aeber-
sold, 2006). Furthermore, transcriptomic studies have the central
caveat that steady-state protein levels may not follow a similar
stoichiometric ratio. Indeed, parallel studies of transcript and pro-
tein regulation in plants reveal a correlation of around 0.5–0.6
(Hajduch et al., 2010).

Several different proteomic strategies, designed to comprehen-
sively characterize the proteome of a cell/tissue/organ in different
states or living conditions, have been developed in recent years.
One of the most facile, but comprehensive and unbiased strate-
gies for protein profiling is SDS-PAGE prefractionation coupled to
in-gel digestion and mass spectrometry, also referred to as GeLC-
MS. When coupled to techniques such as spectral counting, this
approach allows for a relative quantitative assessment of the origi-
nal proteins. A challenge with any bottom-up proteomic approach
is identifying the proper database for interrogating MS/MS data.
Homologous databases are preferred although the utility of cur-
rent RNA sequencing technologies for this purpose is uncertain.

Current advances in sequencing technologies have resulted
in an increasing number of plant genome and EST-sequencing
projects. However, the number of non-model plant species cov-
ered by these projects is still limited and many of these plants
with unique biological and physiological characteristics remain
“orphan” or poorly studied (Carpentier et al., 2008; Jorrin-Novo
et al., 2009; Remmerie et al., 2011). In the present work, we carried
out a GeLC-MS spectral counting-based proteome characteriza-
tion of developing rhizomes of horsetail (E. hyemale) in order
to identify proteins that may be involved with different tissues
of this organ. E. hyemale rhizome-characteristic proteome was
determined by comparisons against root samples; while spatial
differences within the rhizome were identified by pairwise analysis
between the rhizomes apical tip and the elongation zone.

EXPERIMENTAL PROCEDURES
PLANT MATERIAL
Equisetum hyemale plants were purchased from a nursery
(Mesquite Valley Growers, Tucson, AZ) and maintained in a
greenhouse under controlled conditions as described by He et al.
(2012). Samples from the rhizome apical tip and elongation zone
(Figure 1), as well as root samples, were dissected and immediately
frozen in liquid N2. Samples were stored at −80˚C until protein
extraction.

PROTEIN EXTRACTION AND PROTEIN ELECTROPHORESIS
Frozen samples were ground with a mortar and pestle to produce a
fine powder. Aliquots of 200 mg of the powder were resuspended in
1.5 mL of extraction buffer containing 0.1 M Tris (pH 8.0), 10 mM
EDTA, 0.9 M sucrose, and 0.1% (w/v) DTT. After incubation
on ice for 5 min, 1.5 mL of Tris-buffered phenol (pH 8.0) was

FIGURE 1 | Rhizome tips from Equisetum hyemale are easily obtained
from greenhouse grown plants. (A) Plant removed from pot indicating
(arrow) a typical rhizome tip used for analysis. (B) Close up view of excised
rhizome that has been washed and prepared for tissue collection. Arrows
indicated the regions (tip and elongation zone) that were used in the
analysis.

added to the extracts and the mixture was vortexed thoroughly for
1 min and incubated on a shaker at 4˚C for 30 min. To separate
insoluble material, aqueous and organic phases, the samples were
centrifuged for 15 min at 5,000 g. The phenolic phase was recov-
ered and transferred into a new tube. For protein precipitation,
four volumes of methanol containing 0.1 M ammonium acetate
were added and samples were incubated overnight at−20˚C. Pro-
tein precipitates were collected by centrifugation at 5,000 g for
15 min and the pellets were washed three times with methanol
containing 0.1 M ammonium acetate. Finally, proteins were resus-
pended in 200 µL resuspension buffer [65 mM Tris (pH 6.8), 2%
(w/v) SDS] and protein concentration was estimated by the BCA
Protein Kit (Thermo Fisher Scientific, Houston, TX) using BSA as
standard. Protein extracts were prepared in five biological repli-
cates for rhizome apical tip, rhizome elongation zone, and roots.
Prior to gel electrophoresis, sample aliquots containing 100 µg of
proteins were mixed with an equal volume of loading buffer con-
taining 125 mM Tris (pH 6.8), 20% (v/v) glycerol, 4% (w/v) SDS,
0.5% (w/v) DTT, and traces of bromophenol blue and incubated
for 5 min at 99˚C. Gel electrophoresis was performed under dena-
turing conditions in 12% polyacrylamide gels (11 cm long× 8 cm
wide) using 20 mA per gel. Proteins from all the five replicates of
each tissue were separated at the same gel and, after protein migra-
tion, gels were stained with colloidal Coomassie blue stain under
standard conditions.

IN-GEL PROTEIN DIGESTION
Prior to protein digestion, the gel lane for each biological repli-
cate was sliced into 30 equal size segments of approximately
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3 mm, diced into approximately 1 mm cubes with a clean scalpel
and transferred into a 0.45 µm low-binding hydrophilic PTFE
filter plate (MultiScreen Solvinert Plates, Millipore) for in-gel
protein digestion. Tryptic digestion was carried out according
to Shevchenko et al. (2007). After gel destaining in acetonitrile
(ACN): 100 mM ammonium bicarbonate (1:1; AmBic) solution,
proteins were reduced and alkylated in 100 mM AmBic solutions
containing 10 mM DTT and 50 mM of iodoacetamide, respec-
tively. Protein digestion was performed by the addition of 100 µL
of digestion solution (10 mM AmBic and 10% ACN) containing
sequencing grade porcine trypsin (Promega, Madison, WI, USA)
at 7 ng/µL. After 60 min of cold incubation at 4˚C, 100 µL of diges-
tion solution without trypsin was added and samples were digested
overnight at 37˚C. Upon in-gel digestion, gel pieces were saturated
with 400 µL of extraction buffer containing 5% formic acid (FA):
ACN (1:2, v/v) and incubated for 30 min at 37˚C. Supernatants
were collected from the same filtration unit by centrifugal filtra-
tion (3,000 g for 30 min), dried down in a vacuum centrifuge and
kept at−80˚C until LC-MS/MS analyses.

LC-MS/MS ANALYSES
For each round of LC-MS/MS analysis, extracted peptides were
reconstituted in 0.1% (v/v) FA and separated at the flow rate of
150 µL/min into a 10 cm× 150 µm ID in-house packed nanocol-
umn (C18, 100 Å, 5 µm, Michrom Bioresources) using the follow-
ing mobile phase gradient: from 5 to 35% of solvent B in 25 min,
from 35 to 70% in 25 min, then back to 5% in 5 min. Solvent
A was water containing 0.1% FA, solvent B was ACN containing
0.1% FA. After LC separation, peptides were positively ionized at
2.1 kV, at 250˚C and injected into the mass spectrometer. Mass
spectrometry data were acquired in a ProteomeX-LTQ Worksta-
tion (Thermo, San Jose, CA, USA) in data-dependent acquisition
(DDA) mode controlled by XCalibur 2.0 software (Thermo Fisher
Scientific). The typical DDA cycle consisted of a survey scan within
m/z 200–2,000 followed by MS/MS fragmentation of the seven
most abundant precursor ions under normalized collision energy
of 35%. Fragmented precursor ions were dynamically excluded
according to the following: repeat counts: 3, repeat duration: 30 s,
exclusion duration: 30 s.

DATABASE CREATION AND PROTEIN IDENTIFICATION
The database used in the present work was obtained through the
isolation of total RNA from E. hyemale rhizome apical tip and
elongation zone tissues, followed by the construction of sequenc-
ing libraries and Illumina Genome Analyzer or 454 sequencing as
described by He et al. (2012).

The final assemblies (unique transcripts) were then translated
and the open reading frames (ORF) scanned using the Virtual
Ribosome software version 1.1 (Wernersson, 2006). For each
nucleotide entry, the longest ORF was reported and used for data-
base searches. For calculations of false discovery rates and further
validation of the peptide-spectrum matches (PSMs), random-
ized (i.e., decoy) sequences were generated and combined with
the forward/targeted database. After initial assessment of the Illu-
mina, 454 and the hybrid database (Figure S1 in Supplementary
Material), we used the Illumina library containing 70,987 contigs
for translation resulting in a decoy concatenated search database
containing 139,394 protein entries.

For protein identification, peak lists were initially generated
from the raw data using Extract_msn.exe program in Bioworks
3.3.1 SP1 (Thermo) according to the following parameters: MW
range: 200–2,000; absolute threshold: 500; precursor ion tolerance:
1,000 ppm; group scan: 1; minimum group count: 1; minimum
ion count: 10. Database searches were performed using SEQUEST
search engine integrated within the Bioworks 3.3.1 SP1 software
package (Thermo). Search parameters were set as follows: oxida-
tion of methionine was allowed as a variable modification and car-
bamidomethylation of cysteine as a static modification; enzyme:
trypsin; number of allowed missed cleavages: 2; mass range: 200–
2,000; threshold: 500; minimum ion count: 10; peptide toler-
ance: 1,000 ppm; fragment ions tolerance: 1 Da. Duplicate peptide
matches were reported. After searches, Bioworks SEQUEST out-
put files were converted into SQT files and validation of the PSMs
candidates was computationally assessed using the Search Engine
Processor tool (Carvalho et al., 2012). For that, the SEQUEST pro-
posed PSMs were divided into nine groups, corresponding to the
combination of +1,+2, ≥3 peptide ions and fully, semi, or non-
tryptic peptides. The Bayesian discriminant scores were calculated
based on the following parameters: normalized XCorr, delta CN,
secondary score, number of peaks match, digestion and presence
scores, and rank associated to the secondary score. For confident
protein identification, spectrum, peptide, and protein cutoffs were
adjusted to achieve a false discovery rate of 1% at the protein level
for each biological replicate.

RELATIVE QUANTIFICATION BASED ON SPECTRAL COUNTING
To satisfy the principal of parsimony, proteins containing com-
mon peptides were grouped and the relative protein quantification
was performed based on the number of spectral counts per pro-
tein group with care to count only once the spectral counts of
the shared peptides within each proposed group. This approach
was adopted in order avoid protein identification ambiguity and
erroneous quantitative values due to the incorrect distribution of
spectral counts among protein isoforms or other proteins with
high sequence similarity. Assessments of the quantitative differ-
ences were carried out through pairwise analyses. For that, spectral
counts were initially normalized according to the Row Sigma
Normalization (Carvalho et al., 2008). Detection of differentially
regulated proteins was performed using the TFold tests, embed-
ded in the PatternLab for Proteomics suite (Carvalho et al., 2010).
The TFold test combines fold-change cutoffs with Student’s t -test
and the Benjamini–Hochberg theoretical false-positive estima-
tor to deal with the task of massive hypothesis-testing problem
(Benjamini and Hochberg, 1995). We considered as differentially
regulated proteins those accessions that presented a fold change
higher than 2.5 and a p-value threshold of 0.01 for both t -test
and Benjamini–Hochberg estimator. To avoid false interpretation
of differential regulation from accessions presenting low spectral
counts, we considered only the proteins identified in at least three
out of the five biological replicates.

ANNOTATION AND FUNCTIONAL CLASSIFICATION
Annotation and classification of the differentially regulated pro-
teins were performed based on matching the protein sequences
against the UNIPROTKB/SwissProt database and retrieval of asso-
ciated GO terms using the Blast2GO tool (Conesa et al., 2005).
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The sequences of interest were first extracted from the protein
database using the MUsite software (Gao et al., 2010). Extracted
sequences were then aligned using the BLASTP algorithm against
the UNIPROTKB/SwissProt database using the following parame-
ters: report a maximum of five blast hits, 1e−10 for the expected
value and minimum high scoring segment pairs (HSPs) length
equal to 33. Mapping and annotation steps were also performed
using Blast2GO default values (E-value filter of 1e−6, annotation
cutoff of 55, and GO weigh equal to 5). After generation of the
combined graphs (score alpha 0.6 and sequence filter equal to
1%) for biological process and molecular function, the GO terms
distributions were analyzed at the fourth level of depth.

HIERARCHICAL CLUSTERING
To determine similarities of the regulation profile of E. hyemale
up-regulated proteins, we performed hierarchical clustering analy-
sis using the software PermutMatrix (Caraux and Pinloche, 2005).
The raw spectral counts of the apical tip, elongation zone, and root
proteins were subtracted by the average spectral count value of
each clustered protein. Then, dissimilarities were calculated based
on Euclidean distances and hierarchical clustering was carried out
according to the Unweighted Pair Group Method with Arithmetic
Mean (UPGMA) method (Sokal and Michener, 1958).

RESULTS AND DISCUSSION
LARGE-SCALE IDENTIFICATION OF E. HYEMALE UNDERGROUND
PROTEINS
Conventional, stringent database searches rely on strict matching
of the mass spectrometer-acquired spectra with the theoretical,
in silico proposed spectra. Any difference in the sequence of a
peptide presented in the database may compromise the scor-
ing significance of the PSM and result in mis-identification of
the acquired spectrum. This situation is exacerbated when cross-
species protein identification strategies are employed, as the choice
of a closely related organism may not be sufficient to significantly
cover the proteome of the target species and provide enough
information for the biological process under analysis. Thus, a
homologous database is more desirable to achieve a significant
number of confident PSMs. For spectral counting-based quantita-
tive proteomics, the absence or slight change (e.g., due to sequence
polymorphism or sequence error) of a protein sequence in the
database may result in mis-identification, which can hamper the
correct interpretation of the proteomics data. In order to obtain
maximum proteome coverage, we initially evaluated three E. hye-
male assembled EST databases from Illumina and 454 sequencing
projects as described in He et al. (2012) (Figure S1 in Supplemen-
tary Material). SEQUEST searches using the database generated
from Illumina sequences resulted in the highest number of spectra,
peptides, and protein groups (i.e., proteins sharing the same set of
peptides). On the other hand, searches using this database resulted
in the lowest number of identified proteins. In a parallel evalua-
tion, searching Illumina database resulted in the lowest number of
shared peptides (bottom-left panel in Figure S1 in Supplementary
Material), which significantly decreases protein mapping ambi-
guity and explains the low number of identified proteins while
presenting the highest numbers of spectra, peptides, and protein
groups. A list of all identified peptides from Illumina searches can

be found in Table S1 in Supplementary Material. In order to min-
imize the protein inference problem, the Illumina database was
chosen and E. hyemale quantitative analysis was performed based
on the number of spectral counts per protein group (Table S2 in
Supplementary Material) and, herein, for the sake of simplicity,
protein groups will be only referred to as proteins.

The rhizomatous trait is widely distributed across the plant
kingdom; however, few studies have been carried out to charac-
terize the proteome of this key subterranean organ. One of the
first dedicated studies was carried out by Lum et al. (2002) aiming
to detect specific and common two-dimensional electrophoresis
(2-DE) protein spots that could be used as markers for different
ginseng species and rhizome parts. This approach resulted in the
identification of two proteins (ribonucleases I and II) from the
nine protein spots commonly identified in all 2-DE gels. Migliore
et al. (2007) also studied the 2-DE protein spot distribution pat-
terns of Posidonia oceanica rhizome samples naturally grown in
different areas and proposed the use of a combined approach of
phenol assay and 2-DE protein analysis as a “diagnostic” tool to
monitor the health state of this species in contaminated areas.
More recently, He et al. (2012), using a proteome-wide quanti-
tative profiling, identified 1,280 proteins in rhizomes of Phrag-
mites australis producing an extensive survey of proteins related
to rhizome development. Using the semi-throughput approach
described here, we confidently identified, at a maximum of 1%
false discovery rate, 2,377 total, non-redundant proteins in the
rhizome and root samples of E. hyemale (Figure 2; Table S2 in
Supplementary Material). From the analyzed tissues, the high-
est number of proteins was identified in the rhizome apical tip
(1,911) followed by the rhizome elongation zone (1,860). Root
samples comprised a set of proteins equal to 1,374. This exten-
sive protein identification list provided us with a solid framework
for a spectral counting-based comparative analysis against the
developing root proteins (used as reference) in order to identify
up-regulated, enriched proteins in E. hyemale rhizomes. To detect
these rhizome-enriched proteins (proteins up-regulated in both
rhizome apical tip and elongation zone in relation to the roots),
we carried out two pairwise analyses: rhizome apical tip versus
roots and rhizome elongation zone versus roots. These proteins
were termed rhizome-characteristic proteins. Surprisingly, only
87 non-redundant proteins, or approximately 3.9% of total pro-
teins identified, were up-regulated in rhizomes (Figure 2; Table
S3 in Supplementary Material). These data reveal a highly simi-
lar proteome profile between these two underground organs, even
though the tissues are quite distinct morphologically. This sug-
gests that the proteins responsible for tissue and organ patterning
and differentiation in Equisetum roots and rhizomes are likely to
be limited in number, perhaps within that list of 87, or of low
abundance to avoid detection in this investigation.

FUNCTIONAL CLASSIFICATION OF THE 87 PROTEINS REVEALS ACTIVE
GENE EXPRESSION AND PROTEIN METABOLISM IN THE RHIZOMES
Gene ontology (GO) terms distribution analysis was carried for
the 87 rhizome-characteristic proteins in relation to the total pro-
teome of E. hyemale rhizomes (2,238 proteins). The biological
process GO term distribution indicated that the terms cellu-
lar macromolecule metabolic process (mapped by 11% of the
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Horsetail underground system
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FIGURE 2 | Downstream analysis for the identification of Equisetum
hyemale rhizome-characteristic proteins and identification of differential
regulation between the apical tip and the elongation zone proteins.
Proteins identified in the apical tip and elongation zone were compared with
those detected in roots. Proteins found to be up-regulated in both apical tip

and elongation zone were combined to create a non-redundant list of the
up-regulated, characteristic proteins of E. hyemale rhizomes. Spatial
differences were determined by comparing the expression level of the apical
tip and elongation zone proteins after exclusion of those detected in the same
or lower expression level than in the developing roots.

characteristic proteins), protein metabolic process (9%), cellular
biosynthetic process (8%), gene expression (7%), and macro-
molecule biosynthetic process (6%) were over-represented in
the rhizome-characteristic proteome in relation to the total E.
hyemale rhizome-proteome (Figure 3). The molecular function
term distribution indicated an over-representation of the terms
RNA-binding (mapped by 12% of the characteristic proteins),
ribonucleotide binding (12%), purine nucleotide binding (12%),
purine nucleoside binding (11%), hydrolase activity (6%), trans-
lation factor activity (5%), identical and unfolded protein binding
(4%), and carbon–carbon lyase activity (3%; Figure 3). Our GO
analyses revealed an over-representation of the terms associated
with macromolecular and protein biosynthetic processes, gene
expression, and nucleotide binding functions, indicating an active
metabolism preferentially shifted to cellular proliferation activi-
ties. Because these tissues were the apical meristematic region and
the closely associated stem elongation zone, abundance of proteins
associated with such processes is not surprising.

PROTEIN REGULATION PROFILE INDICATES VAST DYNAMIC RANGE
AND SUGGESTS DIFFERENTIAL REGULATION BETWEEN APICAL TIP
AND ELONGATION ZONE
Hierarchical cluster analysis of the rhizome-characteristic pro-
teins suggested a considerable dynamic range of the E.
hyemale rhizome-proteome, resulted from abundance differ-
ences up to 563:1 based upon spectral counts. Histidine
decarboxylase (UNIPROT/SwissProt accession P54772) and the
5-methyltetrahydropteroyltriglutamate-homocysteine methyl-

transferase were the most abundant proteins (O50008); while
the 26S protease regulatory subunit 7 (Q9FXT9), ubiquilin-
1 (Q8R317), putative H/ACA ribonucleoprotein complex
(Q8VZT0), arogenate dehydratase (Q9SGD6), 26S proteasome
non-ATPase regulatory subunit 4 (P55034), and glucose-6-
phosphate 1 (Q43839) were the least abundant detected proteins
within E. hyemale rhizome-characteristic proteome (Figure 4 and
Table S3 in Supplementary Material). Due to this vast dynamic
range, nine main clusters were defined based on the regulation pro-
file of the 87 characteristic proteins within the rhizomes samples
(Figure 4). Cluster A consisted of proteins with the highest levels
in both tissues. Clusters C and H accounted for 11 proteins pre-
senting similar regulation in both apical tip and elongation zone.
Clusters B, D, and E accounted for 6, 7, and 13 proteins, respec-
tively, with regulation profile higher in the apical tip in relation to
the elongation zone. In contrast, clusters G (five proteins) and I (six
proteins) were characterized by proteins presenting higher level in
the elongation zone in relation to the apical tip. Finally, major
cluster F comprised all proteins that presented minor differences
between the elongation zone and apical tip regions.

Regarding the most abundant, rhizome-characteristic pro-
teins, Wang et al. (2000) reported the induction of the gene
histidine decarboxylase (EC 4.1.1.22) after nitrate supplementa-
tion in Arabidopsis seedlings. Picton et al. (1993) identified a
histidine decarboxylase-like mRNA up-regulated during tomato
ripening. However, the role of this abundant enzyme in the
underground tissues of Equisetum is still unknown. The cytoso-
lic enzyme 5-methyltetrahydropteroyltriglutamate, also known as
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Rhizome total proteome

Molecular Function

FIGURE 3 | Distribution of GO biological process and molecular function
terms mapped from Equisetum hyemale rhizome proteins. Proteins
identified in rhizome samples were aligned against the UNIPROTKB/SwissProt

entries and the retrieved accessions mapped to the biological process and
molecular function GO terms. The set of rhizome-characteristic proteins was
compared to the total rhizome-proteome at the fourth level.

cobalamin-independent methionine synthase (EC 2.1.1.1.14), was
also detected in high levels in theses organs. Zeh et al. (2002),
studying RNA expression in potato plants, suggested that the gene

that encodes this enzyme is a low-copy gene with differential
expression across the various evaluated organs. Although methio-
nine synthase transcripts were detected in roots, the highest levels
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FIGURE 4 | Regulation profile of Equisetum hyemale
rhizome-characteristic proteins. Hierarchical clustering was carried out for
the 87 rhizome-characteristic proteins. A larger image can be found
Figure S2 in Supplementary Material.

were found in flowers. In a proteomic study of A. stolonifera, a
Poaceae family member, levels of this enzyme varied significantly
according to the salinity stress imposed on different organs (Xu
et al., 2010). In the same manner, proteome analysis of soybean
roots revealed higher regulation of methionine synthase under
flood stress (Komatsu et al., 2010). As horsetail is a wetland plant,
constitutive high levels of this enzyme indicate a possible metabolic
strategy used to cope with flood and salinity stress.

Another protein related to stress tolerance and is among the 87
characteristic proteins is the enzyme aldehyde dehydrogenase (EC
1.2.1.3). Recent reports indicate that the over-regulation of this
enzyme confers stress tolerance in different plant species (Huang
et al., 2008; Brocker et al., 2010; Missihoun et al., 2011; Stiti et al.,
2011). In E. hyemale, this identification was over-represented in
the elongation zone, a region that is commonly affected by water
stress (Zhu et al., 2007; Spollen et al., 2008; Yamaguchi et al., 2010).
In addition, elongation of the cells in this region is a necessary
process to allow growth and development of the whole rhizome
organ. As cell expansion in plants is limited by the cell wall matrix,
the rigid structure elements that constraint cell growth should be
degraded and resynthesized. An aldehyde dehydrogenase has been
proposed to act in sinapoyl-malate formation in Arabidopsis (Nair
et al., 2004) and ferulate ester formation in grasses (Barriere et al.,
2007). Thus, this enzyme may play a role in plant cell wall reorga-
nization allowing cell expansion in this region and, consequently,
plant growth. It is intriguing to consider that such processes may
have evolved as long ago as during the origin of Equisetum.

A significant fraction of the rhizome-characteristic proteins was
comprised of ribosomal proteins: 17 accessions in total. These pro-
teins were mainly identified as type 40 and 60S ribosomal proteins,
presenting higher levels in the apical tip in relation to the elonga-
tion zone. This scenario is clear for cluster B, as shown in Figure 4,
as all proteins that compose this group are 40 or 60S ribosomal
protein types. Recently, mutations of the genes that encode riboso-
mal proteins have proven to be deleterious to the differentiation of
meristematic tissues (Horiguchi et al., 2003; Minnebruggen et al.,
2010; Szakonyi and Byrne, 2011). In our work, regulation pro-
file analysis of the identified 40S ribosomal protein S6 (RPS6)
resulted in the classification of this protein in cluster D (Figure 4),
which is characterized by proteins with higher levels in the apical
tip in relation to the elongation zone (Table 1, accession number
EhRi_039920). This protein may thus play an important role in
the differentiation of the Equisetum apical tip.

SPATIAL DIFFERENCES BETWEEN THE APICAL TIP AND ELONGATION
ZONE REFLECTS THE DIFFERENT ROLES OF THESE REGIONS DURING
THE GROWTH AND DEVELOPMENT OF THE RHIZOMES
Proteome spatial differences within E. hyemale rhizomes were
further studied using a two-step sequential pairwise analysis
(Figure 2). In the first comparison, the proteins identified in the
rhizome apical tip and elongation zone were compared to those
identified in root samples. Then, the up-regulated proteins in the
rhizome apical tip and elongation zone were pairwise compared
for a final list of the up-regulated proteins in a particular rhizome
region (Table 2). This strategy was adopted in order to detect
the proteins that were highly expressed in only one of the rhi-
zome tissues in relation to the roots, and thus not included in the
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previously described set of the 87 rhizomes characteristic proteins.
A total of 15 proteins showed differential regulation between the
studied tissues (Figures 5 and 6).

In the apical tip samples, four up-regulated proteins are
described as RNA-binding proteins (UniProtKB/SwissProt acces-
sions P58223, Q80WA4 and 2 proteins with accession number
equal to O94432). These multifunctional proteins are involved
in numerous RNA-mediated processes, including the regulation
of gene expression. High expression of RNA-binding proteins in
actively proliferative regions was already described for Arabidopsis
(Suzuki et al., 2000; Fusaro et al., 2007). Due to its inherent func-
tions, it is not a surprise to identify high levels of RNA-binding
proteins in highly active tissues, such as in the rhizome apical tip.
Another protein involved in the gene information path and up-
regulated in the apical tip was the protein described as a T-complex
protein 1 subunit gamma (P49368). The cDNA encoding TCP-1
in Arabidopsis was first cloned by Mori et al. (1992). TCP-1 is a
subunit of the chaperone containing TCP-1 (Iijima et al., 1998), a
protein that acts in the cytosol during the post-translation protein
folding process of several proteins, including actin and tubulin
(Lewis et al., 1992; Yaffe et al., 1992). Although no microtubule-
related protein was found to be spatial regulated within the rhi-
zomes, actin-depolymerizing factor 1 appeared at similar levels in
both apical tip and elongation zone as a rhizome-characteristic
protein (Figure 4).

Acyl carrier proteins (ACP, accession P93092) are small, acidic
proteins that carry the nascent acyl chains during the synthesis of
16- and 18-carbon acyl groups (Bonaventure and Ohlrogge, 2002),
playing an essential role during plant lipid biosynthesis (Ohlrogge
and Kuo, 1985). The higher level of this enzyme in the rhizome
apical tip in relation to the elongation zone and roots are in accor-
dance with the usually highest regulation in the meristematic zones
of vegetative tissues in Arabidopsis (Baerson and Lamppa, 1993)
and cells with high rates of division (Bonaventure and Ohlrogge,
2002), suggesting a high demand of fatty acids in tissues where
multiplication and differentiation processes occur at high rates.

Finally, the protein Q9LV66, an uncharacterized protein with
high sequence similarity with glyoxalases (glutathione-mediated
detoxification enzymes), was also identified as up-regulated in E.
hyemale apical tip. Altered glyoxalase regulation has been impli-
cated with several human diseases and disorders (Landgraf et al.,
2007; Hambsch, 2011; Rabbani and Thornalley, 2011; Urscher
et al., 2011). In plants, the expression of this enzyme is influenced
by environmental conditions, being up-regulated during stress or
conferring abiotic tolerance in several plant species (Espartero
et al., 1995; Singla-Pareek et al., 2003, 2006; Lee et al., 2009;
Zhou et al., 2009; Xue et al., 2011). Up-regulation of this stress-
related enzyme in E. hyemale apical tip is in contrast with the
pattern observed for the enzyme aldehyde dehydrogenase, which
was detected in higher levels in the elongation zone, suggest-
ing differential stress-induced machinery in close, but different,
tissues.

Up-regulated proteins in the elongation zone were mostly
related to carbohydrate and cell wall metabolism (Figure 6).
Equisetum species are known to have the 1,3;1,4-beta-d-glucan
as a major hemicellulose in plant cell walls (Fry et al., 2008;
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Sørensen et al., 2008). Our work showed that several glucan meta-
bolic enzymes were identified in both apical tip and elongation
zone (Table S2 in Supplementary Material). However, from the

Mannose-1-P guanyltransferase α

Endoglucanase 10

Mannose-1-P guanyltransferase β

Endoglucanase 25

Phosphomannomutase

22.7kDa class iV heat shock protein

Galactomannan galactosyltransferase

-12 -10 -8 -6 -4 -2 0 2 4 6 8

fold change

Uncharacterized protein

T-complex protein 1 subunit γ

Acyl carrier protein 1

NA

KH domain-containing protein

RNA-binding proteins Nova-1

Uncharacterized RNA-binding protein

Uncharacterized RNA-binding protein

(2e-4)

(1e-7)

(7e-5)

(5e-6)

(3e-7)

(2e-4)

(1e-3)

(5e-8)

(5e-4)

(1e-5)

(6e-4)

(2e-4)

(7e-4)

(2e-3)

(2e-3)

FIGURE 5 | Differentially regulated proteins between Equisetum
hyemale rhizome apical tip elongation zone. Gray bars indicate the fold
changes in the regulation of the 15 differentially regulated proteins. The
p-values for each pairwise comparison (apical tip versus elongation zone)
are presented in parenthesis at the end of the gray bars. Apical tip and
elongation zone up-regulated proteins are represented as positive and
negative fold changes, respectively.

seven up-regulated proteins in the elongation zone, three were
involved with mannose metabolism: Q7XPW5 (phosphomanno-
mutase), O22287 (mannose-1-phosphate guanyltransferase beta),
and Q86HG0 (mannose-1-phosphate guanyltransferase alpha).
The enzyme phosphomannomutase catalyzes the conversion
of mannose 6-phosphate and mannose-1-phosphate; while the
mannose-1-phosphate guanyltransferase catalyzes the conversion
of mannose-1-phosphate and GDP-mannose (Kruszewska et al.,
1998; Qian et al., 2007; Hoeberichts et al., 2008; Badejo et al.,
2009). Regulation of both enzymes leads to the formation of GDP-
mannose, a central molecule that can be allocated in three different
paths: protein glycosylation (Kruszewska et al., 1998), ascorbic acid
biosynthesis (Qian et al., 2007; Hoeberichts et al., 2008; Badejo
et al., 2009), and mannan biosynthesis (Gilbert et al., 2009). Identi-
fication of the galactomannan galactosyltransferase (Q564G7), an
enzyme that catalyzes the polymerization of galactomannan (Reid
et al., 2003; Edwards et al., 2004), suggests metabolism toward the
biosynthesis of the polysaccharide mannan. Recently, Silva et al.
(2011) demonstrated that the composition of the plant cell wall in
ferns is different from higher plants, as they contain higher levels
of mannan and lower levels of pectin. The identification of the
enzymes involved in mannose metabolism in the elongation zone
suggests that horsetails may have cell walls that are similar to ferns
and indicate an active plant cell wall metabolism in this rhizome
region.

Besides the enzymes involved in the biosynthesis of the cell
wall, two enzymes involved in cellulose hydrolysis were also up-
regulated in the rhizome elongation zone, the endoglucanase 10
(Q8LCP6) and the endoglucanase 25 (Q38890). The elongation
zone as the preferential localization site of these enzymes is in
accordance with their inherent activity as wall loosing agents (Yuan
et al., 2001), promoting cell wall relaxation and, thus, rhizome
growth.

Q80WA4

O94432

Chaperone-assisted
foldingRNA processing

and
translation

P49368

Fatty acid
biosynthesis

P93092

Methylglyoxal D-Lactic acid

Glutathione-mediated
detoxification

Q9LV66

Cell wall/carbohydrate
metabolism

Q7XPW5

Q38890

O22287

Q8LCP6

Q86HG0

Q564G7

Environment response

P19244

P58223

FIGURE 6 | Schematic representation of the proposed functions for proteins that are differentially regulated between Equisetum hyemale apical tip
and elongation zone. Proteins are represented by the retrieved UniProtKB/SwissProt accession numbers.
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CONCLUDING REMARKS AND IMPLICATIONS
We employed large-scale proteome analysis of the underground
system of the fern E. hyemale. The strategy used here allowed
the identification of a vast number of proteins from the stud-
ied organs and characterization of the rhizome-proteome in this
species. These proteins can be used as reference for comparisons
with other plant species that propagate via rhizomes. Due to its
key phylogenetic position, identification of rhizome-characteristic
proteins in E. hyemale paves the way for a better understand-
ing of rhizomatousness in other, distantly related species and
how evolution shaped this trait. Besides the spatial characteri-
zation described in the present work, a temporal characteriza-
tion of proteins and transcripts needs to be further studied in
order to confirm the identity of the region-specific proteins sug-
gested here. In addition, due to active carbohydrate metabolism
in the rhizome elongation zone, analysis of protein glycosylation
and identification of glycoproteins need further investigation as
this may contribute to the elucidation of the signaling processes
involved in the differentiation of this region. It is also impor-
tant to note that tissue specific isoforms may be present in both
apical tip and elongation zone tissues and that, due to the pro-
tein grouping approach used herein, we did not consider them in
the present work. A complete list of all the peptides and proteins
identified in this work for the species E. hyemale can be down-
loaded from http://www.plantrhizome.org/peptides/. All SePro
filtered MS/MS spectra and the corresponding Sequest scores
for each PSM may be found in the Table S4 (apical tip), Table
S5 (elongation zone), and Table S6 (roots) in Supplementary
Material.
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Figure S1 | Database search evaluation for Equisetum hyemale samples.
Protein sequences obtained from the translation of transcript assemblies
generated from lllumina, 454 and both sequencing projects (He et al., 2012)
were used for Sequest-driven searches. Candidate matches were filtered using
the program SEPro (Carvalho et al., 2010). The number of spectra, peptides,
proteins, and protein groups identified for each observed false discovery rate
(FDR) was calculated. The number of peptides shared by two or more proteins
was also computed for each evaluated database (left bottom panel).

Figure S2 | Expression profile of Equisetum hyemale rhizome-characteristic
proteins, hierarchical clustering was carried out for the 87 rhizome-
characteristic proteins.

Table S1 | List of identified peptides in Equisetum hyemale rhizomes and
roots.

Table S2 | List of all groups and associated proteins identified in Equisetum
hyemale rhizomes and root samples. Protein grouping was carried out based
on the creation of a minimal list of proteins that map to a set of peptides. For
the quantitative analyses, the number of spectra acquired for each
non-redundant peptide within a protein group was summed and reported for the
entire group. For the GO analyses, only one protein per group (the one with the
highest number of matched peptides) was selected to avoid overestimation of
terms due to the presence of conserved peptides and proteins.

Table S3 | List of up-regulated proteins in the Equisetum hyemale rhizomes
in relation to root samples.

Table S4 | List of SePro filtered MS/MS spectra containing the SEQUEST
scores and proposed peptide sequences.

Table S5 | List of SePro filtered MS/MS spectra containing the SEQUEST
scores and proposed peptide sequences.

Table S6 | List of SePro filtered MS/MS spectra containing the SEQUEST
scores and proposed peptide sequences.
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