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The regulation of protein function by modulating the surface charge status via sequence-
locally enriched phosphorylation sites (P-sites) in so called phosphorylation “hotspots” has
gained increased attention in recent years. We set out to identify P-hotspots in the model
plant Arabidopsis thaliana. We analyzed the spacing of experimentally detected P-sites
within peptide-covered regions along Arabidopsis protein sequences as available from the
PhosPhAt database. Confirming earlier reports (Schweiger and Linial, 2010), we found that,
indeed, P-sites tend to cluster and that distributions between serine and threonine P-sites
to their respected closest next P-site differ significantly from those for tyrosine P-sites.The
ability to predict P-hotspots by applying available computational P-site prediction programs
that focus on identifying single P-sites was observed to be severely compromised by the
inevitable interference of nearby P-sites. We devised a new approach, named HotSPotter,
for the prediction of phosphorylation hotspots. HotSPotter is based primarily on local amino
acid compositional preferences rather than sequence position-specific motifs and uses sup-
port vector machines as the underlying classification engine. HotSPotter correctly identified
experimentally determined phosphorylation hotspots in A. thaliana with high accuracy.
Applied to the Arabidopsis proteome, HotSPotter-predicted 13,677 candidate P-hotspots
in 9,599 proteins corresponding to 7,847 unique genes. Hotspot containing proteins are
involved predominantly in signaling processes confirming the surmised modulating role of
hotspots in signaling and interaction events. Our study provides new bioinformatics means
to identify phosphorylation hotspots and lays the basis for further investigating novel candi-
date P-hotspots. All phosphorylation hotspot annotations and predictions have been made
available as part of the PhosPhAt database at http://phosphat.mpimp-golm.mpg.de.
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INTRODUCTION
Protein phosphorylation is one of the most significant and best
characterized posttranslational modifications involved a wide
range of molecular regulatory and signaling mechanisms (John-
son, 2009). Conventionally, functionally relevant phosphorylation
sites (P-sites) have been regarded as precisely defined sites within
proteins. Their exact location along the protein sequence, and
thus in the three-dimensional structure, was thought to be a key
determinant for their exerted function, for example, by induc-
ing conformational changes of the associated protein allowing
for allosteric regulation (Barford et al., 1991). In agreement with
this view, functionally relevant P-sites have been observed to be
conserved in evolution such that their position in the sequence
and structure of proteins is maintained across different bacteria
(Macek et al., 2007), plants (Nakagami et al., 2010), vertebrates
(Malik et al., 2008), and eukaryotes in general (Boekhorst et al.,
2008). This conclusion has been challenged by other studies that
reported that P-sites are no more conserved than expected by
chance (e.g., in a comparison of mouse and human; Jimenez
et al., 2007). In a recent survey of amino acid changing poly-
morphisms across many Arabidopsis thaliana accessions, it was

concluded that serine, threonine, and tyrosine sites associated with
phosphorylation events were indeed statistically more conserved
than their non-phosphorylated counterparts. However, statistical
significance was established at p= 0.03 only (Joshi et al., 2012).
Given that several thousands of positions were included in the
test, this weak significance is rather surprising.

An alternative view on the role of P-site localization and the
consequences for protein function emerged when it was observed
that, rather than individual sites with determined position, clus-
ters of P-sites appear to be functionally significant, in which the
exact location of individual P-sites belonging to the cluster seems
less important (Moses et al., 2007). Instead, the combined effect
of the individual sites on the local electrostatic surface potential
appears to be relevant. For example, in an analysis of P-sites in cell-
cycle dependent kinases (Cdk1) across several ascomycete species,
it became evident that instead of the individual sites, a rather
unspecific cluster of P-sites with evolutionarily rapidly changing
positions of individual P-sites appeared to be conserved and thus
functionally relevant for modifying protein–protein interactions
(Holt et al., 2009). Similarly, the function of the protein Ste5,
involved in the regulation of cell cycle in yeast in response to
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pheromones, was observed to be regulated via eight poorly con-
served serine and threonine P-sites (Strickfaden et al., 2007). The
regulatory switch was identified as a disruption of Ste5 binding
to the inner leaflet of the cellular membrane caused by the neg-
ative charges transferred by phosphorylation. It has furthermore
been argued that, if the exact location of a particular P-site is not
conserved, the mechanism of phosphorylation-mediated signal-
ing can still be preserved if alternative sites are phosphorylated by
orthologous kinases in the respective organism (Tan et al., 2010).
Consequently, effects mediated via the electrostatic surface poten-
tial alone rather than position-specific changes of protein struc-
ture were increasingly discussed as possible modes of action of
phosphorylation-mediated regulation (Serber and Ferrell, 2007).
For surface electrostatics to take effect, all that is required is a
local accumulation of charges reflected by a tendency for P-sites to
cluster along the sequence and structure of proteins. The precise
location of P-sites would then be secondary in this respect. Indeed,
such clusterings of P-sites, so called P-hotspots, have been observed
for individual proteins, e.g., CDK targets (Moses et al., 2007) and
on a broader proteomic scale in the plant A. thaliana (Riano-
Pachon et al., 2010), as well as across several species (Schweiger
and Linial, 2010). P-sites, especially phosphorylated serines (pS)
and threonines (pT), and to a lesser extent tyrosines (pY), were
shown to cluster more than expected by chance, which included
accounting for the background distribution of serines, threonines,
and tyrosines as well as taking into account the reported tendency
of P-sites to preferentially occur in disordered regions (Dunker
et al., 2002; Iakoucheva et al., 2004; Schweiger and Linial, 2010).

For the computational prediction of individual P-sites from
protein sequence information alone, several software programs
have been developed and are broadly available (for review, see
Trost and Kusalik, 2011). Predicting P-hotspots in proteins then
appears to simply be possible by choosing a preferred P-site predic-
tion tool and then identifying clusterings of predicted sites along
the sequence. However, here we show that this approach is ham-
pered by the dense clustering of P-sites in hotspot themselves.
When applied to the Arabidopsis genome, we demonstrate here
that the Arabidopsis-trained P-site prediction method integrated
in the PhosPhAt database cannot faithfully reproduce the actually
observed distance relationships between consecutive experimen-
tally determined P-sites. As the distance between consecutive P-
sites is very short, 54% of all pS and pT sites are within four amino
acids from another P-site (Schweiger and Linial, 2010), extract-
ing a sequence motif for single and isolated sites is compromised
by neighboring P-sites falling into the sequence window used in
the prediction leading to poorly defined compositional profiles
in the flanking sequences. For example, assuming that there may
exist P-site tandems (pairs of sequence consecutive P-sites), for
the N-terminal P-site, a C-terminal neighboring P-site (i.e., ser-
ines, threonines, or tyrosines) will be extracted, but for the second,
C-terminal P-site an N-terminal position will appear enriched.
Taken together, no clear sequence profile will be discernible.

Here, we analyzed the largest available set of experimentally
detected P-sites in A. thaliana from the perspective of P-site clus-
tering along the sequence, thereby confirming findings reported
in earlier studies using different datasets (Schweiger and Linial,
2010). We furthermore investigated the spacing characteristics

considering both the limited experimental coverage of protein
sequence regions as well as the underlying spacing tendencies of
serine, threonine, and tyrosine amino acid residues themselves.

Motivated by the shortcomings of predictors of individual P-
sites to faithfully identify P-hotspots, we present a novel approach
to the prediction of P-hotspots based on the amino acid sequence
of proteins alone. As, because of the variable spacing between
consecutive P-sites, no characteristic P-hotspot sequence motif
was detectable that would permit the use of associated predic-
tion approaches such as Hidden Markov Models (HMMs), we
used the amino acid composition of P-hotspots as the primary
feature extracted from protein sequences combined subsequently
with Support Vector Machine (SVM) based classification meth-
ods and show that P-hotspots can be predicted with reason-
able accuracy. We applied our developed P-hotspot prediction
method, named HotSPotter, to the Arabidopsis proteome and
identified candidate hotspots in several thousands of proteins.
Combined with their functional characterization via annota-
tion information, the potentially high abundance of P-hotspots
sheds further light on their significance in regulatory processes
and offers new avenues for the experimental study of P-hotspot
phenomena.

All P-hotspot annotations, both experimentally annotated
and computationally predicted sites, have been made available
as part of the PhosPhAt database at http://phosphat.mpimp-
golm.mpg.de (Heazlewood et al., 2008; Durek et al., 2010).

MATERIALS AND METHODS
MASS-SPECTRAL PEPTIDES/PHOSPHOPEPTIDES AND
EXPERIMENTALLY DETERMINED P-SITES/ARABIDOPSIS PROTEOME
Experimentally determined P-sites were obtained from the Phos-
PhAt database (Heazlewood et al., 2008; Durek et al., 2010) with
data as of March 2010. At the time of this study, PhosPhAt con-
tained information about 61,445 peptide spectra obtained from
Arabidopsis samples that map to 10,507 Arabidopsis proteins.
Filtering the dataset for unambiguously assigned P-sites in pro-
teolytic peptides resulted in a dataset of 7,214 phosphopeptides
mapping to 4,326 Arabidopsis proteins with protein sequences
obtained from TAIR, version 9 (Huala et al., 2001). This dataset
included 5,238 serine (73%), 1,433 threonine (20%), and 543 tyro-
sine (7%) P-sites, respectively. For 2,940 of the total of 7,214
experimentally verified P-sites, no other P-site was reported in
the same protein. Thus, they have been excluded from further
analysis leaving 4,274 P-sites for further studies on pairwise P-site
distances.

INTER-P-SITE DISTANCES
Sequence distances between detected P-sites, di,j= Pi− Pj, with
Pi and Pj corresponding to the respective sequence positions of
two neighboring P-sites i and j were included in the analysis of
their statistical distribution only if both sites mapped to a protein
sequence segment that was continuously covered by experimen-
tally measured peptides. Thus, potentially wrong distances due
to incomplete peptide coverage were avoided as best as possible.
For obtaining the statistics of inter-P-site distances, the respective
closest P-site (the closest of either the next P-site in N-terminal or
C-terminal sequence direction) was chosen, designated as dN.
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RANDOMIZATIONS OF P-SITE DISTRIBUTIONS
The actual distance distribution between neighboring P-sites was
compared to two sets of randomized P-site distributions. (a)
P-flag-randomization: phosphorylation flags, i.e., detected phos-
phorylations of serine (S), threonine (T), or tyrosine (Y), were
randomly reassigned to other S’s, T’s, or Y’s along the pro-
tein sequence or region with continuous peptide coverage. (b)
Sequence-randomization: the entire protein sequence (or region
with continuous peptide coverage) was randomized by ran-
domly shuffling all amino acid residue positions. Method (a)
tests whether the actually observed distances are merely a conse-
quence of the underlying S, T, Y distributions, and their positional
preferences. Method (b) destroys also these potential biases.

PREDICTED P-SITES IN THE ARABIDOPSIS PROTEOME
Computational predictions of individual P-sites were derived from
the PhosPhAt P-site predictor (Durek et al., 2010). Only predic-
tions resulting in a score >1 corresponding to high-confidence
predictions were included in the analysis yielding 92,872 predicted
P-sites associated with S, T, or Y in the Arabidopsis proteome. Thus,
approximately 4% of all STY sites in the Arabidopsis proteome
are predicted to be phosphorylated. Randomizations of predicted
P-sites were created as described above for experimental sites.

P-HOTSPOTS IN THE ARABIDOPSIS PROTEOME
Definition of P-hotspots
Sequence regions with occurrences of a least four consecutive
experimentally detected P-sites along a protein sequence with a
distance between neighboring sites of no more than 10 amino
acids were considered as P-hotspots. The minimal hotspot length
was set as 17 amino acid residues in order to provide a large enough
sequence from which to derive a somewhat meaningful composi-
tion vector. Thus, sequence windows were padded by additional
amino acid residues from the actual protein sequence beyond
the terminal pSTY positions to result in hotspots of length 17,
and minimally three residues on either side regardless of hotspot
length.

PREDICTION OF P-HOTSPOTS USING SVMs
Feature vectors, positive/negative training vectors
The prediction of P-hotspots was based on the amino acid com-
position of P-hotspots expressed as 420-dimensional vectors of
the counts of occurrences of all 20 amino acids (A, . . ., Y) and
all 400 possible amino acid dimers (AA, AC, . . ., YW, YY), both
normalized by the considered P-hotspot sequence window length.
N-to-C-terminal sequence directionality was considered in the
amino acid pair counts such that amino acids were paired up only
with their respective C-terminal amino acid residues in the same
hotspot sequence resulting in asymmetric pair counts; i.e., some
residual sequence order information is included in the prediction
method.

The 79 P-hotspot sequences detected using experimentally
identified P-sites ranging in length between 17 and 71 amino
acid residues were subdivided into all possible segments of length
17 at a one amino acid increment resulting in 365 different
segments and associated composition vectors representing the
positive examples for the classification task. Thus, the consid-
ered sequence windows overlapped. For example, two neighboring

sequence windows are identical in at least 16 positions. To account
for this redundancy, in the training and testing the available P-
hotspot sets were subdivided based on the P-hotspots. Identified
P-hotspot sequences showed low mutual sequence identity with a
median (maximal) pairwise sequence identity of 21.4% (50%)
and no matching sequence segment longer than seven amino
acid residues between any two hotspot sequences as determined
from running an all-against-all sequence alignment using the pro-
gram align0 (Myers and Miller, 1988). Lastly, it was checked
that indeed all sequences and associated feature vectors were
non-redundant.

Proteolytic peptide-covered Arabidopsis protein sequences that
are not identified as P-hotspots served as negative examples. As
in the case for P-hotspots (positive examples), the correspond-
ing consecutive sequence regions were subdivided into windows
of length 17 and the 420-dimensional composition vectors were
determined. Only those windows with serine, threonine, and tyro-
sine frequencies, respectively, as high as or greater than the lower
limit determined for P-hotspots were selected as negative exam-
ples. This requirement was introduced to safeguard against trivial
compositional differences resulting in increased phosphorylation
rates as obviously fewer phosphorylatable amino acid residues will
correlate with fewer P-sites. Furthermore, the risk of rather detect-
ing unstructured regions as opposed to P-hotspots specifically is
minimized. It is important to note that the negative set may contain
individual P-sites. However, they were not sufficiently clustered to
result in a P-hotspot assignment.

As the maximum negative set is substantially larger than the
positive set, which would potentially bias the prediction toward
specifically recognizing features associated with the negative rather
with the positive set, the negative set was downsized to a ratio of
1:8 positive vs. negative examples by random selection.

SVM-based classification
The SVM-Light software package (http://svmlight.joachims.org/)
was used as the classification engine. The radial basis function
was used as the kernel. The associated parameters γ (kernel para-
meter), and the margin parameters C (the tolerance with regard
to classification errors) and j (weight to balance errors of posi-
tive and negative examples) were identified by an exhaustive grid
search implemented as a fivefold cross-validation based on maxi-
mal F-scores (see below). Intervals and increments were chosen as
follows: C = (2−10, 2−9, 2−8, . . ., 224), γ= (2−10, 2−9, 2−8, . . ., 26),
and j = (2−2, 2−1, 2−0, . . ., 24), thus covering large intervals for
all parameters. Best performance was achieved for j = 23, C = 20,
g = 22. Furthermore, the cost associated with false positive rela-
tive to false negative predictions was set to a ratio of 8:1 reflecting
the difference in abundance in the training dataset. The perfor-
mance results of the SVM-based P-hotspot predictions (named
“HotSPotter”) were obtained in a fivefold cross-validation such
that an average of the performance metric was obtained from five
repeats of training/testing set splits of 80/20%. SVMs were trained
on the 80%-set and performance parameters obtained from apply-
ing them to the 20% hold-out set. Here, the 79 original hotspot
sequences were partitioned, and subsequently, the corresponding
feature vectors were computed. As the hotspot sequences were
largely dissimilar (see above), the performance assessment was
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effectively protected against overfitting. For the final application of
HotSPotter to the Arabidopsis proteome with all protein sequences
obtained from TAIR, version 9 (Huala et al., 2001), a final SVM
was trained based on all 79 hotspots detected based on experi-
mentally detected P-sites and applied to the Arabidopsis proteome
in order to detect additional phosphorylation hotspots. Predic-
tions were considered positive; i.e., a sequence window of length
17 was considered a P-hotspot segment, if the obtained SVM score
was greater than initially 0, and subsequently when applied to
the entire proteome, >1 to reduce the number of false positive
predictions.

Post-prediction filtering and consolidation
Initially, all 12,866,960 possible overlapping 17-mers of the Ara-
bidopsis proteome (33,410 proteins, TAIR-9; Huala et al., 2001)
were subjected to the SVM classification. Subsequently, consec-
utive runs of positive predictions were consolidated into runs
and filtered as follows. Every run consisting of consecutive pos-
itive predictions was tested to contain at least four S, T, or Y
amino acid residues with the largest sequence spacing between
them of no more than 10 amino acid residues; i.e., the same
criteria as imposed on the experimental hotspots were applied.
As prediction windows overlapped, predictions could poten-
tially be conflicting for one and the same sequence position.
For example, a 17-mer was predicted with positive score, while
the adjacent 17-mer was predicted negative leading to con-
flicting assignments for 16 residue positions. In this case, the
positive predictions took precedence. Furthermore, neighboring
runs with fewer than or equal to 17 (window length) residues
between their respective start positions were merged into a sin-
gle run as they overlapped, but were interrupted by negative
predictions.

GO TERM ENRICHMENT ANALYSIS
Enrichment analysis of gene ontology (GO) terms in proteins
observed and predicted to harbor P-hotspots was performed using
the as described in Walther et al. (2007) applying a Fisher exact
test with subsequent Benjamini–Hochberg correction (Benjamini
and Hochberg, 1995) and using detailed GO and GO-slim term
annotations as available from TAIR (Huala et al., 2001).

Tests were performed separately for the function, process, and
component GO term categories. The entire Arabidopsis proteome
minus the set of proteins to be tested and associated GO term
annotations served as the respective reference sets.

PREDICTION OF DISORDERED REGIONS IN ARABIODPSIS PROTEINS
Disordered regions in all 33,410 TAIR-9 Arabidopsis proteins
were predicted using the program GlobPlot (Linding et al.,
2003). GlobPlot was executed locally using the Globe Pipe script
downloaded from http://globplot.embl.de/ and applying the rec-
ommended default parameters (webserver settings): Smooth-
Frame= 10, DOMjoinFrame= 15, DOMpeakFrame= 74, DIS-
joinFrame= 4, and DISpeakFrame= 5. Of all predicted disor-
dered regions, only the 42,517 disordered regions of length 17 or
greater were considered for further analyses to match the minimal
length of predicted hotspot regions.

OVERLAP OF P-HOTSPOTS AND DISORDERED REGIONS,
RANDOMIZATION OF P-HOTSPOT POSITIONS IN THE ARABIDOPSIS
PROTEOME
P-hotspots and disordered regions were considered overlapping
if at least three consecutive amino acid residues were shared
between them. To compare the actual overlap of predicted disor-
dered regions and P-hotspots with random expectations, all 13,677
HotSPotter-predicted P-hotspots (SVM score >1) were reassigned
to random positions in the Arabidopsis proteome by randomly
choosing for all hotpots an Arabidopsis protein and then position-
ing the hotspot to a random position along the protein’s sequence
and disallowing any hotspot overlaps. This process was repeated
10 times to obtain an average statistic.

RESULTS
DISTRIBUTION OF P-SITES IN THE ARABIDOPSIS PROTEOME
We first characterized the sequence distances, dN, between P-sites
to their respective closest neighboring P-site along the protein
sequence as observed in peptide-covered regions in the Arabidopsis
proteome. Because the obtained distance distributions for serine
and threonine P-sites were found to be very similar, we treated
them as a single event. As shown in Figure 1A and confirming
earlier findings reported for a larger set of 51,000 P-sites from
multiple organisms (Schweiger and Linial, 2010), we found that for
phosphorylated serine and threonine residues and their distances
to respective closest neighboring P-sites, there is a pronounced
peak at distance dN= 2 with an overall decreasing frequency of
pair distances with increasing sequence separation. Note that the
decreasing frequency with increasing sequence separation is to be
expected as the probability that a sequence region is not phos-
phorylated – qualifying it as a spacing sequence between two
neighboring P-sites – also falls. In contrast, the distribution of
sequence distances of pYs (Figure 1B) to any other P-site was
clearly different (p= 0.0015 in a chi-squared test for homogeneity
comparing d(pY, pSTY) and d(pST, pSTY), exhibiting a monoto-
nically decreasing frequency for increasing sequence separation.
Compared to randomized protein sequences (Figure 1C), the
enrichment of close sequence positions of neighboring P-sites of
actual P-sites becomes evident. While for real P-sites, about 10%
of all P-neighbor distances are at dN= 1 and close to 50% of pair-
wise distances are found within dN < 6, the equivalent number is
only about 1% for randomized sequences and only about 6% of
all distance intervals at dN < 6. Thus, P-sites tend to cluster also
when considering MS-peptide-covered sequence regions only.

Evidently, the distribution of P-sites along protein sequences
is strongly influenced by the distribution of phosphorylate-able
amino acid residue types themselves. We performed two different
types of randomizations – one with randomly reassigning experi-
mentally confirmed P-events to the real und unchanged positions
of phosphorylate-able amino acid types, termed P-flag random-
ization, and another, termed sequence-randomization, in which
the whole protein sequence was shuffled, thus destroying also
any preferences of pairwise distances of phosphorylate-able amino
acid types. Comparing both randomization approaches allows to
better assess the influence of the underlying serine and threo-
nine distributions on the observed actual distance distributions.
Interestingly, the peak at interval dN= 2 is also evident in the
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FIGURE 1 | Frequency distribution of sequence distances between
neighboring P-sites between (A) any pST and any other site P-site pSTY,
(B) any pY and any other P-site. As for the respective neighboring site, no
distinction was made as to what amino acid residue type (either S, T, or Y) was
found phosphorylated. (C) Equivalent distributions for P-flag-randomized and

sequence-randomized protein sequences averaged over 100 repeat runs for
nearest pST and pSTY distances. (D) Similary for pY, pSTY distances. In
P-flag, phosphorylation signals were randomly redistributed among the
existing serines and tyrosines, whereas in sequence-randomized runs, the
entire protein sequence was randomized.

P-flag randomization runs, while the decay in relative frequency is
monotonic if the whole protein sequence is randomized. Thus, it
can be concluded that the observed preference for the sequence
interval dN= 2 for neighboring P-sites appears to be largely a
consequence of the distribution of the serines and threonines
themselves favoring distance intervals 2.

CHARACTERISTICS OF ACTUAL P-NEIGHBOR DISTANCE
DISTRIBUTIONS IS NOT FAITHFULLY REPRODUCED BY PREDICTED
P-SITES
The PhosPhAt database (Heazlewood et al., 2008; Durek et al.,
2010) includes a set of computationally predicted P-sites using
a prediction algorithm that was specifically trained using experi-
mentally detected P-sites in the Arabidopsis proteome.

As shown in Figure 2, the frequency distribution between
neighboring predicted P-sites differs substantially from the corre-
sponding distribution observed for experimentally detected P-sites
(Figure 1). Computational sites result in shallower distributions
at close distances (only about 3% at dN= 1 compared to >10%
for experimental sites and 12% of all distances at dN < 6 com-
pared to close to 50% for real sites) and they exhibit another
peak of locally preferred distances at dN= 4 not observed for
experimental sites. The mean distance between respectively closest
neighboring P-sites was determined at 94.1 for experimental sites
and 63.5 for predicted sites. As there are many more predicted
(93,972) than experimental sites (7,214), the lower mean distance

between neighboring predicted sites is to be expected. However,
in P-flag randomizations, the mean distance increased for experi-
mental sites to 142.7, whereas it increases only marginally to 67.9
for predicted sites even though only about 4% of all STYs in the
Arabidopsis proteome are predicted to be phosphorylated such
that any clustering of actual prediction sites could be destroyed in
P-flag randomizations. Thus, compared to random background,
experimental sites exhibit a much greater tendency to cluster than
predicted P-sites.

We conclude that the approach of using computationally pre-
dicted P-sites for the purpose of identifying P-hotspots in the
Arabidopsis proteome is bound to produce less than optimal results
as it does not faithfully predict the characteristics of P-site distance
distributions and the tendency to cluster in sequence. There-
fore, here we pursued an alternative approach that relies more
on compositional preferences of a sequence segment rather than a
sequence position-specific amino acid profile as commonly used
in computational P-site prediction algorithms.

P-HOTSPOTS IN THE ARABIDOPSIS PROTEOME
First, we identified P-hotspots based on experimentally detected
P-sites in the Arabidopsis proteome. Sequence regions with occur-
rences of a least four consecutive experimentally detected P-sites
along a protein sequence with a distance between neighboring
sites of no more than 10 amino acids were considered P-hotspots.
The longest such P-hotspot was detected in a serine/arginine-rich
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FIGURE 2 | Frequency distribution of distances between closest
neighboring predicted P-sites in the Arabidopsis genome. (A) Between
any pST and the nearest pSTY, and (B) between any pY and the nearest pSTY.
For comparison, results for 100 P-flag randomizations are given by red filled

circles. Evidently, the nearest neighbor distance distribution differs from the
distribution between experimentally identified sites (Figure 1) with a
secondary peak at d N(pST, pSTY)=4 and a more even distribution of d N(pY,
pSTY) for predicted sites.

protein splicing factor protein (AT2G37340.1) with 12 P-sites
along a sequence region comprising 64 out of the total of 290
amino acid residues in that protein. In total, 79 P-hotspots were
detected in 75 Arabidopsis proteins based on experimental P-
sites (Table 1). As described similarly by Riano-Pachon et al.
(2010) using a P-hotspot definition based on comparisons to back-
ground distributions, P-hotspot proteins identified in this study
were found to be involved primarily in RNA binding and splicing
processes (GO term enrichment analysis yielding pFDR= 0.001
for GO function term “RNA binding,” pFDR= 4.2E−13 for
GO process term “RNA splicing”), and are located in the
“nuclear speck” (pFDR= 1.3E−09), the “plasma membrane”
(pFDR= 4.7E−06), and the “splicosome” (pFDR= 0.05).

P-HOTSPOT PREDICTIONS
Performance of the SVM-based P-hotspot classification algorithm
termed HotSPotter
Using the detected hotspots for training, we developed a SVM
based computational algorithm, termed HotSPotter, to predict
additional hotspots in the Arabidopsis proteome as outlined in the
Section “Materials and Methods.” Instead of sequence motifs that
are conventionally used to predict individual P-sites, our method
relies on the amino acid composition of P-hotspot regions. In a
fivefold cross-validation setting, the following performance para-
meters were obtained (Table 2). When tuning the performance,
we deliberately tolerated relatively low true positive rates (63%
achieved), in exchange for a low false positive rate (2%). In train-
ing, the proportion of positive to negative examples was adjusted
in favor of positive examples, and not the dominating negative
signal (see Materials and Methods). When applied to the entire
Arabidopsis genome, low false positive rates were deemed critical
as the number of true negatives is much higher than in training.

P-hotspot predictions in the Arabidopsis genome using HotSPotter
We applied the trained SVM classification algorithm to the pre-
diction of phosphorylation hotspots in the Arabidopsis genome.
Applying the original SVM cutoff score value, SSVM, for positive

predictions of SSVM > 0 resulted in positive predictions for 7.3%
of all tested sequence windows, length 17, and correspondingly,
23,525 (70%) of all Arabidopsis proteins. Despite the low false pos-
itive rate obtained in cross-validation of only 2% during training,
this number seems very high. Therefore, we applied a more strin-
gent cutoff of SSVM > 1, reducing the number of predicted hotspot
proteins to 9,599 (28%) of all Arabidopsis proteins including 16
mitochondrial and 12 chromosomal proteins (Table 3).

Of the 75 proteins observed to contain P-hotspots based on
experimental data, 57 (76%) were contained in the predicted set
of hotspot containing proteins based on positive predictions at
SVM score, SSVM > 1.

Biological role of hotspot proteins/GO term enrichment/depletion
analysis
We performed a GO term enrichment analysis to characterize
the proteins predicted to harbor P-hotspots with regard to their
association to particular biological processes, functions, and com-
ponents. Using GO-slim term annotations and probing both for
enrichment as well as depletion of annotation terms in the set rel-
ative to all other Arabidopsis proteins, we found that hotspot pro-
teins appear to be involved in DNA/RNA metabolism processes, as
well as signal transduction (e.g., kinase and transcription factor
functions) and developmental processes. With regard to loca-
tion, predicted hotspot proteins appear to be targeted toward the
chloroplast, nucleus (consistent with DNA/RNA binding func-
tions), and associated with the plasma membrane. By contrast,
as of yet uncharacterized Arabidopsis proteins as well as pro-
teins involved in stress response, proteins performing transporter
activities, and those with ribosomal or extracellular and cytosolic
localization appear to be specifically depleted in the set of predicted
P-hotspot proteins (Table 4).

P-hotspots and disordered regions
It is known that P-sites tend to occur in sequence regions linking
protein structural domains (Riano-Pachon et al., 2010) and, gen-
erally, in unstructured regions defined as the absence of secondary
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Table 1 | Arabidopsis P-hotspot containing proteins detected based on experimentally identified phosphorylation sites.

AGI ID Gene

symbol

Annotation Phosphorylation

sites

Start

of

hotspot

Hotspot sequence

AT1G01540.1 Protein kinase family protein 102, 106, 107, 110 98 RVVFSDRVSSGESRGTA

AT1G07985.1 Expressed protein 130, 132, 134, 138 126 KVVGSSSPTNIHSKSWR

AT1G08680.1 ZIGA4, AGD14 ZIGA4 (ARF GAP-like zinc finger-

containing protein ZiGA4); ARF GTPase

activator/DNA binding/zinc ion binding

190, 191, 194, 195 184 GLHAKASSFVYSPGRFS

AT1G20440.1 COR47, RD17 COR47 (COLD-REGULATED 47) 89, 98, 108, 113 86 QEKTEEDEENKPSVIEKLHRSNSSSSSSSDE

AT1G26540.1 Agenet domain-containing protein 324, 328, 334, 336 321 HLRSFLNSKEISETPTKAK

AT1G27500.1 Kinesin light chain-related 32, 33, 36, 44 29 ELQSSNQSPSRQSFGSYGD

AT1G29220.1 Transcriptional regulator family protein 80, 82, 86, 89 76 GVGASSSAHGTPRSLDN

AT1G29350.1 Expressed in: male gametophyte,

guard cell, pollen tube; expressed

during: L mature pollen stage, M

germinated pollen stage; BEST

Arabidopsis thaliana protein match is:

kinase-related (TAIR:AT1G29370.1)

105, 107, 108, 112 100 RYAGRSGSTHFSSTDSG

AT1G35580.1 CINV1 CINV1 (cytosolic invertase 1);

beta-fructofuranosidase

43, 45, 48, 49 38 SFDERSMSELSTGYSRH

AT1G35580.1 CINV1 CINV1 (cytosolic invertase 1);

beta-fructofuranosidase

60, 65, 69, 72, 73 57 IHDSPRGRSVLDTPLSSARN

AT1G45688.1 Unknown protein 15, 19, 29, 31, 34 12 AASSPARSPRRPVYYVQSPSRDSHDG

AT1G55310.1 SR33,

ATSCL33,

SCL33

SR33; RNA binding/proteinbinding 4, 5, 6, 8 0 MRGRSYTPSPPRGYGRR

AT1G59710.1 Expressed in: 23 plant structures;

expressed during: 13 growth stages;

contains InterPro domain/s: protein of

unknown function DUF569 (InterPro:

IPR007679), actin_cross-linking

(InterPro:IPR008999)

195, 196, 198, 203 191 FRQESTDSLAVGSPPKS

AT1G59870.1 PEN3, PDR8,

ATPDR8

PEN3 (penetration 3); ATPase, coupled

to transmembrane movement of

substances/cadmium ion

transmembrane transporter

36, 39, 42, 44 32 EDIFSSGSRRTQSVNDD

AT1G62830.1 LDL1, SWP1,

ATSWP1

LDL1 (LSD1-LIKE1); amine

oxidase/electron carrier/oxidoreductase

820, 822, 830, 831 817 ERKSLSQEGESMISSLKA

AT1G66680.1 AR401 AR401 34, 44, 46, 53 31 SLASDDDRSIAADSWSIKSEYGSTLD

AT1G73200.1 Phosphoinositide binding 312, 314, 316, 317 306 VQVISRSWSHSSHASDV

AT1G76920.1 F-box family protein (FBX3) 177, 178, 180, 190 174 ALYYSGTVVANQWLKFSSNL

AT1G80530.1 Nodulin family protein 270, 271, 275, 276 265 RSNAKSSPLGSSDNLAK

AT2G01190.1 Octicosapeptide/Phox/Bem1p (PB1)

domain-containing protein

381, 386, 394, 399 378 RVYSDDERSDHGVQAGYRKPPTPRS

AT2G23350.1 PAB4, PABP4 PAB4 [POLY(A) binding protein 4]; RNA

binding/translation initiation factor

640, 647, 649, 656 637 SQGSEGNKSGSPSDLLASLSIND

AT2G26730.1 Leucine-rich repeat transmembrane

protein kinase, putative

631, 632, 636, 639,

648

628 LRQSSDDPSKGSEGQTPPGESRTP

AT2G29210.1 Splicing factor PWI domain-containing

protein

390, 392, 395, 400,

402, 405

387 RRRSPSPLYRRNRSPSPLYRRN

AT2G31650.1 ATX1, SDG27 ATX1 (Arabidopsis HOMOLOG of

trithorax); histone-lysine N-methyl

transferase/phosphatidylinositol-5-

phosphate binding

481, 482, 484, 487,

489

477 MRKFTSLTDHSASALYK

(Continued)
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Table 1 | Continued

AGI ID Gene

symbol

Annotation Phosphorylation

sites

Start

of

hotspot

Hotspot sequence

AT2G35030.1 Pentatricopeptide (PPR)

repeat-containing protein

110, 112, 116, 121 107 NVVTWTAMVSGYLRSKQL

AT2G35350.1 PLL1 PLL1 (poltergeist like 1); catalytic/protein

serine/threonine phosphatase

188, 190, 192, 198 185 GEISRSNSAGVHFSAPL

AT2G35880.1 Expressed in: 24 plant structures;

expressed during: 13 growth stages;

contains InterPro DOMAIN/s: targeting

for Xklp2 (InterPro:IPR009675)

108, 111, 116, 117 104 YTDITRKSIDATTSKTS

AT2G37340.1 RSZ33,

ATRSZ33

RSZ33; nucleic acid binding/nucleotide

binding/zinc ion binding

201, 203, 210, 218,

225, 229, 238, 244,

252, 255, 264, 265

198 MDDSLSPRARDRSPVLDDEG

SPKIIDGSPPPSPKLQKEVGSD

RDGGSPQDNGRNSVVSPVVG

AGGDSSKED

AT2G41705.1 Camphor resistance CrcB family protein 60, 64, 65, 68 56 RRRHSAGRSSRLSADDF

AT2G41720.1 EMB2654 EMB2654 (EMBRYO DEFECTIVE 2654) 529, 531, 537, 539 526 KADSVTFTILISGSCRM

AT2G41740.1 VLN2,

ATVLN2

VLN2 (VILLIN 2); actin binding 845, 848, 854, 855 842 NKKSPDTSPTRRSTSSN

AT2G43680.1 IQD14 IQD14; calmodulin-binding 125, 127, 132, 142 122 VPRTLSPKPPSPRAEVPRSLSPKP

AT2G45540.1 WD-40 repeat family

protein/beige-related

1612, 1613, 1618,

1621

1608 SSERSSGNSVTLDSGSQ

AT2G46170.1 Reticulon family protein (RTNLB5) 27, 28, 29, 30, 31 21 KIHHHDSSSSSESEYEK

AT2G46495.1 Zinc finger (C3HC4-type RING finger)

family protein

401, 405, 407, 410 397 KRLLTFNISGSPFSPRF

AT3G05090.1 Transducin family protein/WD-40 repeat

family protein

368, 378, 385, 392 365 EVQSPKTVFQRGGSFLAGNLSF

NRARVSLEG

AT3G07790.1 DGCR14-related 117, 120, 121, 127 114 KTQTPGSTFLRNFTPLD

AT3G13570.1 SCL30A SCL30a; RNA binding/nucleic acid

binding/nucleotide binding

165, 173, 175, 177 162 GYNSPPAKRHQSRSVSPQD

AT3G13990.1 Unknown protein 493, 495, 498, 501 489 RVSRSDSPVSAVSEPQL

AT3G17420.1 GPK1 GPK1; ATP binding/kinase/protein

kinase/protein serine/threonine kinase

58, 62, 69, 74, 75 55 VTQSPRFTEEIKEISV

DHGSSNNN

AT3G23100.1 XRCC4 XRCC4; protein C-terminus binding 224, 225, 230, 233 220 EEEESTDKAESFESGRS

AT3G27960.1 Kinesin light chain-related 573, 577, 581, 582,

588

570 CGPYHPDTLAVYSNLAGTYDAM

AT3G29310.1 Calmodulin-binding protein-related 324, 325, 326, 331 319 NRHDLTSSAEDDSVDGD

AT3G29390.1 RIK RIK (RS2-interacting KH protein); RNA

binding

511, 513, 516, 517 506 PPRSKTMSPLSSKSMLP

AT3G48530.1 KING1 KING1 (SNF1-related protein kinase

regulatory subunit gamma 1)

11, 13, 18, 21, 22 8 IMRSESLGHRSDVSSPEA

AT3G52400.1 SYP122,

ATSYP122

SYP122 (syntaxin of plants 122); SNAP

receptor

7, 17, 21, 27 4 LSGSFKTSVADGSSPPHSHNIEM

SKAK

AT3G52930.1 Fructose-bisphosphatealdolase, putative 31, 32, 34, 41 28 ADESTGTIGKRLASINV

AT3G53500.1 RSZ32 Zinc knuckle (CCHC-type) family protein 172, 174, 183, 188,

190, 193

169 RDQSLSPDRKVIDASPKRGSD

YDGSPKE

AT3G55460.1 SCL30 SCL30; RNA binding/nucleic acid

binding/nucleotide binding

3, 4, 7, 9 0 MRRYSPPYYSPPRRGYG

AT3G55460.1 SCL30 SCL30; RNA binding/nucleic acid

binding/nucleotide binding

175, 177, 179, 181 170 DSRSRYRSRSYSPAPRR

AT3G55460.1 SCL30 SCL30; RNA binding/nucleic acid

binding/nucleotide binding

203, 204, 205, 208 197 ENYSRRSYSPGYEGAAA

(Continued)
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Table 1 | Continued

AGI ID Gene

symbol

Annotation Phosphorylation

sites

Start

of

hotspot

Hotspot sequence

AT3G56510.1 TBP-binding protein, putative 232, 237, 238, 240 228 RQKKSIENETSQSKPGL

AT3G58940.1 F-box family protein 112, 115, 118, 121 108 QRGVSDLYLFTDFSDED

AT3G61860.1 ATRSP31,

RSP31

RSP31; RNA binding/nucleic acid

binding/nucleotide binding

246, 252, 254, 256 243 RQRSPGYDRYRSRSPVP

AT3G62280.1 Carboxylesterase/hydrolase, acting on

ester bonds

90, 93, 95, 98, 100 87 LKMTYLSPYLDSLSPNF

AT4G05150.1 Octicosapeptide/Phox/Bem1p (PB1)

domain-containing protein

263, 265, 269, 276 260 EVSTLSDPGSPRRDVPSPYG

AT4G07523.1 Transposable element gene; similar to

unknown protein (Arabidopsis thaliana)

(TAIR:AT5G27180.1)

3, 5, 6, 8, 9, 10 MPLSYSSPSSSEERSDD

AT4G11740.1 SAY1 SAY1 312, 314, 323, 325,

327

309 RAASGSLAPPNADRS

RSGSPEE

AT4G13510.1 AMT1;1,

ATAMT1,

ATAMT1;1

AMT1;1 (AMMONIUM TRANSPORTER

1;1);

ammoniumtransmembranetransporter

487, 489, 491, 495 483 VEPRSPSPSGANTTPTP

AT4G25160.1 Protein kinase family protein 312, 314, 321, 323 309 TRFSWSGMGVDTTHSRAS

AT4G25580.1 Stress-responsive protein-related 155, 157, 161, 167 152 GAPTLTPHNTPVSLLSATE

AT4G31580.1 SRZ-22,

SRZ-22,

RSZP22

SRZ-22; protein binding 159, 169, 171, 173,

177

156 RRRSPSPPPARGRSY

SRSPPPYRAR

AT4G31700.1 RPS6 RPS6 (ribosomal protein S6); structural

constituent of ribosome

230, 236, 239, 240,

246

227 RSESLAKKRSRLSSAAAKPSVTA

AT4G32250.1 Protein kinase family protein 12, 21, 23, 29, 30 9 PDDTEYEIIEGESESALA

AGTSPWM

AT4G35785.1 Nucleic acid binding/nucleotide binding 40, 42, 48, 50 37 RSRSRSLPRPVSPSRSR

AT4G38600.1 KAK, UPL3 KAK (KAKTUS); ubiquitin-protein ligase 1366, 1367, 1372,

1373, 1374

1362 EGKITSLDDLSTTAAKV

AT4G39680.1 SAP domain-containing protein 310, 318, 319, 323 307 AGDSEKLNLDRSSGDESMED

AT5G02240.1 Binding/catalytic/coenzyme binding 234, 235, 236, 238 228 GSKPEGTSTPTKDFKAL

AT5G04930.1 ALA1 ALA1 (aminophospholipid ATPase1);

ATPase, coupled to transmembrane

movement of ions, phosphorylative

mechanism

39, 46, 51, 57 36 DLGSKRIRHGSAGADSE

MLSMSQKE

AT5G06210.1 RNA binding protein, putative 136, 138, 139, 141,

142

129 DPAVIAATRTTETSKSD

AT5G18660.1 PCB2 PCB2 (Pale-green and chlorophyll B

reduced 2); 3,8-divinyl

protochlorophyllide a 8-vinyl reductase

370, 378, 381, 382 367 AAESMLILDPETGEYSEEK

AT5G21160.1 La domain-containing

protein/proline-rich family protein

369, 377, 380, 383 366 SAETIGDGDKDSPKSITSGDN

AT5G41600.1 BTI3 BTI3 (VIRB2-interacting protein 3) 24, 25, 28, 30 19 HGHGDSSSLSDSDDDKK

AT5G47690.1 Binding 1273, 1280, 1283,

1288

1270 HLESDMDKNVSLDSHDENSDQE

AT5G52040.1 ATRSP41 ATRSP41; RNA binding/nucleic acid

binding/nucleotide binding

191, 201, 209, 218,

219, 228, 230, 232,

238

188 RRRSPSPYRRERGSPDYGRGASP

VAHKRERTSPDYGRGRRSPSPYK

RARLSPDY

AT5G52040.1 ATRSP41 ATRSP41; RNA binding/nucleic acid

binding/nucleotide binding

336, 341, 346, 348,

350

333 GRGYDGADSPIRESPSRSPPA

(Continued)
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Table 1 | Continued

AGI ID Gene

symbol

Annotation Phosphorylation

sites

Start

of

hotspot

Hotspot sequence

AT5G57110.1 ACA8,

AT-ACA8

ACA8 (autoinhibited Ca2+-ATPASE,

isoform 8); calcium-transporting

ATPase/calmodulin-binding/protein

self-association

18, 21, 26, 28 15 DVESGKSEHADSDSDTF

AT5G62820.1 Integral membrane protein, putative 27, 30, 40, 46 24 RFHSPLSDAGDLPESRYVS

PEGSPFK

AT5G64200.1 ATSC35,

SC35

ATSC35; RNA binding/nucleic acid

binding/nucleotide binding

273, 277, 279, 282 269 PERRSNERSPSPGSPAP

Table 2 | HotSPotter prediction performance.

Actual

Positive (hotspot sequence) Negative (non-hotspot sequence)

Predicted Positive TP=63% (230/365) FP=2% (51/2915) PPV=82%

Negative FN=37% (135/365) TN=98% (2864/2915) NPV=95%

Contingency table of prediction results of the SVM-based classification termed HotSPotter applied to sequence windows of length 17 and obtained in fivefold cross-

validation.

TP, true positive; FP, false positive; FN, false negative; TN, true negative; PPV, positive predictive value; NPV, negative predictive value. Numbers in parentheses refer

to the actual counts. Here, positive prediction results are based on SVM scores >0.

Table 3 | Statistics of HotSPotter predictions in the Arabidopsis proteome.

(A) SVM score threshold,

S, for positive prediction

(B) Number of win-

dows, length 17

(C) Number of windows

with positive score

(D) Number of STY-

content filtered and

run-consolidated hotspots

(E) Number of unique

proteins (genes)

containing hotspots

S > 0 12,866,960 945,670 (7.3%) 54,329 (44,247) 23,524 (19,252)

S > 1 160,780 (1.2%) 13,677 (11,065) 9,599 (7,847)

(D) Numbers refer to counts of hotspots after checking for STY contents (≥4 and no more than 10 residues between any STY) and merged consecutive runs of positive

windows. Numbers in parentheses refer to unique hotspot sequences. (E) The number of proteins refers to all proteins derived from all genes including annotated

splice forms.

structure or any other regular folding patterns with a corre-
spondingly relatively high structural flexibility. Those regions are
characterized by their own compositional preferences that may
primarily be associated with their unstructuredness and to a lesser
extend with their phosphorylation (Iakoucheva et al., 2004). In
order to assess the co-occurrence of P-hotspots and disordered
regions and to determine whether P-hotspots are associated with
specific amino acid compositional preferences, we scanned all
Arabidopsis proteins for disordered regions using the GlobPlot
program (Linding et al., 2003). GlobPlot relies on the propensi-
ties of all 20 amino acids to occur in disordered regions obtained
from an analysis of experimentally determined protein structure
and computed running averages over sequence windows of given
lengths. Thus, the approach resembles the HotSPotter method
by also exploiting sequence compositional preferences. Any sig-
nificant co-segregation suggesting redundancy of the underlying
compositional preferences is thus best discernible.

Of all 13,677 HotSPotter-predicted P-hotspots (required SVM
score >1), 5,285 hotspots (39%) overlapped with GlobPlot-
predicted disordered regions (see Materials and Methods) in the
respected Arabidopsis proteins. By comparison, on average only
2,152± 25 randomly positioned hotspots (16%) overlapped with
disordered regions. Thus, a significant preference for P-hotspots
to occur in disordered regions is evident. However, by far not all
predicted disordered regions (5,554 out of a total of 42,517 disor-
dered regions of length 17 or longer) are simultaneously predicted
as P-hotspots (Note that the number of overlapping hotspots
with disordered regions may differ from the respective number of
overlapping disordered regions and hotspots. For example, a sin-
gle hotspot may overlap with two sequence-separated disordered
regions.)

While there is a significant correlation between unstructured-
ness and the likelihood of being a P-hotspot, the two sets are
sufficiently disjoint to conclude that P-hotspots are associated with
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Table 4 | Gene ontology-slim terms statistically enriched or depleted in the set of 9,599 Arabidopsis proteins (corresponding to 7,847 genes)

predicted to contain P-hotspots based on SVM scores >1.

FDR p-value GO-slim process FDR p-value GO-slim function FDR p-value GO-slim component

ENRICHMENT

9.27E−08 DNA or RNA metabolism 1.31E−28 Nucleotide binding 2.50E−67 Chloroplast

2.15E−07 Developmental processes 8.36E−16 Kinase activity 6.70E−16 Nucleus

2.38E−07 Cell organization and

biogenesis

3.26E−15 Transcription factor activity 4.59E−13 Plasma membrane

1.38E−02 Other cellular processes 4.80E−14 Protein binding 1.22E−12 Plastid

1.52E−02 Signal transduction 4.67E−06 Transferase activity 3.00E−05 Other intracellular components

1.09E−02 Hydrolase activity 4.82E−02 Golgi apparatus

1.43E−02 DNA or RNA binding

DEPLETION

3.16E−05 Transport 6.83E−16 Unknown molecular functions 2.28E−48 Other cellular components

1.51E−04 Unknown biological

processes

1.31E−15 Other binding 1.57E−19 Unknown cellular components

6.52E−03 Response to stress 4.11E−12 Other enzyme activity 1.97E−08 Extracellular

6.50E−09 Structural molecule activity 2.93E−08 Cytosol

4.43E−04 Nucleic acid binding 1.07E−07 Ribosome

2.68E−03 Transporter activity 1.03E−02 Other membranes

1.09E−02 Other molecular functions 1.10E−02 ER

2.25E−02 Cell wall

Removing the set of 57 proteins jointly contained in the experimental and predicted set as well as removing chloroplastidial and mitochondrial proteins did not result

in any significant changes of GO-slim term enrichment/depletion statistics.

specific amino acid compositional preferences picked up on by the
developed HotSPotter methodology.

Availability of P-hotspot annotations and HotSPotter predictions
under PhosPhAt
All hotspots based both on experimental P-sites as well as on
predictions applying HotSPotter have been integrated into the
PhosPhAt database and are available at http://phosphat.mpimp-
golm.mpg.de. Figure 3 shows an example of a protein sequence
containing both an experimental hotspot that was also pre-
dicted with SVM score >1. The HotSPotter predictions in
the entire Arabidopsis proteome are available as Supplemen-
tary information of this publication (Table S1 in Supplemen-
tary Material) and under PhosPhat at http://phosphat.mpimp-
golm.mpg.de/hotspots.html, where all training data are available
as well.

DISCUSSION
The potential of modulating the function of proteins by sur-
face charge effects mediated by locally enriched phosphorylation
events has gained increased attention in recent years (Serber and
Ferrell, 2007; Strickfaden et al., 2007). Besides position-specific
single phosphorylation events associated with defined structural
changes or modulated binding affinities of the carrier protein,
local enriched clusterings of several P-sites that are themselves less
restricted to precise locations along a protein sequence, may have
evolved as an efficient and mutation tolerant mechanism to allow
modulated molecular responses to changed external conditions.

Here, we firstly confirmed earlier reports (Schweiger and Linial,
2010) that indeed P-sites exhibit a tendency to cluster along a

protein sequence in A. thaliana. By using experimental data and
considering only peptide-covered regions, thereby excluding pos-
sible artifacts from differential coverage, we validated this trend
with increased confidence. In this context, it may be worthwhile to
investigate the influence of the three-dimensional protein struc-
ture on the clustering in the one-dimensional sequence. If only
solvent exposed sites can actually be phosphorylated and assum-
ing that the polypeptide chain folds such that solvent exposed and
surface buried segments alternate, P-site clustering would directly
follow from structure alone.

We showed that the characteristic distances of any serine or
threonine to the next P-site differ significantly from the equiv-
alent distribution for tyrosine sites (Figure 1). This difference
is likely caused by the differences in target recognition of ser-
ine/threonine kinases compared to tyrosine kinases (Sugiyama
et al., 2008). For example, CDK kinases phosphorylating ser-
ines and threonines have been reported to be associated with
P-clusters (Moses et al., 2007). By comparing the actual inter-
vals between neighboring P-sites to randomized phosphoryla-
tion events using the unchanged protein sequence (referred to
as P-flag randomization), we concluded that the characteristic
preference of sequence interval 2 for pST sites to their respec-
tive next neighboring P-site is likely caused by the underlying
preference of serines and threonines themselves to occur at this
spacing.

Based on experimentally identified P-sites in the Arabidopsis
proteome, we detected 79 phosphorylation hotspots in 75 proteins.
In this study, we set out to expand this set by computational
predictions as it can be assumed that the actual set of P-hotspot
in the Arabidopsis genome is much larger. The principal difficulty
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FIGURE 3 | Screenshot of the PhosPhAt database with P-hotspot annotation information.

with all experimental approaches to detect phosphorylation events
lies in the fact that actual P-sites may not be phosphorylated under
the respective experimental conditions tested, but under different
ones not yet known or tested. Computational approaches can be
assumed to potentially overcome this issue by identifying charac-
teristic molecular properties of clustered P-sites in general. The
obvious strategy to first predict individual P-sites using an estab-
lished and plant-specific P-site prediction program (Durek et al.,
2010) was determined to lead to inaccurate results with resulting
distance intervals between neighboring predicted P-sites differing
significantly from the experimental ones (Figures 1 and 2). We
believe that this may be caused by the details of the underlying pre-
diction method that aims to exploit the position-specific flanking
sequence around P-sites essentially translating them into motifs.
However, if multiple P-sites are contained in the flanking sequence,
the extracted sequence motif will be a mix of signals influenced
also by the neighboring P-sites falling into the respective flanking
region.

Inaccurate phosphorylation hotspots predictions based on
individual predicted P-sites may also result from inaccuracies in
the underlying experimental detection of clustered P-sites. In mass
spectrometry, it is very difficult and often ambiguous to pre-
cisely interpret mass spectra of closely related phosphopeptides
(MacLean et al., 2008). Particularly, if more than one of neighbor-
ing S/T/Y sites can be phosphorylated under a given condition,
fragment mass spectra often result from different phosphorylated
versions of the same peptide sequence.

An obvious idea for predicting hotspots may be to treat hotspots
as a sort of structural domain and apply established recognition
programs. We tested the HMMER program that is based on HMMs
(Finn et al., 2011) for suitability of P-hotspot prediction. However,
no satisfying alignment of the different hotspot sequences was pos-
sible [21% (50%) median (maximal) pairwise sequence identity as
outlined in the see Materials and Methods], and thus, the obtained
HMMs performed poorly and were dismissed. The failure to create
robust alignments is certainly associated to the very characteristic
of clustered sites that P-sites are locally enriched but without any
apparent spacing constraints.

Thus,a method had to be devised that relies less on the position-
specific sequence context and more on the properties of a region
as a whole. For this purpose, we based our prediction efforts
on the amino acid composition of hotspot sequence regions,
thereby ignoring any precise sequence order information. Feed-
ing amino acid composition vectors associated with P-hotspot and
non-hotspot sequences into SVMs resulted in predictions of sur-
prisingly high accuracy (Table 3) in a rigorous cross-validation
setting.

In any computational classification tasks, overfitting; i.e., using
too many features to describe the particular dataset at hand lead-
ing to poor generalizability of the classification algorithm by
emphasizing the noise rather than the true relationship, is of great
concern, especially when the available dataset size for training is
small as is the case here with only 79 hotpot based on experimental
data associated with 365 sequence windows of length 17. Despite
using many features (420) and presenting them to the SVM clas-
sification engine, the imposed cross-validation protocol with very
little sequence redundancy between any training and testing par-
tition (see Materials and Methods) efficiently safeguarded against
falsely obtaining good prediction results due to overfitting as gen-
eralizability is truly tested. Instead of using all amino acid types
as separate variables, the number of features could be reduced by
prior filtering of uninformative features or by combining several
features into meta-features, e.g., amino acid types sharing similar
physic-chemical properties.

The choice of features is one of the most crucial steps in any
classification approach. With regard to P-hotspot prediction, there
may exist better features and combinations thereof than those
used here. For example, the feature set used in this study may
even be augmented by adding additional, but orthogonal informa-
tion such as secondary structural state or disorder score. However,
given the discussed shortcomings of sequence motif based meth-
ods to reproduce the correct spacing between neighboring P-sites,
our goal was to provide a proof of principle that methods that
rely more on sequence-independent features such as composition
can lead to reasonable results when applied to the prediction of
P-hotspots.
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Phosphorylation sites have been reported to occur in linker
regions between structural domains and unstructured regions, in
general (Iakoucheva et al., 2004; Riano-Pachon et al., 2010). To
safeguard against falsely predicting unstructured regions rather
than specifically P-hotspots, we used a set of negative examples
with serine/threonine/tyrosine contents similar to positive hotspot
examples. Furthermore, in training the SVM, we deliberately
included regions as negative examples that also contained sin-
gle, but isolated (no hotspot) P-sites. Nonetheless, if indeed there
is a link between unstructuredness and the tendency of becoming
phosphorylated, disentangling both contributions remains a chal-
lenging endeavor. While a significant overlap between unstruc-
tured regions and P-hotspot was evident, the two structural feature
sets were still largely disjoint (61% of all predicted P-hotspots and
87% of all predicted disordered regions in the Arabidopsis pro-
teome do not overlap with the respective other structural feature)
leading us to conclude that the developed HotSPotter method
does indeed specifically capture sequence compositional prefer-
ences associated with P-hotspots and not those of unstructured
regions alone.

In light of the obtained classification results, we believe
the obtained predictions for the whole Arabidopsis proteome
may be sufficiently accurate to warrant additional studies on
those proteins and their phosphorylation hotspots. The set of

proteins predicted to harbor P-hotspots was found enriched
in functions associated with signaling and binding events thus
confirming the surmised role of P-hotspots as modulators of
binding events and localization. We predict P-hotspots to be
present in around 9,500 Arabidopsis proteins. Thus, P-hotspot
regulation may be more frequent than previously acknowl-
edged.

By making all P-hotspot predictions in Arabidopsis thaliana
available we hope to offer to the scientific community a start-
ing point for experimental verification and further study of
phosphorylation hotspot mediated regulation processes.
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