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Networks are used to model various complex systems whose units
interact in an intricate manner. The units are represented by nodes
and the interactions by links. Topology studies the static structure
of a network while the dynamics on a network describes what hap-
pens on a given realization of a network, i.e., on a fixed topology.
This article focuses on the simplest dynamics on a network, each
node i having a Boolean value o; € {0, 1} which may change in
time while the topology remains fixed.

Although Boolean models represent a strong simplification of
reality, for several cases they were shown to correctly capture the
essential dynamics such as the correct pattern of expressed and
suppressed genes, see (Albert and Othmer, 2003; Li et al., 2004).

THE N-K-MODEL

Kauffman (1969) introduced a Boolean network he called N-K-
model. In this model each of the N nodes have exactly K incoming
links. Topologically, it is a directed graph with N nodes and N-K
random links in between. The dynamics is incorporated by a
Boolean function f; at each node i which describes how the value of
a given node changes with time. In spite of its simplicity, the model
has not been understood analytically until the 2000s. Figure 1
shows an N-K-model with N=5and K=2.

The dynamics, i.e., how the nodes blink, can be quantified by
the statistics of the attractors. An attractor is a series of repeating
system states which is reached after passing through a number of
transient system states. The set of all possible patterns of node
values forms the state space of a network, consisting of 2N states. It
is important to understand the difference between node space and
state space. For gene regulation, node space contains all genes while
state space comprises all (mathematically) possible expression pat-
terns. In node space, the links symbolize how genes influence each
other. In state space, the links between different expression patterns
stand for predecessor-successor relationships.

In a network, the components of a given system are represented as nodes, the interac-
tions are abstracted as links between the nodes. Boolean networks refer to a class of
dynamics on networks, in fact it is the simplest possible dynamics where each node has
a value 0 or 1. This allows to investigate extensively the dynamics both analytically and by
numerical experiments. The present article focuses on the theoretical concept of relevant
components and theirimmediate application in plant biology. References for more in-depth
treatment of the mathematical details are also given.
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The state space of N-K networks is finite (even if extremely
large) and the dynamics is deterministic. These two ingredients
guarantee that a time series of repeating states will eventually end
up on an attractor, like those depicted by the gray boxes in Figure 2.

The mean number and length of attractors in critical networks
has been the subject of a number of publications (see Appendix).
Here they should serve as an example system to demonstrate the
method of relevant components. Kauffman expected the attrac-
tor length to scale with the square-root of the number of nodes,
this fit his idea that attractors correspond to cell-types and nodes
correspond to genes. However, it turned out, that some of the
numerical results were actually artifacts of the limited computer
power back then. Some decades later, Samuelsson and Troein
(2003) contributed an elegant but elaborate proof which ended
the discussion.

DYNAMICAL COMPONENTS

The so-called relevant components are key ingredients for calcu-
lating the number and length of attractors of a Boolean network.
The main idea is that there are three types of nodes:

1. Frozen nodes (like node e in Figure 1 which is always red) stop
blinking after some time and are afterward no longer important
for the dynamics.

2. Irrelevant blinking nodes (node a and b in Figure 1) have
dynamics completely determined by other nodes. They are
arranged as a subset of nodes without any cycles. Nodes which
do not influence any other node can be cut off when searching
for the attractor. After such a pruning step there are possibly
new nodes which do not influence any other node and one
can repeat the pruning step as long as there are nodes with no
outgoing links. We will end up with cutting all outgoing trees
of nodes whose dynamics is irrelevant for the length of the
attractor.
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3. Finally, only relevant nodes (nodes ¢ and d in Figure 1) are left,
each influences at least one other relevant node.

The relevant nodes form relevant components. It has been
shown that there are of the order of log N such components.
Furthermore, it is known that most components are simple loops
(like nodes ¢ and d in Figure 1). Usually only the largest compo-
nent is more complex, e.g., having an extra link within. If (i) the
distribution of the components is known and (ii) the dynamics
of each of them is understood, the overall attractor length of the
system can be calculated. Simple combinatorics say that the least
common multiple of the individual components’ attractor lengths
give the overall attractor length of a given network realization, see,
e.g., Reviews (Aldana et al., 2003; Drossel, 2008).

Coexpressed genes might be blinking, but that does not nec-
essarily mean that they are relevant. If one uses an algorithm to
construct a network topology based on coexpression it cannot be
decided yet. Once when the regulatory functions are identified, the
method of relevant components can be applied and this possibly
leads to more insight into the dynamical role of each node.

o oa(t+1

) =fa(0a,0p) = op(t)

e op(t+1) =fp(0a,0c) = oc(t)
oc(t+1) =fe(oc,0q) = a(t)

oi(t+1) =fa(oc,0¢) = oc(t)

Te(t+1) =fe(ogq,0¢) = 0e(t)

FIGURE 1 | At the current time step, node a and c are off (0, black), the
others are on (1, red). The functions .. ..e with K=2 effectively depend
only on one input, non-used links are grayed-out. Here, all functions
describe a simple “copy"”-operation, e.g., f, says that node a will take the
value o, at the next time step.

MODIFYING THE UPDATING SCHEME

Up to now it was quietly assumed that all nodes of the networks are
updated synchronously at discrete time steps. The parallel update
of all nodes at the same time is handy for computer experiments,
but on biological scales time is continuous and this assumption
of synchronous update usually does not hold. To account for this
flaw, different asynchronous updating schemes have been intro-
duced, the extreme is a fully asynchronous version where the value
of a given node is changed at random times (but still according to
a fixed Boolean function). The approach of the relevant compo-
nents can still be applied since it is independent of the updating
scheme. Again, the knowledge about (i) the statistics of the rele-
vant components and (ii) the individual dynamics is put together
and a conclusion for the overall dynamics can be drawn.

For asynchronously and stochastically updated N-K-models
one finds the original square-root behavior for the scaling of the
attractor length with the network size (Greil and Drossel, 2005).
The main reason for this result is that the number of repeat-
ing states per component becomes smaller while the distribution
remains the same.

MODIFYING THE NETWORK TOPOLOGY

In the previous section the distribution of relevant components
remained unchanged while the components’ dynamics was mod-
ified, now it is vice versa. Assuming synchronous dynamics, the
effect of topological changes can be studied. As there are no living
systems where all genes are regulated by exactly two other genes,
one can have look at a scale-free in-degree distribution, i.e., the
fraction P(K) of nodes having K in-links scales as P(K) ~ K™Y
(with typically 2 <y < 3). Such scale-free networks are found to
be abundant in nature (Albert and Barabasi, 2002).

It is possible to derive a formula for the number of non-
frozen nodes (Drossel and Greil, 2009) which helps to setup
the distribution of relevant components and eventually leads to
mathematical statements about the dynamics.

For biology, applying Boolean models to experimentally deter-
mined topologies is more interesting. The Boolean toolbox has
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FIGURE 2 | Part of the state space for Figure 1 under synchronous
updating. Each snapshots is a system state, the thick arrows indicate
which state follows in time. Depending on the initial state, the system
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ends up on one of the attractors (shaded rectangles). For the 16 (of 2°)
states shown here, it can either be a 2-cycle or one of the two fixed
points.
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g m z update leadsto ¢’ m’ 2

0 0 0 0 (D> 0 0 0 0]

0 0 0 1 —2)—> 0 0 0 0

0 0 10 —)> 0 0 00

0 0 I 1 not biological

0 1 00 —()> 0 0 00

0 1 0 1 —)> 0 0 00

0 1 1 0 —2)> 0 0 0 0

0 1 11 not biological

1 0 00 —3)> 1 1 0 1

1 0 0 1 —(5)—> 1 1 0 1

1 0 1o —)> 0 0 0

1 0 1 1 not biological

1 1 0 0 —(4)—> 1 1 1 0

1 1 0 1 —(6)—> 1 1 1 0

1 1 1.0 —(6)—> 1 1 1 0]

1 1 11 not biological
FIGURE 3 | Simplified state space of the leaf epidermis gene regulatory
network where the variables g, m, z have an indirect biological
meaning, see Appendix. The number in brackets gives the corresponding
row of Table A4 in Appendix. The state z is represented by two internal
Boolean variables, as a side effect there are states without biological
counter-part. The framed rows are the two fixed points.

been successfully applied to various gene regulation networks of
different species (Wang and Albert, 2009). Let us conclude with
showing how the gene regulation network of Arabidopsis thaliana’s
leaf epidermis gene regulation can be translated into Boolean lan-
guage and the state space can be simplified. This system is a model
experimental system in plant biology (Grebe, 2012). Starting point
for our analysis is the dynamic model by Benitez et al. (2008)
who integrated experimental data into a model which allowed to
recover spatial cell patterns on leaf epidermis. The network is given
as mixture of node and state space (see Appendix) which makes it
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APPENDIX

CRITICAL RANDOM BOOLEAN NETWORKS

In the manuscript critical random Boolean networks have been
chosen as example system to present the concept of relevant
components. The term “critical” needs more explanation.

In general, the dynamics of a Boolean network can be classified
into two phases. In the frozen phase, all nodes apart from a small
number have a constant value after a certain transient time (the
number of updates until an attractor is reached). If the value of
one node is changed in the stationary state, the perturbation prop-
agates during one time step to less than one other node on average.
In the chaotic phase, attractors are long, and a non-vanishing pro-
portion of all nodes keep changing their value even after long
times. A change of the value of a node affects on average more
than a single node.

The focus usually lays at the border between the two phases, on
so-called critical networks, since they combine stability against
node-flips and adaptability in terms reasonable long transient
times. Both features mimic biology where not every fluctuating
environment should cause a change of the regulation, but if it
does, it should happen reasonably fast.

As mentioned in the main text, the mean number and length of
attractors in critical networks have been the subject of a number
of publications, see Table A1 in Appendix. The discussion was put
to an end by mathematical proofs.

SIMPLIFYING ARABIDOPSIS’ LEAF EPIDERMIS NETWORK

The purpose of this section is to illustrate which nodes of the orig-
inal A. thaliana’s leaf epidermis discrete network model have been
clustered (CPC, ETC, TRY) or left out (GL2, TTGI) and for what
reason, see Figure A1 in Appendix for an overview.

Table A1 | Different results for the mean number (v) and the mean
length (A) of attractors in the course of time.

Kauffman (1969) 1969 (v), (A) ~ VN
Bastolla/Parisi, Physica D 115 1998 (v), (Ay > NXVy
Bilke/Sjunnesson, Phys. Rev. E 65 2002 (v)y~N
Socolar/Kauffman, PRL 90 2003 (v)y ~ NX, x>1
Samuelsson and Troein (2003) 2003 (v) >N*Vx
Mihaljev/Drossel, Phys. Rev. E 74 2005 (v), (Ay > NXvx

N is the number of nodes in the network. The last two papers are fully analytical.

Y{0,1,2}

(6L} D
<®
N o=

FIGURE A1 | Hybrid sketch of Arabidopsis thaliana's leaf epidermis
regulation before and after the simplification. All nodes from the original
variant (Benitez et al., 2008) are labeled by 3 or 4 letters. The simplified
system consists of three nodes g, m, z only, highlighted by red shaded
rectangles. The auxillary variable Y (light gray shaded) is not required any
more, while Z€{0, 1, 2} is transformed into two Boolean nodes z€{00, 01,
10, 11}

(CPCJ

Table A2 | X indicates that, given the entrances of the rest of the table,
the node can take any value.

GL1 GL3 EGL3 TT1G1 Y
0 X X X 0
X GL3+ EGL3=0 X 0
X GL3+ EGL3<3 0 0
1 2 2 1,2 2
2 X 1,2 2
2 1 2 1,2 2

Else 1

The involved genes are GLabra and TransparentTestaGlabra. The table is identical
to the original one in the Appendix of Benitez et al. (2008).

Table A3 | Table for Z, cited from Benitez et al. (2008).

TRY CPC ETC z
0 CPC+ETC<2 0
0 2 0 0
2 CPC+ETC>0 2
1 2 X 2

Else 1

The rules hold for CaPriCe, TRiptYchon and the EnhancerOfTryAndCpc1.

Table A4 | The overall dynamics can be formulated in terms of Y and Z.

Y z GL1 (E)GL3 GL2 TT1G1 ETC CcPC

0 0 1 0 0 1 0 0
Y<Z 1 0 0 1 0 0

1 0 2 1 1 1 1 1

2 0 2 1 2 1 2 2

1 1 2 1 1 1 1 1

2 1.2 2 1 2 1 2 2

In contrast to Benitez et al. (2008), the columns for EGL3 and GL3 are merged.

The genes within the set Z are inhibitors preventing the expres-
sion of GL2, a gene that is only expressed in the leaves of the
plant. This produces proteins which form protein complex that
up-regulates GL2.

After evaluating Tables A2 and A3 in Appendix, we have values
for Y and Z with which we go into Table A4 in Appendix to deter-
mine the succeeding system state. All this is performed within a
single update step of the whole network.

These original conditions can be simplified by the following
steps:

1. Leaving out EGL3 is a reasonable from a dynamical perspective
since it is nearly entirely determined by GL3.

2. Since GL2 is a simple copy-node, we can cut out the node
such that TRY receives its input from Y directly. This pruning-
procedure is common to reduce the state space’s size.

3. Since CPC, ETC, and TRY always change their state together,
we only take into account the state of the activator complex Z.

In the main text, we abbreviated GL3 as m (for main), GLI as
g and z is the Boolean representation of Z. Note that we changed
the set of values from GLI € {1, 2} to g€ {0, 1}.
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