
ORIGINAL RESEARCH ARTICLE
published: 25 September 2012

doi: 10.3389/fpls.2012.00217

A computational framework for evaluating the efficiency of
Arabidopsis accessions in response to nitrogen stress
reveals important metabolic mechanisms
Sabrina Kleessen1, Alisdair R. Fernie2 and Zoran Nikoloski 1*
1 Systems Biology and Mathematical Modeling Group, Max-Planck Institute of Molecular Physiology, Potsdam, Germany
2 Central Metabolism Group, Max-Planck Institute of Molecular Physiology, Potsdam, Germany

Edited by:
Rodrigo Gutierrez, Pontificia
Universidad Catolica de Chile, Chile

Reviewed by:
Daniel J. Kliebenstein, University of
California Davis, USA
Adriano Nunes-Nesi, Universidade
Federal de Viçosa, Brazil
Fabien Chardon, Institut National de la
Recherche Agronomique, France

*Correspondence:
Zoran Nikoloski , Systems Biology and
Mathematical Modeling Group,
Max-Planck Institute of Molecular
Physiology, Am Muehlenberg 1,
14476 Potsdam, Germany.
e-mail: nikoloski@
mpimp-golm.mpg.de

High-throughput phenotyping technologies in combination with genetic variability for the
plant model species Arabidopsis thaliana (Arabidopsis) offer an excellent experimental
platform to reveal the effects of different gene combinations on phenotypes. These devel-
opments have been coupled with computational approaches to extract information not only
from the multidimensional data, capturing various levels of biochemical organization, but
also from various morphological and growth-related traits. Nevertheless, the existing meth-
ods usually focus on data aggregation which may neglect accession-specific effects. Here
we argue that revealing the molecular mechanisms governing a desired set of output traits
can be performed by ranking of accessions based on their efficiencies relative to all other
analyzed accessions. To this end, we propose a framework for evaluating accessions via
their relative efficiencies which establish a relationship between multidimensional system’s
inputs and outputs from different environmental conditions.The framework combines data
envelopment analysis (DEA) with a novel valency index characterizing the difference in
congruence between the efficiency rankings of accessions under various conditions. We
illustrate the advantages of the proposed approach for analyzing genetic variability on a
publicly available data set comprising quantitative data on metabolic and morphological
traits for 23 Arabidopsis accessions under three conditions of nitrogen availability. In addi-
tion, we extend the proposed framework to identify the set of traits displaying the highest
influence on ranking based on the relative efficiencies of the considered accessions. As an
outlook, we discuss how the proposed framework can be combined with well-established
statistical techniques to further dissect the relationship between natural variability and
metabolism.
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INTRODUCTION
Genetic variability is often deemed the most important resource
for modern plant biology (see for example Koornneef et al., 2004)
as it offers the means for dissecting phenotypes resulting from
particular gene combinations and their effects on processes down-
stream of gene transcription (e.g., signaling and metabolism).
Therefore, the multitude of naturally occurring genetic variabil-
ity, especially for the model species Arabidopsis, can be used to
reveal the molecular mechanisms underlying the performance of
particular accessions under specific conditions. To this end, sys-
tems biology provides a unique framework to discover the reasons
for any differences in molecular phenotypes (i.e., transcriptome,
proteome, and metabolome) for Arabidopsis accessions. High-
throughput phenotyping technologies in combination with acces-
sions can then be used to gain insights into the control of cellular
processes. This is of paramount importance for the study of plant
growth and will likely prove crucial in efforts to ensure crop yield
security.

The main problem in using molecular phenotypes in com-
bination with growth- and yield-related morphological traits of

accessions is the necessity to associate multiple input parame-
ters with multiple system’s outputs. For instance, the cellular
components participating in nitrogen uptake, assimilation, and
remobilization (Masclaux-Daubresse et al., 2010) as well as in
carbon assimilation and partitioning (Smith and Stitt, 2007) can
be regarded as molecular inputs of plants. On the other hand,
the major cellular components of a plant cell (e.g., proteins and
starch), growth-related aggregated parameters (e.g., fresh weight),
and system-wide morphological traits (e.g., shoot and root growth
characteristics) can be treated as parts of plants’ output. Here
we argue that revealing the molecular mechanisms governing a
desired set of output traits can be performed by ranking of acces-
sions based on their relative efficiencies. The latter must consider
associations between multiple inputs and outputs under differ-
ent environments. Further experimental efforts can in turn be
focused on the molecular traits (and the related pathways) which
contribute the most to the resulting condition-specific rankings.

To address the problem of determining the relative efficiency
of accessions, it is desirable to combine various inputs and out-
puts into a single measure that adequately evaluates and ranks

www.frontiersin.org September 2012 | Volume 3 | Article 217 | 1

http://www.frontiersin.org/Plant_Science
http://www.frontiersin.org/Plant_Science/editorialboard
http://www.frontiersin.org/Plant_Science/editorialboard
http://www.frontiersin.org/Plant_Science/editorialboard
http://www.frontiersin.org/Plant_Science/about
http://www.frontiersin.org/Plant_Systems_Biology/10.3389/fpls.2012.00217/abstract
http://www.frontiersin.org/Plant_Systems_Biology/10.3389/fpls.2012.00217/abstract
http://www.frontiersin.org/Plant_Systems_Biology/10.3389/fpls.2012.00217/abstract
http://www.frontiersin.org/Community/WhosWhoActivity.aspx?sname=SabrinaKleessen&UID=54974
http://www.frontiersin.org/Community/WhosWhoActivity.aspx?sname=AlisdairFernie&UID=11158
http://www.frontiersin.org/Community/WhosWhoActivity.aspx?sname=ZoranNikoloski&UID=32607
http://www.frontiersin.org
http://www.frontiersin.org/Plant_Systems_Biology/archive
mailto:nikoloski@mpimp-golm.mpg.de
mailto:nikoloski@mpimp-golm.mpg.de


Kleessen et al. Framework for relative efficiencies of accessions

the “performance” of accessions represented by the use made
of resources (inputs) in the attainment of outputs. An acces-
sion is efficient relative to other accessions if some of its inputs
(or outputs) cannot be improved without worsening some of
its other inputs (or outputs; Cooper et al., 2007). There are
several approaches to determine relative efficiencies, which can
be grouped into three categories: regression-based methods,
dimension-reduction approaches, and optimization-based tech-
niques. The regression-based methods generally resort to aggrega-
tion assumptions, based on parameter estimations, for the inputs
and/or outputs and ultimately result in estimation of the aver-
age (in)efficient entity (Cubbin and Tzanidakis, 1998). Therefore,
these approaches fall short in their ability to assess the reasons
for the (in)efficiency specific to particular accessions. Moreover,
dimension-reduction techniques, including principle component
analysis (for a single data set) suffer similar problems, as they
are often applied on transformed set of data consisting of input-
output ratios (Zhu, 1998). In addition, more advanced tech-
niques, such as canonical correlation analysis (for a pair of data
sets), impose pre-selection of variables or data transformations
to meet the assumptions, regarding the number of inputs and
outputs with respect to available observations, specific to the tech-
niques (González et al., 2008). Finally, since the results are usually
expressed as relationships between linear combinations of the
examined variables, the (biological) interpretability of the findings
may be hampered (Tabachnick and Fidell, 1996).

In contrast, data envelopment analysis (DEA) is a non-
parametric optimization technique based on linear programming
for determining the relative efficiencies of entities specified by a set
of inputs and outputs. DEA provides a single aggregated measure
for each entity (e.g., accession) in terms of its utilization of multiple
inputs to generate multiple outputs, and, therefore, its results do
not pertain to average entity. Due to this attractive feature,DEA has
found numerous application in analysis of health care efficiency,
e.g., hospitals (Salinas-Jiménez and Smith, 1996; Tiemann and
Schreyögg, 2012), banks (Sherman and Gold, 1985; Vassiloglou
and Giokas, 1990), control of violence (Cotte Poveda, 2012), air-
port benchmarking (Schaar, 2008) as well as in assessing energy
efficiency (Cook and Green, 2005; Azadeh et al., 2007), and eco-
nomics (Charnes et al., 1989; Johnes and Johnes, 1993; Abbott and
Doucouliagos, 2003). Moreover, theoretical developments (Simar
and Wilson, 1999) allow for bootstrapping of the determined effi-
ciencies and, thus, open further opportunities for applications of
this technique with statistical support of the results. Nevertheless,
to our knowledge, this optimization technique has not yet been
applied in the analysis of molecular phenotypes of accessions.

In the following article, we provide the definition of the classical
DEA and its extension, PCA-DEA, based on principal compo-
nent analysis (PCA). Moreover, we propose a novel extension to
PCA-DEA which can be employed to statistically validate the con-
gruence between the rankings obtained from inputs and outputs
pertaining to different environments. We also devise a valency
index for each input, which can be used to pinpoint the mole-
cular reasons for the different performance of accessions under
different conditions. The computational details and outcomes of
the proposed framework are illustrated by using a data set com-
prising the metabolomic phenotypes and morphological traits for

23 Arabidopsis accessions grown in three different nitrogen envi-
ronments (Ikram et al., 2012). Finally, the analysis of this data
set demonstrates that the framework can facilitate the biologi-
cal interpretability of multidimensional data from accessions by
placing the system’s components in their respective biochemical
context.

MATERIALS AND METHODS
DATA ENVELOPMENT ANALYSIS
Data envelopment analysis (DEA) is a computational approach,
based on linear programming, which aims at determining the rela-
tive efficiency of entities, so-called decision making units (DMUs),
specified with their respective inputs and outputs. In our frame-
work, the DMUs correspond to the different Arabidopsis acces-
sions. In contrast to other approaches for analysis of multidimen-
sional data, allowing only pair-wise combination of biochemical
system levels (e.g., metabolites and transcripts, or proteins and
metabolites), DEA is applicable across data from multiple levels
of biological organization. With the help of DEA, one can read-
ily identify the best-performing accession by providing a ranking
based on the relative efficiency. Here we extend this approach
to determine the reasons (represented by particular metabolic
traits) responsible for the performance of a particular accession.
As opposed to other approaches for analysis of multivariate data,
DEA considers all input and all output levels simultaneously. To
quantitatively combine the multiple inputs and multiple outputs,
DEA computes the relative efficiency of each individual accessions
with respect to all other accession by employing the weighted aver-
ages, so that efficiency=weighted sum of inputs/weighted sum of
outputs. While this leads to respective aggregations of inputs and
outputs, we point out that, unlike in other statistical techniques for
multivariate data analysis, the aggregations in DEA differ between
accessions.

Consider a set of s accessions with each accession a, 1≤ a≤ s,
with m inputs xa

i , 1≤ i ≤m, generating n outputs ya
j , 1≤ j ≤ n.

The efficiency of a particular accession a is then given by the solu-
tion of a fractional program, originally proposed by Charnes et al.
(1978):

ea = min
ν,µ

m∑
i=1

νixa
i

n∑
j=1

µj ya
j

subject to (1)
m∑

i=1
νixa

i

n∑
j=1

µj ya
j

≤ 1, ∀a

νi , µj ≥ 0, ∀i, j ,

where vi and µj correspond to the weights associated with the input
i and the output j, respectively. We point out that this model, min-
imizing the linear combination of inputs while producing at least
the given output levels, is referred to as the output-oriented model.
Clearly, the reciprocal of the ratio of outputs to inputs results in
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another type of model, named input-oriented, which maximizes
outputs without requiring more of any of the observed inputs
(Cooper et al., 2007). We note that the qualitative findings from
the input- and output-oriented models, with respect to the rank-
ing of accessions based on the relative efficiencies, are equivalent.
With the help of the theory of fractional programming (Charnes
and Cooper, 1962), the fractional program in equation (1) can be
formulated as a linear programming (LP) problem by constrain-
ing the denominator of the objective function to one and only
minimizing the numerator.

Depending on the scale assumptions in calculating the relative
efficiencies, there are two basic DEA models, the CCR (Charnes,
Cooper, and Rhodes) model (Charnes et al., 1978) and its exten-
sion the BCC (Banker, Charnes, and Cooper) model (Banker
et al., 1984). The former formalizes the concept of constant-
returns-to-scale (CRS), whereby the output changes by the same
proportion as the input. On the other hand, the latter captures the
concept of variable-returns-to-scale (VRS), comprising the three
variants, namely: increasing-, decreasing-, and constant- returns-
to-scale. Clearly, any CCR-efficient accession is also BCC-efficient.
As a result, in the following, we focus on the more general BCC
model to consider also the effects of increasing- and decreasing-
returns-to-scale.

The LP formulation for the BCC model is given by the
following:

ea = min
ν,µ,ua

m∑
i=1

νix
a
i − ua

subject to
n∑

j=1

µj y
a
j = 1 (2)

n∑
j=1

µj y
a
j −

m∑
i=1

νix
a
i + ua

≥ 0, ∀a

νi , µj ≥ 0, ∀i, j

uaunconstrained.

By the duality theorem, this problem is equivalent to the following
LP:

ea = max
λ,s

Θa

subject to
s∑

a=1

λaxa
i + si = xa

i , ∀i

s∑
a=1

λaya
j − sj = Θya

j , ∀j (3)

s∑
a=1

λa = 1

λa , si , sj ≥ 0, ∀a, i, j

Θaunconstrained,

where si and sj are the slacks of the input i and the output j,
respectively, used to convert the inequalities into equivalent equa-
tions and Θa gives the efficiency score for accession a. The vector
λ represents the weights of the accessions resulting from the LP
given in equation (3). By the strong duality theorem, the optimal
value of the dual problem, given in equation (3), equals the opti-
mal value of the primal problem in equation (2). The number
of constraints for the primal program depends on the number of
accessions, while that of the dual program depends on the number
of inputs and outputs.

An accession a is considered (fully) BCC-efficient in the VRS
sense if there exists a solution to equation (3) such that the
following two conditions are satisfied:

1. Θa= 1.
2. All slacks si, 1≤ i ≤m, and sj, 1≤ j ≤ n, are zero.

These two conditions define the so-called Pareto-Koopmans effi-
ciency, whereby an accession is fully efficient when an attempt to
improve on any of its inputs or outputs will adversely affect some
other inputs or outputs. The efficient accessions define the Pareto
efficiency frontier (Cooper et al., 2007). Figure 1 illustrates the
efficiency frontier for the simplest case of single input and sin-
gle output of 10 accessions for both CRS (red-dashed) and VRS
(blue). In case of CRS, only one accession, i.e., 7, is determined as
efficient whereas four accessions (i.e., 3, 5, 7, and 8) are efficient
and form the Pareto efficiency frontier for the VRS.

COMBINATION OF PRINCIPAL COMPONENT ANALYSIS AND DATA
ENVELOPMENT ANALYSIS
If the number of analyzed accessions, s, is less than the total num-
ber of inputs and outputs, m+ n, a large number of accessions may
be predicted to be efficient (depending on the structure of the data
set). To resolve this issue, arising due to the multidimensionality
of the data, the number of constraints imposed in the formulation
of DEA in equation (2) needs to be reduced. Consequently, DEA
has been combined with principal component analysis (PCA) to
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FIGURE 1 | Constant- and variable-returns-to-scale projection in the
single input single output case for ten entities. The efficient frontiers are
colored in red and blue corresponding to the constant-returns-to-scale
(CRS) and variable-returns-to-scale (VRS), respectively.
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reduce the dimension of inputs and outputs while minimizing the
loss of information (Adler and Golany, 2001).

Principal component analysis
Principal component analysis is a linear algebra technique which
can be used to represent a set of possibly correlated variables
into a set of uncorrelated variables called principal components
(PCs). Each principal component is represented as a linear com-
bination of the original variables. The coefficients in the linear
combination are given by the eigenvectors from the eigenvalue
decomposition of the covariance matrix for the analyzed set of
variables. The PCs are usually ordered by the percentage of the
accounted variance, starting with the component of the largest
variance. It should be noted, that the number of PCs is less than
or equal to the number of original variables (Abdi and Williams,
2010).

The variance ζk (1≤ k ≤K ) explained by the k-th PC is cal-
culated as: ζk = αk/

∑K
l=1 αl , where K is the number of original

variables and αl (1≤ l ≤K ) is the l-th largest eigenvalue of the
covariance matrix for the K variables. The number of PCs used
in analyses depends on the percentage of variance to be explained
for a particular purpose (over 80% is a common choice in applica-
tions). Indeed, considering all PCs amounts to using the original
data set.

Formulation of PCA-DEA
The usage of PCs instead of the original data induces a transfor-
mation of the DEA model. Therefore, the inputs X and the outputs
Y are transformed through PCA.

Let LX
k and LY

k denote the matrices containing the coefficients
of the linear combinations rendering the PCs of the input and
output data, respectively. The size of this matrix is reduced to the
number of PCs which explain a pre-specified percentage of the
variance in the original data. Then, Xk = LX

k X and Yk = LY
k Y

are the k PCs, i.e., linear combinations, of the variables in the data
sets X and Y. Furthermore, the number of columns in Xk and Yk

correspond to the number k of PCs used to represent the input
and output data.

Consequently, the general BCC model from equation (2) for
accession a can be transformed as follows:

ea = min
V ,U ,ua

Vk X a
k − ua

subject to

Uk Y a
k = 1

Uk Yk − Vk Xk + ua ≥ 0 (4)

Vk LX
k ≥ 0

Uk LY
k ≥ 0

Vk , Uk , uaunconstrained,

where Uk and Vk denote for the coefficients of the PCs used for
the input and output data. Since Vk Xk = Vk LX

k X , where Vk rep-
resents a row vector of dual variables, the weights of the original
input X can be expressed as Vk LX

k . We note that the same holds
for the output Y.

Furthermore, the corresponding dual program can be rewritten
as follows:

Θa = max
λ,s

Θ

subject to

Xkλ+ LX
k sX

k = X a
k (5)

Ykλ− LY
k sY

k = ΘY a
k∑

λ = 1

Θ, λ, sX
k , sY

k ≥ 0.

The problem in equation (5) is referred to as the envelopment prob-
lem. Like the primal program given in equation (4), it provides
weights for each accession, indicating those accession of highest
influence to the efficiency of the accession a for which the efficiency
is calculated.

STATISTICAL ANALYSIS
The Kendall rank correlation coefficient, denoted by τ, evalu-
ates the degree of similarity between two sets of ranks over the
same set of objects (Abdi, 2007). It is determined by the following
expression:

τ =
number of concordant pairs− number of discordant pairs

total number of pairs
,

where a pair of ranked sets (xi, yi) and (xj, yj) (on the same set
of objects) is concordant if the order of both objects agree, i.e., if
both xi > xj and yi > yj or xi < xj and yi < yj. In contrast, a pair is
discordant if xi < xj and yi > yj or if xi > xj and yi < yj. If xi= xj or
yi= yj, the pair is neither concordant nor discordant. Larger (posi-
tive) values of τ indicate a greater agreement between the two sets,
while smaller (negative) values imply disagreement.

We use the Kendall rank coefficient in order to capture the effect
of a particular input on the resulting ranking of the accessions
based on PCA-DEA. To this end, the influence of an input parame-
ter t on the relative efficiency of a given accession under a condition
c is determined by excluding t from the inputs and applying PCA-
DEA to obtain the efficiencies e−t

c under condition c. We then use
Kendall’s τ to qualitatively discriminate between different inputs
(i.e., metabolic traits) with respect to their correspondence to the
obtained efficiencies, resulting in:

τt
c = τ(ec , e−t

c ),

where ec are the efficiencies including all inputs.
Furthermore, we propose a valency index, denoted by ϕ, for

a metabolic trait t between two conditions c1 and c2. We define
the valency index as the absolute value of difference between the
Kendall τ of the efficiencies for the two conditions c1 and c2 with
and without the particular metabolic trait t. More formally, the
valency ϕ for a metabolic trait t is given by:

φt
c1,c2
= |τ(ec1 , ec2)− τ(e−t

c1
, e−t

c2
)|.
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IMPLEMENTATION
All mathematical programming approaches are implemented in
MATLAB 7.8.0, R2009a with the optimization platform TOMLAB
v7.6 (Holmström, 1999). We use CPLEX to solve the considered
LP problems.

DATA SET
Plant growth data comprising morphological traits and metabolic
parameters are obtained from a study by Ikram et al. (2012), where
natural variability of Arabidopsis thaliana was experimentally ana-
lyzed. The data set includes the following 23 accessions: Akita,
Alc-0, Bay-0, Bl-1, Blh-1, Bur-0, Can-0, Col-0, Ct-1, Cvi-0, Edi-0,
Ge-0, Gre-0, Jea, Kn-0, Ler, Mh-1, Mt-0, N13, Oy-0, Pyl-1, Sakata,
and Stw-0.

In order to characterize developmental variations among the
accessions in response to different nitrogen (N) supplies [i.e., nor-
mal (N+), N limited (N−), and N starved (N0)], morphological
traits that contribute to plant growth were investigated. To estimate
plant growth leaf number (LN) was counted, shoot projected area
(SPA) was estimated from images of plants taken at 35 days of
growth, shoot growth rate (SGR) was computed from rosette area
measurements at 33–35 days of growth, and shoot fresh matter
(SFM) was weighed at harvesting. In addition, variations of root
growth were investigated by studying complementary traits, root
fresh matter (RFM), primary root length (PRL) at harvesting, and
the ratio of RFM to its respective PRL, termed root thickness (RT).

For the sake of characterizing N and carbon (C) metabolism,
shoot and root nitrate contents (denoted by SNO3 and RNO3,
respectively), shoot and root amino acid contents (SAA and RAA,
respectively), shoot total nitrogen percentage (SN%), and starch
contents in shoot and root (SStarch and RStarch) were measured.
Finally, ratios were calculated to estimate allocation between the
shoot and root during growth. The shoot to root fresh matter ratio
(S/RFM) provided information about biomass allocation, whereas
the ratios of SAA to RAA (S/RAA), SNO3 to RNO3 (S/RNO3), and
SStarch to RStarch (S/RStarch) reflected the differences in N and
C partitioning (Ikram et al., 2012).

The proposed framework is applied to identify the set of meta-
bolic traits having the highest influence on the efficiency ranking
of the considered accessions, therefore, the metabolic traits (SNO3,
RNO3, SAA, RAA, SN%, SStarch, RStarch, S/RAA, S/RNO3, and
S/RStarch) are included as inputs whereas the morphological traits
(LN, SPA, SGR, SFM, RFM, S/RFM, PRL, and RT) are treated as
the corresponding outputs (product traits).

RESULTS AND DISCUSSION
Here we present the results of applying the proposed framework
on the data set of 23 Arabidopsis accessions, with 10 inputs and
8 outputs, described in Materials and Methods. To demonstrate
the robustness of the findings when using principal components
explaining a different percentage of the variance, we conduct
comparative analysis of the findings between the three cases
corresponding to at least 85, 90, and 95% variance explained,
respectively.

For the inputs, 85% of the variance is explained by the first 5
principal components, while for the outputs, by the first 4 prin-
cipal components. By invoking the LP in equation (5), we next

determine the relative efficiencies for the accessions. The num-
ber of fully efficient accessions (i.e., whose relative efficiency is 1)
is 16, 8, and 11 for the nitrogen starved (N0), nitrogen limited
(N−), and the normal nitrogen (N+) condition, respectively, as
summarized in Table 1. Seven of the accessions are determined as
fully efficient across the three nitrogen supply conditions, named:
Bur-0, Edi-0, Ge-0, Mh-1, Oy-0, Pyl-1, and Stw-0 (see Table 2).
By calculating the Kendall τ coefficient between efficiencies of the
accessions for all pairs of conditions,we confirm that the accessions
under the N− condition perform more similarly to the N+ condi-
tion (τ= 0.42, p-value < 0.05) in comparison to the N0 (τ= 0.30).
Moreover, as shown in Table 1, the concordance between N0 and
N+ is as good as that between N− and N+, indicating that consid-
erable metabolic responses shape the changing phenotypic traits
under the two extreme conditions.

For comparison, 90% of the variance is explained by the first
5–6 and 4–5 principal components for the inputs and outputs,
respectively, depending on the analyzed condition. The number
of fully efficient accessions is 20, 11, and 17 for the N0, N−, and
N+ conditions, respectively, as summarized in Tables 1 and 2.
Eight of the accessions are determined as fully efficient across
the three nitrogen supply conditions, including the seven found
for the case of 85% variance and in addition Can-0, revealing
a close agreement between the results for the slightly different
data. By calculating the Kendall τ coefficient with the efficien-
cies for each pair of conditions, we reconfirm the expectation
that the similarity between the N− and N+ conditions (τ= 0.16)
coincide with that of N0 and N+ (see Table 1). In general, the
efficiency obtained from PCA-DEA for 85, 90, and 95% vari-
ance shown in Table 2 indeed confirm the robustness of the
method especially with respect to the accessions predicted to be
efficient.

Table 1 | Comparative analysis of the results from PCA-DEA with 85,

90, and 95% of variance explained.

N+ N− N0 No. FEff.

85%

N+ 1 0.42* 0.44* 11

N− 0.42* 1 0.30 8

N0 0.44* 0.30 1 16

90%

N+ 1 0.16 0.13 17

N− 0.16 1 −0.07 11

N0 0.13 −0.07 1 20

95%

N+ 1 0.18 0.19 18

N− 0.18 1 0.05 16

N0 0.19 0.05 1 20

The Kendall τ coefficient between the relative efficiencies for the 23 accessions

are presented in columns 1–3. The statistically significant correlation at level

0.05 are marked with *. The number of fully efficient accessions for the three

considered conditions (N+, N−, and N0) are included in column 4, named No.

FEff.
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Table 2 | Efficiency values for the accessions obtained from PCA-DEA

with 85, 90, and 95% of variance explained.

85% 90% 95%

N+ N− N0 N+ N− N0 N+ N− N0

Akita 1.062 1.127 1.061 1.000 1.112 1.000 1.000 1.000 1.000

Alc-0 1.087 1.240 1.090 1.083 1.045 1.000 1.045 1.011 1.000

Bay-0 1.049 1.046 1.000 1.000 1.034 1.000 1.000 1.010 1.000

BL-1 1.015 1.103 1.000 1.011 1.054 1.000 1.000 1.033 1.000

Blh-1 1.103 1.231 1.000 1.082 1.145 1.000 1.030 1.089 1.000

Bur-0 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

Can-0 1.012 1.044 1.000 1.000 1.000 1.000 1.000 1.000 1.000

col-0 1.000 1.143 1.000 1.000 1.135 1.000 1.000 1.000 1.000

Ct-I 1.000 1.131 1.093 1.000 1.081 1.003 1.000 1.000 1.003

Cvi-0 1.135 1.017 1.286 1.062 1.000 1.170 1.050 1.000 1.170

Edi-0 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

Ge-0 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

Gre-0 1.065 1.000 1.000 1.063 1.000 1.000 1.062 1.000 1.000

Jea 1.072 1.284 1.000 1.062 1.097 1.000 1.038 1.089 1.000

Kn-0 1.000 1.141 1.000 1.000 1.118 1.000 1.000 1.026 1.000

ler 1.099 1.176 1.071 1.000 1.058 1.000 1.000 1.000 1.000

Mh-1 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

Mt-0 1.000 1.062 1.000 1.000 1.062 1.000 1.000 1.000 1.000

N13 1.021 1.057 1.242 1.000 1.000 1.184 1.000 1.000 1.184

Oy-0 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

pyl-1 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

sakat 1.022 1.248 1.005 1.000 1.207 1.000 1.000 1.163 1.000

stw-0 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

The efficiency values for the different accessions under the three nitrogen sup-

plies as well as three different percentages of variance explained are presented.

An accession with efficiency value 1 is fully efficient (marked in bold), whereas

higher values indicate poorer performance.

To quantify the effect of an individual input t to the rank-
ing of accessions based on their relative efficiencies, we determine
the Kendall τ correlation between the rankings obtained from
the data set with and without the input t. The results obtained
with the principal components explaining 85, 90, and 95% of the
variance are presented in Figure 2 for the N+, N−, and N0 condi-
tions. The inputs are sorted in an increasing order with respect to
their effect in the N+ condition. Clearly, the input variable which
has a high effect is expected to increase the discordance between
the ranking of accessions, i.e., the value of the Kendall τ is closer
to zero.

The results in Figure 2A indicate that the nitrate and starch con-
tents in the shoot (SNO3 and SStarch, respectively),have the largest
effect on the ranking, followed by the ratio of amino acid content
between the shoot and root (S/RAA) and the starch content in
the root (RStarch). The only input variable shared between the
three conditions is RStarch under normal nitrogen supply (N+)
when the principal components explaining 85% of the variance
are used. Interestingly, the nitrate content in the root (RNO3)
has the smallest effect. As shown in Figure 2A the total nitrogen
content in the shoot (SN%) and the starch content in the root
(RStarch) have the largest effect for the N− condition, followed

by the amino acid content in the root (RAA) and the ratio of
the ratio of the nitrate content between the shoot and the root
(S/RNO3). Finally, Figure 2A points out that, for the N0 condi-
tion, the nitrate content in the root (RNO3) has the largest effect,
followed by the amino acid content in the shoot (SAA), Rstarch,
and RAA. By comparing these results with those obtained from
the principal components explaining 90 and 95% of the variance,
presented in Figures 2B,C, one indeed confirms the robustness of
the findings.

The importance of an input variable for the concordance of
accession rankings between two conditions can be estimated by
the proposed valency index. It is easy to interpret the valency of
an input t, since a larger value indicates a larger effect of the input
with respect to the behavior between the two conditions. In such
a way, genes and gene interactions acting on the pathways in the
vicinity of the input variables of high valency may hold the answer
for explaining the diverse responses due to the natural variability.
In contrast to Figure 2, here the input variables are sorted in a
decreasing order of their valencies with respect to their effect by
comparing N+ and N− conditions (see Figure 3).

The results in Figure 3A indicate that the S/RAA, SNO3, and
RStarch have the highest valencies when the principal compo-
nents explaining 85% of the variance are used in the comparative
analysis of the N+ and N− conditions. These were followed by
SN% and SStarch, obtaining a valency value of 0.2. On the other
hand, RNO3 and SAA are of largest valency when the N+ and
N0 conditions are compared. When N− and N0 are compared,
the highest valency is obtained for SAA. The next two inputs,
namely RStarch and S/RStarch, already have a value below 0.2
for the valency. Moreover, this suggests that the largest portion
of the difference between accession performances under changing
nitrogen supply may be due to natural variability in the genes con-
trolling the supply of nitrate to or amino acid metabolism within
the shoot.

These conclusions are in close accordance with what has been
experimentally established in a wide range of plant species, namely,
that carbon and nitrogen metabolism are highly intertwined (Stitt
and Fernie, 2003; Nunes-Nesi et al., 2010). The finding that shoot
amino acid content is the trait contributing most to the discor-
dance in rankings between the various nutrient conditions is in
accordance with the fact that in Arabidopsis, most nitrate taken
up by root transporters is reduced either in the roots or shoots
but assimilated into amino acids predominantly in the shoots
(Masclaux-Daubresse et al., 2010). The importance of starch levels
both in the root and the shoot for this efficiency is also in keep-
ing with its recent definition, on the basis of a much larger screen
than that of the Ikram et al. (2012) study, as a major integrator
or metabolism and growth (Sulpice et al., 2009) as well as obser-
vations that nitrate acts as a signal to repress starch synthesis in
a range of species (Scheible et al., 1997; Nunes-Nesi et al., 2010).
For completeness, the valencies resulting from principal compo-
nents that account for 90 and 95% of the variance are shown in
Figures 3B,C.

The same data set was analyzed in the original publication with
the help of classical statistical methods (i.e., ANOVA), hierarchical
clustering, and descriptive network-based analysis (Ikram et al.,
2012). By applying ANOVA, the authors determined the effect in
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FIGURE 2 | Kendall τ of the results from PCA-DEA with 85, 90, and 95%
of variance explained. The Kendall τ coefficients between the rankings of
the relative efficiencies for the 23 accessions are obtained from the data
sets of the three considered conditions (N+, N−, and N0) with and without
a metabolic trait t indicated in the x -axis of each panel when the principal
components explaining (A) 85%, (B) 90%, and (C) 95% of the variance are
used. The metabolic traits are sorted in an ascending order of the respective

Kendall τ coefficients with respect to their effect in the N+ condition. The
y -axis shows the Kendall τ coefficients belonging to a particular metabolic
trait under normal nitrogen (N+, red), limited nitrogen (N−, blue), and
starved nitrogen (N0, green) supply. The ordering of metabolic traits for the
different nitrogen availabilities is indicated above the bars. Significant
Kendall τ correlation (p-value < 0.05) is marked with a black star above the
bar numbers.
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FIGURE 3 | Valency index ϕ of the results from PCA-DEA with 85, 90,
and 95% of variance explained. The valency index between the rankings
of the relative efficiencies for the 23 accessions are obtained from the
pair-wise comparison between the three considered conditions (N+, N−,
and N0) with and without a metabolic trait t indicated in the x -axis of each
panel when the principal components explaining (A) 85%, (B) 90%, and
(C) 95% of the variance are used. The metabolic traits are sorted in a

descending order of their valencies with respect to their effect in the
comparison of N+ and N−. The y -axis refers to the valency index (ϕ) of a
particular metabolic trait in the comparative analysis of N+ and N− (red),
N+ and N0 (blue), and N− and N0 (green) conditions. The ordering of
metabolic traits for the different nitrogen availabilities is indicated above
the bars. Significant Kendall is τ correlation (p-value < 0.05) is marked with
a black star above the bar numbers.
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each input due to the two factors (N conditions and the accessions)
and their interaction, as percentage of explained variation. In such
a way, however, the authors could elicit trends over all accessions
in a single condition, but not between conditions. Moreover, the
Pearson correlation analysis was carried out on the profiles for each
input/output over all accessions. In such a way, the individual dif-
ferences between accessions may again be neglected. Nevertheless,
the authors found that, in the N+ condition, S/RNO3 is the trait
with the largest number of significant correlations to the other
traits. In the N− condition these included RFM (product trait)
and RAA (input trait), while in the N0 condition these comprised
the two product traits SFM and RT. While S/RNO3 may offer some
glimpses in the mechanisms for the N+ condition, these cannot be
obtained for the other two conditions, since morphological traits,
far away from metabolism, are suggested to be of importance. This
is the reason, perhaps, why the authors considered SAA and RAA
as the input traits which correlate, albeit poorly, with SFM and RT
in the N0 condition. Finally, the authors conducted a clustering
analysis of the accessions but now with the profiles of traits over
the three conditions. Although the clustering distinguished four
classes of accessions, this finding can hardly be related to biochem-
ical mechanisms since the specificity of inputs and output traits
is lost due to the consideration of the data from all conditions
at once.

OUTLOOK AND CONCLUSION
Predictions of the global population over the next 50 years suggest
that crop productivity needs to be massively improved. In parallel,
current environmental deterioration is reducing crop yields and
decreasing the availability of arable land. Against these twin facts
a major challenge of agriculture is to enhance plant productivity
whilst at the same time minimize additional costly inputs such as

fertilizers and plant protectants. Reduction of such inputs, in the
case study used specifically to increase the nitrate use efficiency,
would likely additionally be beneficial from an environmental
perspective.

In this study, we propose a framework based on PCA-DEA
combining multiple inputs and outputs into a single measure,
which can then be employed to statistically validate the perfor-
mance of accessions under various conditions. In addition, we
extend this approach to not only identify the ranking, but also
the set of traits which has the highest influence on the efficiency
ranking of the considered accessions for a single condition and
pairs of conditions. By using the proposed framework with the
recently published data set of Ikram et al. (2012) we were able to
pinpoint the most important metabolic traits with respect to the
overall growth efficiency under varying environmental conditions.
Additional experimental validation would be necessary to confirm
the plausible causal role of these metabolic traits with respect to
efficiency under varying conditions.

However, we believe that this is just one possible applica-
tion of DEA to analyze heterogeneous data from various (high-
throughput) phenotyping technologies. The separation between
classes of entities (e.g., accessions) based on the relative efficiencies,
indicates the possibility of using (PCA)-DEA as a data preprocess-
ing/separation technique. Other statistical techniques can then be
used on the classes of relative efficiencies resulting from DEA.
It is our contention that this approach will prove to be a gener-
ally applicable aid in rational design strategies for crop metabolic
engineering.
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