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The hemicellulosic polysaccharide xyloglucan (XyG), found in the primary cell walls of most
plant tissues, is important for structural organization of the cell wall and regulation of growth

and development. Significant recent progress in structural characterization of XyGs from
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STRUCTURAL DIVERSITY OF THE XYLOGLUCANS

Xyloglucan (XyG) is a hemicellulosic polysaccharide found in all
land plants (Popper and Fry, 2003, 2004; Popper, 2008; Sarkar et al.,
2009) in varying amounts; for example, XyG is a major hemicel-
lulosic component of the primary cell wall of flowering plants (up
to 25%), but a minor, sometimes barely detectable, constituent of
grasses (less than 2%; Hsieh and Harris, 2009). XyGs have a f-
1,4-glucan backbone that is highly branched, with characteristic
repetitive patterns of a-Xyl residues linked to glucose at the O-6
position. The side chain xylosyl residues can be further substituted
with different mono-, di-, or trisaccharides; the pattern of these
substitutions produces the broad diversity of XyG structural motifs
that are present in different plant species (Hoffman et al., 2005;
Pena et al., 2008; Hsieh and Harris, 2009). A single-letter nomen-
clature was introduced by Fry et al. (1993), to describe the XyG
backbone substitution pattern. For example, the letter G indicates
an unbranched Glc residue, and X denotes the a-p-Xyl-(1 — 6)-
B-p-Glc motif in the xylosylated glucan backbone. Xyl residues
can carry a B-p-Gal (L motif), an a-L-Ara (S motif), or a -p-Xyl
(U motif; Hoffman et al., 2005). In turn, Gal residues in the L side
chain can be linked to an a-L-Fuc residue (F motif; Hoffman et al.,
2005), or an a-L-Gal (J motif; Hantus et al., 1997); also, the Ara
residue in the S side chain can carry a B-L-Ara (T motif; York et al.,
1996). In addition, Pena et al. (2008) found that avascular plants,
such as mosses and liverworts, can form XyG with a 2,4-linked Xyl
residue, where xylosyl can be substituted with a f-p-GalA and a
B-p-Gal (P motif), with an a-L-Ara and a B-p-Gal (M motif), an a-
L-Ara and the disaccharide B-p-Gal-(1 — 6)-f-p-GalA (N motif),
or the disaccharide f-p-Gal-(1 — 6)-f-p-GalA and a B-p-Gal at
the O-2 and O-4 positions, respectively.

Different patterns and types of XyG subunits can be found in
different species and different tissues. Most vascular seed-bearing
plants synthesize XXXG-type XyG (O’Neill and York, 2003; Hoff-
man et al., 2005), but grasses and some lamiids produce XXGG-
and XXGGG-type XyG with fewer Xyls on the glucan backbone

different plant species has shed light on the diversification of XyG during plant evolution.
Also, identification of XyG biosynthetic enzymes and examination of their interactions sug-
gests the involvement of a multiprotein complex in XyG biosynthesis. This mini-review
presents an updated overview of the diversity of XyG structures in plant taxa and recent
findings on XyG biosynthesis.
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(Gibeaut et al., 2004; Hoffman et al., 2005). Typically, XXXG-type
XyG comprises XXXG, XXFG, XXLG, and XLFG subunits, which
are present in different proportions depending on the plant tissue
and developmental stage (Pauly et al., 2001; Obel et al., 2009). In
many flowering and non-flowering plants, the Fuc residue is linked
to B-p-Gal at the O-2 position, while the XyG in Equisetum and
Selaginella has the Fuclinked to an a-L-Ara residue at the O-2 posi-
tion (E motif; Pena et al., 2008). It was proposed that fucosylated
XyG was first synthesized in a common ancestor of hornworts and
vascular plants (Pena et al., 2008). Gal residues in XXLG, XXFG,
and XLFG can carry acetyl groups as was found in Arabidopsis and
sycamore XyG (Kiefer et al., 1989; Gille et al., 2011).

The commelinid monocotyledons have predominantly non-
fucosylated XXGn-type XyG. Thus, the Zingiberales and Com-
melinales have both XXGn and XXXG core motifs with few XXFG
units, and no XLFG (Hsieh and Harris, 2009). In the Poales, the
Poaceae have exclusively XXGn-type XyG without Fuc, but the
other families contain either the mixed type XyG with XXXG
and XXGn core motifs or only XXXG and XXFG motifs, but no
XLFG (Hsieh and Harris, 2009). Frequently, in XXGG- or XXGGG-
type XyG, one or two unbranched Glc residues have acetyl groups
instead of the a-Xyl (Hoffman et al., 2005).

del Bem and Vincentz (2010) constructed an evolutionary
model of the emergence of XyG-related genes in Viridiplantae,
proposing a stepwise increase in XyG branching complexity start-
ing from XyG-like molecules that contained only Glc and Xyl,
which are found in streptophyte algae, to galactosylated motifs,
which emerged in embryophytes, and finally to fucosylated XyGs,
which emerged in the last common ancestors of spermatophytes.
Although XyG has never been directly released from algae cell
walls, some indirect evidence indicates that certain green algae
contain XyG-like polysaccharide (VanSandt et al., 2007; Fry et al.,
2008), additionally, XyG epitopes were immunologically detected
in some members of evolutionarily advanced charophycean green
algae orders (Sorensen et al., 2010, 2011). Since liverworts, which
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are believed to be the oldest extant land plant family (Qiu et al,,
2006), have XXGG- and XXGGG-type XyG, it was proposed that
XXXG-type motifs evolved later in hornworts and many vascu-
lar plants (Pena et al., 2008). Demonstration in hornworts of the
presence of fucosylated XyG with similarities to seed-bearing plant
XyG motifs allowed Pena et al. (2008) to propose that in some
Lamiids and grasses, the genes encoding XyG-specific fucosyl-
transferases may have been eliminated completely, or are expressed
only in specific cells or conditions.

XYLOGLUCAN BIOSYNTHESIS

Xyloglucan biosynthesis requires glucan synthase to form the
glucan backbone and requires multiple different types of gly-
cosyl transferases to decorate the glucan chain to produce the
broad diversity of XyG side chains found in various plants. Con-
sidering the high specificity of glycosyl transferases (Keegstra
and Raikhel, 2001), the formation of each linkage is believed to
require a distinct transferase; therefore, a combination of at least
one (1,4)-B-glucan synthase, three (1,6)-a-xylosyltransferases, two
(1,2)-p-galactosyltransferases, and one (1,2)-a-fucosyltransferase
is needed to assemble a complete XLFG subunit.

The presence of other XyG motifs discovered in different
taxa, and briefly described in the first section, implicates involve-
ment of other types of glycosyltransferases in various plant
species; these transferases may include XyG specific arabinosyl-
transferases, galacturonyltransferases, additional galactosyltrans-
ferases, and xylosyltransferases that would elongate diverse XyG
side chains. For example, in Arabidopsis, XyG biosynthesis requires
at least five types of enzymatic activities: UDP-Glc-dependent glu-
can synthase to synthesize the glucan chain, UDP-Xyl-dependent
xylosyltransferases to transfer Xyl onto a specific Glc in the glucan
chain, UDP-Gal-dependent galactosyltransferases to transfer Gal
onto Xyl and elongate side chains attached to the second and third
Glc in the XyG subunit, GDP-Fuc-dependent fucosyltransferase to
transfer Fuc onto Gal in the side chain attached to the third Glc
in the XyG subunit, and finally XyG specific acetyltransferase to
attach the acetyl group to Gal.

Candidate genes encoding all these enzymes have been identi-
fied and partially characterized using a combination of biochem-
ical and genetic approaches (Figure 1). For example, the amino
acid sequence of fucosyltransferase (FUT1) purified from pea was
used to identify Arabidopsis FUT1 from the GT37 gene family (Per-
rin et al., 1999), and heterologous expression demonstrated that
Arabidopsis and pea FUT1 genes encode proteins with XyG fucosyl-
transferase activity (Perrin et al., 1999; Faik et al., 2000). Complete
elimination of fucosylated XyG subunits in the Arabidopsis FUT1
T-DNA knock-out mutant suggests that XyG specific fucosyltrans-
ferase activity in Arabidopsis is encoded by a single gene (Keegstra
and Cavalier, 2011).

XyG galactosyltransferases have also been identified. Discov-
ered in a screen for mutants with aberrant cell wall formation,
Arabidopsis thaliana MUR3 (Reiter et al., 1997) encodes a XyG
galactosyltransferase that adds galactose specifically to the third
xylosyl residue, forming an XXLG subunit (Madson et al., 2003).
More recently, a second XyG galactosyltransferase was discovered
by RNA-Seq analysis of developing nasturtium seeds and then
confirmed by mutation of the Arabidopsis ortholog (At5g62220).
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FIGURE 1 | The structure of the XLFG XyG subunit. Glycosy! transferases
known to form particular linkages are shown in corresponding positions.
The catalytic activity of XXT5 and XLT2 has not been confirmed.

The Arabidopsis gene, named XyG L-side chain galactosyltrans-
ferase (XLT2) showed no redundancy with MUR3, and is required
for galactosylation of the second xylose in the XyG subunit (Jensen
etal., 2012).

A gene family (CAZy GT34Family), containing seven genes
spread among three clades in Arabidopsis, was identified and
predicted to encode XyG xylosyltransferases (Faik et al., 2002).
Heterologous expression of two of those genes, XXT1 and XXT2,
demonstrated that the encoded proteins have xylosyltransferase
activity (Cavalier and Keegstra, 2006). The studies also demon-
strated that XXT1 and XXT2 have the same substrate-acceptor
specificity, catalyzing the substitution of two glycosidic residues
in adjacent positions, and thereby generating a GGXXGG struc-
ture. Also, xxtI xxt2 double mutant plants lack detectable XyG in
their cell walls (Cavalier et al., 2008), confirming that XXT1 and
XXT?2 are XyG xylosyltransferases that are essential for XyG for-
mation. Application of reverse genetics demonstrated that another
member of the GT34 gene family, XXT5, is also involved in XyG
biosynthesis, although its activity has not been demonstrated
in vitro (Zabotina et al., 2008). The lack of detectable XyG in the
xxtl xxt2 double mutant plants challenges conventional models
for the functional organization of the primary cell wall and also
existing assumptions about linkage-specific enzyme relationships
in polysaccharide biosynthesis. The xxtI and xxt2 single mutant
plants each have only a slight decrease in XyG content, but the xxt5
single mutant has a 50% reduction in XyG content and the XyG
that is made in the xxt5 mutant plant shows an altered subunit
composition (Zabotina et al., 2008). However, the knock-out of
XXT5 does not eliminate xylosylation of any particular glucose
in the XyG backbone, which suggests that the absence of XXT5
protein is compensated for, at least in part, by the presence of the
other two xylosyltransferases. Thus, the ability of XXT1 and XXT2
to partially compensate for the lack of XXT5 in synthesizing fully
xylosylated XyG subunits raises questions about their specificity
with respect to which glucose in the glucan backbone is the target
of their activity. The studies of two additional double mutants,
xxtl xxt5 and xxt2 xxt5, as well as a triple mutant line, xxfI xxt2
xxt5, revealed further complexity in the functional relationship of
XXT proteins. A combination of biochemical and immunological
analyses (Zabotina et al., 2012) demonstrated that either XXT1
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or XXT2 alone is sufficient to synthesize the complete set of XyG
subunits, although in significantly lower amounts compared with
plants that have XXT5 in addition to XXT1 and XXT?2. Thus, either
XXT1 or XXT2 is capable of adding all three of the xylosyl residues
present in XyG; this confirms earlier in in vitro experiments (Cava-
lier and Keegstra, 2006). However in vivo, the efficiency of XXT1 or
XXT2 when functioning alone is significantly lower than when the
three proteins are present together. Also, although the XXT5 pro-
tein itself does not seem to be capable of adding xylosyl residues to
the XyG backbone in vivo, the lack of this protein causes the most
dramatic impact on XyG biosynthesis.

The XXTI, XXT2, and XXT5 double and single mutant
phenotypes indicate that these loci encode the major XyG
xylosyltransferases. Two members of the Arabidopsis G134
gene family (At4g37690 and At2g22900) are closely related to
the galactomannan galactosyltransferases identified by Edwards
et al. (1999), which suggests that they encode galactosyl-
transferases (Keegstra and Cavalier, 2011). Two other mem-
bers of this family (Atlgl8690 and Atlg74380) are expressed
at very low levels in all tissues that were examined
(http://www.weigelworld.org/resources/microarray/ AtGenExpress/;
Schmid et al., 2005) and are therefore unlikely to contribute sig-
nificantly to XyG biosynthesis. This supports the hypothesis that
XXT1, XXT2, and XXT5 are the main XyG xylosyltransferases that
synthesize XyG, at least in the major plant tissues. Analysis of
microarray data showed that these three XXT genes are expressed
in all tissues that were analyzed, but have different levels of expres-
sion. In the majority of tissues, XXT2 has approximately twofold
higher expression than XXT1 and XXT5, but XXT2 and XXT5
have comparable expression levels except in a few specialized tis-
sues such as stamen and root pericycle, where XXTT has the highest
expression level of the three genes.

The members of the GT2 gene family, Arabidopsis cellulose
synthase-like C genes (CSLC4, CSLC5, and CSLC6) are believed
to be involved in XyG biosynthesis, being implicated in glucan
backbone synthesis. Initially, CSLC4 was identified as a candidate
gene for the (1,4)-B-glucan synthase in nasturtium and Arabidopsis
(Cocuron et al., 2007). Heterologously expressed in Pichia pastoris
cells, CSLC4 produces cellodextrins. Moreover, when XXT1 was
co-expressed in the same cells, longer chains were detected, indicat-
ing that XXT1 can assist CSLC4 in glucan synthesis. Since yeast cells
cannot produce UDP-xylose, xylosylation of the synthesized glu-
can oligomers was not observed. Later, reverse-genetic studies sug-
gested that two other genes, CSLC5 and CSLCS, are also involved
in XyG biosynthesis (Cavalier and Keegstra, 2010). Among these
three genes, CSLC4 has higher levels of expression in all Arabidop-
sis tissues and also is expressed in the same tissues and with the
same developmental timing as the XXT's, but expression of CSLC5
and CSLC6 is limited to specific tissues (Schmid et al., 2005).

In Arabidopsis XyG, acetyl groups are exclusively linked to
galactosyl residues. Recently, the putative XyG specific acetyltrans-
ferases, AXY4 and AXY4L, were discovered in Arabidopsis using a
forward genetic screen (Gille et al., 2011), although their catalytic
activity and substrate specificity have yet to be confirmed. It is
also unclear whether AXY4 attaches acetyl groups to all galactosyl
residues or only to some of them, and whether this happens dur-
ing XyG biosynthesis or after XyG is completely synthesized. When

AXY4 was overexpressed in wild type Arabidopsis, cell wall XyG still
contained unacetylated galactoses (Gille et al., 2011), suggesting
the possible involvement of other AXY proteins. Whether AXY4
can interact with any of the proteins involved in XyG biosynthe-
sis remains to be investigated as part of an exploration of the
biological role of XyG acetylation.

DOES A XyG SYNTHASE COMPLEX EXIST?

Identification of glycosyl transferases that can potentially fully dec-
orate the XyG glucan backbone and synthesize the complete XyG
structure (Figure 1) stimulated further investigations to under-
stand their functional organization in the Golgi. The few available
examples suggest that glycosyl transferases localized in the Golgi
might function in multiprotein complexes (Atmodjo et al., 2011;
Harholt et al., 2012). Indeed, recent data suggest that proteins
involved in XyG biosynthesis are co-localized in multiprotein
homo- and hetero-complexes and most likely interact through
their catalytic domains. For example, BiFC assays using Arabidop-
sis protoplasts transiently expressing transferases fused with the
C and N parts of YFP demonstrated approximate co-localization
of XyG xylosyltransferases in two hetero-complexes, XXT2-XXT5
and XXT1-XXT2; XXT2 was also shown to form an XXT2-XXT2
homo-complex (Chou et al., 2012). Using the same approach,
XXT5 and CSLC4 were shown to form a hetero-complex, XXT5-
CSLCA4. Results from in vitro pull-down experiments using recom-
binant proteins expressed without transmembrane domains con-
firmed the interactions between XXT2 and XXT5, and XXT1
and XXT2, suggesting that these proteins can physically interact
through their catalytic domains (Chou et al., 2012).

Arecent study (Davis et al., 2010) suggested that CSLC4 is posi-
tioned in the Golgi membrane with its active loop and both C-
and N-termini protruding to the cytosolic side of the Golgi. BiFC
assays showed that CSLC4 forms homo-complexes and switching
the C and N YFP fragments fused to either the C or N-terminus
of CSLC4 did not affect the intensity of reconstituted YFP fluo-
rescence (Chou et al., 2012). This suggests that both termini are
localized close to each other, while the CSLC4 active loops are
positioned on the outer sides of the homo-complex, farther from
each other.

Similarly, BiFC assays demonstrated that MUR3 and FUT1 also
co-localize and interact with each other and with either XXT2 or
CSLCA4. These results have yet to be confirmed by an independent
approach, but it is plausible to believe that during XyG forma-
tion, these proteins likely come into close proximity to XXTs to
finalize the complete XyG structure. Whether all these proteins
form a single multiprotein complex or a more dynamic structure
that differs in different situations has yet to be investigated. For
example, it has been suggested that the fucosyltransferase FUC1
functions independently from glucan elongation and xylosyla-
tion (Faik et al., 1997a,b). After using pea microsomal fractions
to study XyG formation in vitro, the authors proposed that fuco-
sylation of galactosylated heptasaccharide occurs after complete
formation of the glucan backbone. Additionally, Chevalier et al.
(2010), using Arabidopsis XXT1, MUR3, and FUT1 fused with
GFP and expressed in N. tabacum BY-2 cells, showed that XXT1
and MURS3 localized predominantly in Golgi cis and medial cis-
ternae, respectively, but FUT1 was detected in trans cisternae. This
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localization supports the hypothesis that the fucosyltransferase
may be spatially independent. However, it is worth noting that
tobacco XyG does not contain terminal fucose in its subunits;
therefore Arabidopsis FUT1 may not have been able to establish
the proper interactions to be correctly localized in N. tabacum
Golgi. Further elucidation of the structure of the XyG synthase
complex is needed to understand its functions, and the regulation
of XyG biosynthesis. It is hypothesized (Gunl et al., 2011) that
XyG synthesized in Golgi has, most likely, an XXXGXXFG repeat-
ing pattern and the diversity of XyG structure is created after its
deposition into the cell wall. This regular structure would derive
most efficiently from cooperative action of multiple XyG biosyn-
thetic enzymes organized in a multiprotein complex in the Golgi,
rather than from spatially and functionally independent enzymes.

CONCLUDING REMARKS

During the last decade, significant progress has been made
in revealing the proteins involved in XyG biosynthesis, which,
together with detailed structural studies, makes this important

cell wall polysaccharide a good model for examining the mystery
of polysaccharide evolution, formation, and modification. Accu-
mulating evidence demonstrates that the evolution of polysaccha-
ride structural complexity during land colonization produced key
adaptations, including cell wall mechanical strengthening needed
to support plants in the absence of water buoyancy and to pro-
tect them against biotic and abiotic environmental stresses. To
provide this complexity, plants evolved complex and dynamic
polysaccharide synthesizing machinery localized in the Golgi.
Enzymes involved in polysaccharide biosynthesis are most likely
organized in multiprotein complexes, the structure of which is
probably dynamic, varying in different plant tissues and through-
out plant development. The structural organization and regulation
of XyG and other polysaccharide synthase complexes remain to be
uncovered in the future.
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