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Transcriptomic sequence resources represent invaluable assets for research, in particu-
lar for non-model species without a sequenced genome. To date, the Next Generation
Sequencing technologies 454/Roche and Illumina have been used to generate transcrip-
tome sequence databases by mRNA-Seq for more than fifty different plant species. While
some of the databases were successfully used for downstream applications, such as pro-
teomics, the assembly parameters indicate that the assemblies do not yet accurately reflect
the actual plant transcriptomes.Two different assembly strategies have been used, overlap
consensus based assemblers for long reads and Eulerian path/de Bruijn graph assembler
for short reads. In this review, we discuss the challenges and solutions to the transcrip-
tome assembly problem. A list of quality control parameters and the necessary scripts to
produce them are provided.
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INTRODUCTION
Access to a sequence database for a plant species of interest tremen-
dously advances that plant species’ potential use in research, as
is evidenced by the success story of the small weed Arabidopsis
thaliana. However, the complexities of many plants’ genomes and
prohibitive costs have precluded the sequencing of their genomes.
Instead of the genome, the transcriptomes of tissues of interest
for many important crop plants were sequenced1. The majority of
those sequencing efforts were carried out with substantial fund-
ing and frequently in consortia. The advent of next generation
sequencing (NGS) technologies has however marked a new era
of transcriptomics (Metzker, 2010). Single laboratories are now
enabled to produce a sequence resource for their species of choice,
be it for commercial, medicinal, ecological, or any other reason.
Since the initial proof of concept through the sequencing of the
transcriptome of Arabidopsis seedlings (Weber et al., 2007), at least
60 additional plant transcriptomes have been sequenced de novo.
Currently, the 1KP project aims for transcriptomic sequencing of
1,000 plant species2.

The quest for a $1,000 human genome has driven the sequenc-
ing industries to formidable innovations. The gold rush started
with the 454 platform (later acquired by Roche) and the 100 bases
long reads that could be obtained on the initial GS20 instru-
ment. Improvements to the platform lead to reads of 250 bases
in length. The latest 454/Roche platform used for (plant) tran-
scriptome sequencing is the GS FLX Titanium which allows read
lengths of 400 bases (Glenn, 2011)3. While a typical 454/Roche
sequencing run is finished within less than a day, it yields only
400 Mb per run. Illumina (formerly Solexa) employs a different

1http://compbio.dfci.harvard.edu/tgi/plant.html
2http://www.onekp.com
3http://www.molecularecologist.com/next-gen-fieldguide/

technology platform. Initially reads were as short as 36 bases but
improvements to the technology have led to increased read length
of 100 bases (and if paired reads are used, 200 bases of the same
transcript). In contrast to the 454/Roche platform, sequencing
runs take from several days to more than 1 week but produce
∼600 Gb per run (Glenn, 2011)4. With respect to cost per base
sequenced, Illumina will beat Roche/454 by a factor of more than
100. Both the 454/Roche and the Illumina platform have been
used for transcriptome sequencing and assembly (Table 1). To our
knowledge, the two other established NGS technologies, SOLiD
and Ion Torrent, have not been used for published plant transcrip-
tome projects (using the search words of RNA-seq, plant AND
transcriptome, plant AND NGS at ISI Web of Knowledge).

TRANSCRIPTOME SEQUENCING AND ITS APPLICATIONS
The initial de novo plant transcriptome sequencing by mRNA-
Seq was conducted on Arabidopsis thaliana (Weber et al., 2007).
Only half a million reads of close to 100 bases in length were
sequenced in this proof of concept approach. It was recognized
already at this early stage that remapping the reads to the Ara-
bidopsis genome tagged many more transcripts than could be
assembled with Newbler, Phrap, or CAP3 (Emrich et al., 2007;
Weber et al., 2007). Indeed, assembly was recognized as a future
challenge.

Virtually all of the 454/Roche transcriptome sequencing
projects following this initial work did have the generation
of a transcriptome resource as one of their major objec-
tives (Table 1). Many NGS experiments provide a resource of
markers for molecular breeding, for example for eucalyptus,
melon, and different legumes (Novaes et al., 2008; Guo et al.,
2010; Blavet et al., 2011; Hiremath et al., 2011; Kaur et al., 2011).

4http://www.molecularecologist.com/next-gen-fieldguide/
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Table 1 | Plant transcriptome sequencing projects until today (complete table available asTable S1 in Supplementary Material).

Reference Plant Type of reads

Weber et al. (2007) Arabidopsis thaliana 454

Novaes et al. (2008) Eucalyptus grandis 454

Barakat et al. (2009) Castanea dentata, C. mollissima 454

Alagna et al. (2009) Olea europaea 454

Dassanayake et al. (2009) Heritiera littoralis, Rhizophora mangle 454

Wang et al. (2009) Artemisia annua 454

Swarbreck et al. (2011) Avena barbata 454

Guo et al. (2010) Cucumis sativus 454

Riggins et al. (2010) Amaranthus uberculatus 454

King et al. (2011) Jatropha curcas 454

Hiremath et al. (2011) Cicer arietinum 454

Troncoso-Ponce et al. (2011) Ricinus communis, Brassica napus, Eunonymus alatus, Tropaeolum majus 454

Bräutigam et al. (2011a) Cleome gynandra, C. spinosa 454

Cantu et al. (2011) Triticum aestivum 454

Dai et al. (2011) Cucumis melo (sweet melon) 454

Sun et al. (2011) Pinus sylvestris 454

Der et al. (2011) Pteridium aquilinium 454

Franssen et al. (2011) Pisum sativum 454

Ibarra-Laclette et al. (2011) Utricularia gibba 454

Su et al. (2011) Phalaenopsis aphrodite 454

Pont et al. (2011) Triticum aestivum 454

Bleeker et al. (2011) Solanum lycopersicum, S. habrochaites 454

Blavet et al. (2011) Eight Silene sp. and Dianthus 454

Villar et al. (2011) Eucalyptus 454

Kaur et al. (2011) Lens culinaris 454

Kalavacharla et al. (2011) Phaseolus vulgaris 454

Lu et al. (2012) Capsicum annuum 454

Meyer et al. (2012) Panicum hallii var. filipes 454

Edwards et al. (2012) Ziziphus celata 454

Desgagne-Penix et al. (2012) Papaver somniferum 454

Angeloni et al. (2011) Scabiosa columbaria 454 and Illumina

Garg et al. (2011) Cicer arietinum 454 and Illumina

Krishnan et al. (2011) Azadirachta indica Illumina

Mutasa-Göttgens et al. (2012) Beta vulgaris Illumina

Gruenheit et al. (2012) Pachycladon fastigiatum, P. cheesemanii Illumina and Illumina paired end

Mizrachi et al. (2010) Eucalyptusgrandis × E. urophylla Illumina paired

Barrero et al. (2011) Euphorbia fischeriana Illumina paired

Xia et al. (2011) Hevea brasiliensis Illumina paired

Chibalina and Filatov (2011) Silene latifolia Illumina paired

Hao et al. (2011) Taxus marei Illumina paired

Tang et al. (2011) Siraitia grosvenorii Illumina paired

Wong et al. (2011) Acacia auriculiformis, A. mangium Illumina paired

Shi et al. (2011) Camellia sinensis Illumina paired

Hyun et al. (2012) Momordica cochinchensis Illumina paired

Hao et al. (2012) Polygonum cuspidatum Illumina paired

Huang et al. (2012) Millettia pinnata, Illumina paired

Gahlan et al. (2012) Picrorhiza kurrooa Illumina paired

Zhang et al. (2012) Arachis hypogaea Illumina paired

McKain et al. (2012) Different Agavoideae Illumina paired

Other major targets are primary (Dai et al., 2011; Franssen et al.,
2011; King et al., 2011; Troncoso-Ponce et al., 2011) and sec-
ondary (Alagna et al., 2009; Wang et al., 2009; Bleeker et al., 2011;

Desgagne-Penix et al., 2012) metabolism. Plants such as poppy
for opium and other alkaloids, tomato for beneficial terpenoids,
and Artemisia for artemisinin have been targeted by transcriptome

Frontiers in Plant Science | Plant Systems Biology September 2012 | Volume 3 | Article 220 | 2

http://www.frontiersin.org/Plant_Systems_Biology
http://www.frontiersin.org/Plant_Science
http://www.frontiersin.org/Plant_Systems_Biology/archive


Schliesky et al. Assembly of RNA-seq data

sequencing (Table 1). Adaptations to biotic (Barakat et al., 2009;
Sun et al., 2011) and abiotic stress (Dassanayake et al., 2009; Vil-
lar et al., 2011) were studied in plants. Finally, transcriptomes
of plants carrying a trait of interest such as C4 photosynthesis
(Bräutigam et al., 2011a; Gowik et al., 2011), weedy habitus (Rig-
gins et al., 2010), being an orchid (Su et al., 2011), a carnivorous
plant (Ibarra-Laclette et al., 2011), an ecological model (Blavet
et al., 2011), a traditional biochemical model (Franssen et al.,
2011), or an endangered species (Edwards et al., 2012), were ana-
lyzed. Since 454/Roche pyrosequencing was used, the number of
sequenced reads is comparatively low, between 0.08 and 3.3 million
reads (Table 1). The majority of the assemblies were realized with
overlap consensus based assemblers such as CAP3 (Huang and
Madan, 1999; four instances) or its implementation in the clus-
tering pipeline TGICL (Pertea et al., 2003; five instances), which
prefaces CAP3 with a megablast to reduce the number of sequences
fed to CAP3 and hence RAM requirement. MIRA (Chevreux et al.,
2004; one instance) and one of the multiple Newbler versions5

(seven instances) were also frequently used. In four projects a
combination of two assemblers was used. CLC6, LEADS (Dai et al.,
2011), Paracelsus Transcript Assembler (Novaes et al., 2008) and
Seqman Ngen (Edwards et al., 2012) were each used in a sin-
gle published assembly (Table 1). The different assemblies were
quality controlled – if they were controlled at all – by different
parameters. Hence it is difficult to compare the different assembly
methods. All assemblies report the number of unigenes (the sum
of assembled contigs and unassembled singletons) and either the
N50 or the average length of the contigs. These two parameters
can be compared with reference sequence numbers, average sizes
and N50 from predicted transcriptomes of species with sequenced
genomes. The parameters show that the assemblies are far from
perfect and that none of the assemblers achieves a satisfactory
reconstruction of an actual transcriptome. While the representa-
tion of the transcriptome was the expressed goal of these studies,
none of them fully succeeded. Most of the assemblies were carried
out either with Roche’s Newbler or with a decades-old tool, CAP3.
No marked improvements could be detected in the assembly para-
meters unigene number and average length over time (Table S1 in
Supplementary Material).

Although one may be tempted to dismiss such error prone,
incomplete assemblies, the majority of them have already proven
themselves useful for downstream applications such as proteomics
(Bräutigam et al., 2008; Franssen et al., 2011) or pathway recon-
struction (Wang et al., 2009; Bräutigam et al., 2011a; Dai et al.,
2011; Troncoso-Ponce et al., 2011; Desgagne-Penix et al., 2012).
The databases were developed to provide a sequence resource for
future experiments. The analysis of single genes involved in the C4

photosynthetic pathway based on hypotheses derived from RNA-
seq experiments has already been successful (Furumoto et al., 2011;
Sommer et al., 2012). Hence even imperfect assemblies succeed
in enabling future research. Downstream approaches that require
perfect or near perfect unigenes such as the evolutionary analysis
of gene family expansions will likely suffer more from the current
shortcomings of these assemblies.

5http://454.com/products/analysis-software/index.asp
6http://www.clcbio.com/

RNA-seq by Illumina sequencing was initially used for tran-
scriptome sequencing in species with sequenced genomes (e.g.,
Vega-Arreguin et al., 2009; Li et al., 2011). It has been successfully
applied to produce transcriptomes de novo (Table S1 in Supple-
mentary Material). The technology appeals to researchers despite
its comparatively short reads because it produces much larger cov-
erage at the same or a lower price. However, it presents a new set
of challenges for the assembly.

Similar to 454/Roche based sequencing projects, virtually all
Illumina based RNA-seq experiments on non-model species have
been conducted to produce a transcriptome database. RNA-seq
using the Illumina technology was undertaken to analyze tran-
scriptomes for plants of nutritional or medical value (Barrero
et al., 2011; Hao et al., 2011, 2012; Krishnan et al., 2011; Tang
et al., 2011; Gahlan et al., 2012; Hyun et al., 2012) or of commer-
cial value (Mizrachi et al., 2010; Shi et al., 2011; Xia et al., 2011;
Mutasa-Göttgens et al., 2012; Zhang et al., 2012). Two experiments
addressed ecological and evolutionary questions, the evolution
of sex chromosomes (Bergero and Charlesworth, 2011) and the
phylogenetic positioning of species (McKain et al., 2012). The
majority of sequences were produced with paired end technology.
In this case, sequences from both ends of fragments of defined
size are sequenced. The use of paired ends allows scaffolding:
sequence reads are used to produce contigs. The information
which reads belong together and their specific distance orders
disconnected contigs on scaffolds. The unknown nucleotides in
the gaps of scaffolds are caused by knowing the size of the gap
but not the identity of the nucleotides and hence the nucleotides
in the gap are denoted as Ns. One assembler that was origi-
nally developed for genome assemblies, SOAPdevono7, has been
used to assemble the majority of plant transcriptomes. Addi-
tional assemblers used include CLC, velvet (Zerbino and Birney,
2008)8, AbySS (Simpson et al., 2009), and Trinity (Grabherr et al.,
2011). In one of the projects a custom resolution algorithm for
velvet was developed and used (Mizrachi et al., 2010; Table 1).
This customized velvet version has produced the best assembly
in terms of contig number and average contig length. Despite
its success, the method has not been used for any of the other
projects.

Finally, RNA-seq experiments have combined both
454/Roche and Illumina sequencing. Transcriptomes of chick-
pea and pincushion flower were produced using both tech-
nologies and hybrid assemblies (Angeloni et al., 2011; Garg
et al., 2011). Although promising in prospect of complementary
error correction, to date, true hybrid assembly approaches are
limited to an assembly of one library (often 454) as a base tran-
scriptome and subsequent correction of the consensus sequence
by mapping the other read library (Illumina or SOLiD). Qual-
ity improvements of transcriptome hybrid assemblies have not
yet been assessed in a comparative study. However, in the context
of genome assembly it was shown that a stepwise (as explained
above) hybrid assembly had a higher quality (according to the
authors: comparable to Sanger-sequencing) than single library
approaches (Aury et al., 2008). The use as well as the strategy of

7http://soap.genomics.org.cn/soapdenovo.html
8http://www.ebi.ac.uk/∼zerbino/oases/
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hybrid assemblies is currently vigorously discussed in the online
community 9,10.

Overall, similar to the assemblies from 454/Roche RNA-seq
experiments, those from Illumina technology suffer from limi-
tations. It will be crucial to continue developing assemblers with
enhanced capability while establishing standard quality controls to
make assemblies from different species, technologies, and assembly
strategies comparable.

ASSEMBLERS
Two principally different types of assemblers are available for
RNA-seq data: overlap-layout-consensus (OLC) assemblers and
Eulerian path assemblers which are based on de Bruijn graphs
(summarized in Flicek and Birney, 2009).

Overlap-layout-consensus assemblers were developed for
Sanger sequences. In principle, the assembler starts with a sequence
read, looks at its sequence, and searches the read space for another
read that contains an overlapping sequence. The overlap is spec-
ified by its length and the number or percentage of matching
bases. The memory requirement for this operation depends on the
number of reads to be searched. Thus, more reads require more
computer power. Already during times of Sanger-sequencing,
this method became inefficient with the available computers
and a prefacing clustering step was added. This clustering step
groups sequences deemed similar, for example by a megablast
search (Pertea et al., 2003). The assembler then only searches the
sequences in each cluster. The three most prominent examples
for these OLC based assemblers are Newbler (Roche/454 Life Sci-
ences, Branford, CT, USA), MIRA (Chevreux et al., 2004), and
CAP3 (Huang and Madan, 1999; or TGICL which uses megablast
and CAP3). While these assemblers are suitable for 454/Roche
sequences, the number of reads generated with Illumina are simply
too large to be processed. In an assessment of different assemblers
with both simulated and real data, TGICL was superior to MIRA
and CAP3 in its results (Bräutigam et al., 2011b). No new assem-
blers have been developed and used except for Newbler developed
by the company 454/Roche itself.

To tackle Illumina-generated sequence reads, a new type of
assembler was created. It is based on finding the Eulerian path
through a de Bruijn graph (Pevzner et al., 2001). Essentially, this
type of assembler breaks the whole sequence space in pieces of
defined length, which are called k-mers. It then moves along the
k-mers and creates a graph in the process. Identical overlaps of
k-mers are merged and counted. If the assembler encounters
differences, the graph will branch, if it subsequently encounters
identity again, the graph will join the ends. That means that single
nucleotide differences (SNDs) will produce bubbles (Figure 1; 2).
Such SNDs can either represent a sequencing error or genetic vari-
ation in form of a single nucleotide polymorphism (SNP). Large
bubbles and open ended branches can be caused by alternative
splicing and alternative transcriptional starts and stops (Figure 1;
1). The presence of genomic DNA in the sample, improperly
trimmed and filtered reads, sequencing errors, alternative splicing,
and background transcription will lead to many more deviations

9http://www.seqanswers.com
10http://www.biostars.org

FIGURE 1 | Schematic de Bruijn graph of a single transcript; 1
alternative transcription start site or hybrid joining or DNA
contamination; 2 SND caused by a sequencing error or a SNP or
mutation after gene duplication; 3 alternative transcription start site or
DNA contamination; 4 alternative exon use; 5 alternative exon use or
mutations after recent gene duplication.
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from the one transcript, which ideally should look like a straight
line. In reality the graph has no straight lines but is full of bub-
bles and frayed ends (Figure 1). When such a graph is resolved,
the researcher wants all “real differences” such as alternative splic-
ing events, transcripts resulting from recently duplicated but still
very similar genes, and genetic variation, for example from dif-
ferent alleles of a particular genetic locus, represented. However,
all differences caused by technical errors should be removed. The
only information available for the algorithm to resolve the graph is
the number of instances observed for each k-mer. If such a graph
is used for genome sequencing of organisms without complex
genomes (i.e., not plants), the application for which it was devel-
oped, the graph can be resolved using the degree of coverage for
each k-mer. In theory, the number of reads that cover each base in
the graph should be equal for the whole graph. While this does not
hold true for repetitive sequence elements, it can be used to resolve
the remainder. Given 100-fold coverage in a genome homozygous
at all loci, you would require that each k-mer is covered at least,
say, 80 times to be called real. If the coverage is lower, it is likely a
sequencing error.

The resolution of transcriptome graphs is very different from
the resolution of genome graphs. The dynamic range of a leaf tran-
scriptome spans at least five orders of magnitude (Bräutigam et al.,
2011a; Gowik et al., 2011). Hence the coverage of a transcriptome
is the polar opposite of even. SNPs and InDels present in nat-
ural populations cause uneven coverage. Transcripts with higher
diversity in the population exhibit more changes (as represented
by bubbles in Figure 1) than transcripts with lower diversity in the
population. Alternative splicing and start and stop sites will cause
differential coverage. If an exon is only used 10% of the time, it
may not make it past the resolution cut-off.

To solve the problem of uneven coverage, the assemblers that
were originally designed to produce genomic assemblies, such as
ABySS, SOAPdenovo, or velvet, have been extended with add-
ons for the assembly of transcriptomes, such as Trans-ABySS,
SOAPdenovo-Trans, or velvet/Oases. Even given this amendment,
assemblers do not succeed in assembly as evidenced by contig
numbers that are much higher than the expected transcript num-
ber and average contig sizes much lower than that of an average
transcriptome (Table S1 in Supplementary Material). Assemblers
for short reads remain limited and both the development of new
assemblers as well as post-assembly processing and parameter
optimization is ongoing. The detection of genetic variation and
transcript variants will likely require post-assembly read mapping
and evaluation through the researcher.

CONSIDERATIONS FOR NGS TRANSCRIPTOME ASSEMBLY
The key differences between NGS and Sanger sequence reads are
the number of reads and the length of the reads. Even using
the long-read technology 454/Roche, the reads are only half to
a third as long as compared to Sanger sequences. With a single
NGS run, half a Gigabase to several Gigabases of sequence data
is generated. In consequence, the challenge has shifted from effi-
ciently generating sequence reads to efficiently assembling them.
Given an error rate of ∼1% and 40,000 reads of 400 bases length
for a gene of 1 kb, 160,000 incorrect base calls are expected.
If these are randomly distributed, on average, each single base

will be called incorrectly about 160 times. Even assuming error
rates of only 0.1%, each base will still be called incorrectly 16
times. For this reason, there is a correlation between the num-
ber of contigs resulting from a transcript and the expression
strength of the corresponding gene (Franssen et al., 2011). The
large number of sequencing reads calls for intense sequence prun-
ing. There are several software packages that include pruning
pipelines, such as the fastx-toolkit11, the fastQC software12, and
the RobiNA package (Lohse et al., 2012). Those are used to deter-
mine average quality per base in addition to other quality con-
trol parameters. Reads can be trimmed (pruned at the ends if
bases are below a quality threshold), filtered (if internal bases are
below a threshold), and purged from duplicates (merging mul-
tiple, identical reads into a single sequence). Unfortunately, the
majority of assembly publications do not report their pruning
pipeline and threshold values; they restrict themselves to stating
the number of high quality bases that were fed into the assembly
pipeline.

In theory, the error problem was solved if one were to assemble
only reads with a high coverage cut-off during the graph resolu-
tion. In that case, sequencing errors were ignored because their
k-mer numbers are too low. However, due to the large dynamic
range of the transcriptome, low abundance genes, such as tran-
scription factors and regulatory kinases, are underrepresented
(Czechowski et al., 2004). These genes are discriminated against
if the assembly is processed with high coverage cut-offs during
resolution (Schliesky and Bräutigam, unpublished observations).
They simply disappear. Similarly, rare transcript isoforms will also
be discarded during the resolution step if high coverage is required.

Library normalization at least partially addresses the challenge
of a high dynamic range. Normalization by digestion reduces the
dynamic range by one order of magnitude (Christodoulou et al.,
2001) but normalized libraries clearly retain some dynamic range
(Franssen et al., 2011). While normalization likely improves the
assembly, it comes at a cost: sequence information and quanti-
tative information are no longer collected at the same time. If
quantitative information is not required, normalization is highly
recommended.

At least low coverage transcripts could be recovered if one knew
before assembling how many reads are produced from each tran-
script and adjust the resolution algorithm accordingly for each
piece of the graph. Possibly, a dynamic approach – assembly, read
mapping on the preliminary assembly, re-assembly with sliding
scale of resolution coverage cut-off – might be able to solve the
problem. While none of the current transcriptome assemblers has
implemented this strategy, its application for one Illumina plant
transcriptome assembly may serve as the proof of concept for the
approach (Mizrachi et al., 2010).

The key challenge in assembly is weeding out all variation
caused by sequencing errors, library preparation, and other tech-
nical artifacts while keeping all variation caused by biological
phenomena such as genetic variation, alternative splicing, and
others.

11http://hannonlab.cshl.edu/fastx_toolkit/index.html
12http://www.bioinformatics.babraham.ac.uk/projects/fastqc/
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ASSESSING THE ASSEMBLY
In principle, assessing an assembly is easy – it should accurately
reflect the transcriptome of the sequenced tissue and species. In
practice, the accurate transcriptome is unknown and not avail-
able for comparison. Two different approaches to overcome this
problem can be envisioned. (i) Establishing assembly parameters
with simulated reads from a reference species and transferring
those to de novo sequencing and (ii) assembling de novo tran-
scriptome and estimating reference parameters. While the first
possibility has immediate appeal, there are a number of obstacles.
The dynamic range of transcriptomes is different in different tis-
sues and between species (Fluhr et al., 1986). A method optimized
for a root transcriptome might not necessarily work well with a
leaf transcriptome and vice versa. Different read length, paired end
or single end sequencing, or different sequencing depth dictated
by the available instrumentation and funding will likely change
the parameters for the best possible assembly. Carrying out the
optimization with a non-target dataset will also cause substantial
time investment with little return in the beginning since not even
a working assembly of the target transcriptome is created. For all
these and possibly additional reasons, many researches will imme-
diately start to work on the target transcriptome. If a common
set of assessment parameters were developed, all possible tran-
scriptomes could be measured against these parameters and thus
compared with each other.

NUMBER OF UNIGENES
The number of unigenes expected from an assembly can be cal-
culated with a Fermi estimate. The gene number for the majority
of sequenced plant genomes is between 20,000 and 40,000. Using
microarray data from Arabidopsis, one can estimate that about
one half of the genes are expressed in leaves. Using these two
numbers as approximations, the Fermi estimate for loci expected
from a leaf transcriptome is about 15,000. While species with
a very recently duplicated genome may have close to twice as
many, none will have an order of magnitude more transcripts
(compare to Table S1 in Supplementary Material). However, the
number of unigenes can be easily manipulated while not gain-
ing a better assembly. One strategy crops the unigenes by a
minimal-length cut-off. While it facilitates subsequent read map-
pings it severely discriminates against “real,” short transcripts.
Another example, raising the coverage cut-off during graph res-
olution will reduce the number of unigenes. This strategy indeed
removes unigenes constructed because of sequencing errors but
it will also discriminate against low abundance transcripts as
discussed above. It is thus important to combine these mea-
sures with the number of reference transcripts matching the
unigenes.

NUMBER OF REFERENCE TRANSCRIPTS MATCHING THE UNIGENES
Once the assembly is complete, it needs to be compared to the
most closely related reference species. The unigenes are matched
to the reference sequence by Blast or Blat (Kent, 2002). While it is
unknown how many reference transcripts should be tagged by the
assembled unigenes, a higher number of tagged references indi-
cate a more inclusive and thus better assembly. Genes that are
not expressed will never be tagged but as long as the number of

tagged genes increases during assembly optimization, the assembly
is getting better in terms of inclusiveness.

NUMBER OF REFERENCE TRANSCRIPTS HIT BY READS COMPARED TO
NUMBER OF REFERENCE TRANSCRIPTS HIT BY UNIGENES
It is possible to estimate the number of unigenes produced by the
assembly. If the reads are at least 75 bases long after trimming
and filtering, they can be mapped to a reference transcriptome
provided that the reference species is reasonably closely related.
However, in reality “reasonably close” will not be sufficient to
produce a perfect mapping. Therefore (i) a traditional mapping
program that allows for multiple mismatches (i.e., BLAST or
BLAT) and (ii) mapping in protein-space (i.e., translated query
against translated database; blatx or tblastx) improves the mapping
success with respect to evolutionary distance. In theory, reference
transcripts tagged by reads are expected to be tagged by unigenes.
This assumption is only true if a loss-less assembler such as OLC
assemblers are used. Reads that do not overlap with other reads are
reported as singlets or singletons when using these assemblers. The
resolution cut-off applied in graph-based assemblies will overlook
unigenes if they are not covered by at least the coverage cut-off.
Mapping reads to a reference results in estimated read numbers per
locus. With these read numbers one can check how many reads are
actually needed to produce a contig or a full length contig based
on different assembly parameters such as k-mer size and cover-
age cut-off. Surprisingly, the assembly will also produce unigenes
for which no read tagging was recorded. In that case, the setting
of either Blat or Blast was too stringent too match the reads but
the longer unigene produces a match. This quality control mea-
sure will overlook lineage specific transcripts that have no match
in the reference transcriptome. While every genome sequencing
approach does reveal lineage specific genes, the number of genes
present in multiple plant lineages is vastly higher.

The ratio between reference sequences tagged by reads and
those tagged by unigenes should ideally approach 1:1.

N50, AVERAGE LENGTH, MEDIAN LENGTH
These three parameters are always reported with genome assem-
blies. The N50 can be envisioned as follows: if you order the
unigenes by their length and then start counting nucleotides at the
largest unigene, the N50 will report the unigene length at which
you have counted through half of the bases. While this is a sensi-
ble measure for genomes, it makes less sense for transcriptomes.
After all, with genomes you expect as many contigs as you have
chromosomes. In transcriptomes, you may have different N50s
for different tissues of the same plant since different groups of
genes are expressed. The same caveat is true for the average length
and the median length.

While different (whole) transcriptomes indeed have slightly dif-
ferent parameters with regard to N50, average length and median
length, the values are similar enough to yield an estimate for
the expected values for an unknown transcriptome (compare to
Tables 1 and 2).

LENGTH OF THE LONGEST UNIGENE
The length of the longest unigene might not represent a sensible
measure. If the sequencing library was contaminated by genomic
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Table 2 | Quality assessment parameters drawn from transcripts of publicly available genome databases.

Species Genome size (Mbases) Number of transcripts including isoforms N50 GC%

Arabidopsis thaliana 120 41671 1912 42.27

Brassica rapa 485 41019 1482 46.28

Populus trichocarpa 481 45033 1845 42.29

Solanum lycopersicum 950 35802 1461 41.61

Oryza sativa 420 66338 2295 51.30

Setaria italica 515 40599 1811 52.75

Zea mays 2066 136770 1612 51.14

DNA, a large fraction of this DNA will come from the plastid
genome. The plastome DNA is known to be AT-rich and thus
survives the poly-A enrichment step during the Illumina mRNA
enrichment protocol well (Schliesky, Mullick and Bräutigam et al.,
unpublished observations). Its presence leads to remarkably long
contigs in the assembly albeit not quite to an assembly accu-
rately representing the transcriptome. A second consequence of
DNA contamination is the presence of many contigs matching
transposon-like sequences which are also AT-rich. The complete or
near complete presence of a unigene matching the longest nuclear
transcript of a reference also only shows that the assembly para-
meters were ideal for that transcript but not for all transcripts in
the sequenced library.

NUMBER OF ESTIMATED FULL LENGTH UNIGENES
While the length of the longest unigene may not be an ideal
measure, the estimated number of full length unigenes reflects
on the success of the assembly. The unigenes are matched to a
transcriptome reference from a closely related species. While dur-
ing evolution, genes will have extended or contracted, on average,
their length will remain comparable. More unigenes that reach the
length of the reference transcripts indicate a better assembly.

If no reference seems suitably close enough, it is still possible to
compare the length distributions qualitatively. Comparing multi-
ple publicly available plant transcriptome databases with respect
to their length distributions demonstrates an overall pattern on
what a transcriptome should possibly look like (e.g., ∼90% of the
sequences between 200 and 3500 nt length). In practice that is not
achieved because assembly software often produces a huge fraction
of truncated transcripts between 0 and 200 nt length.

NUMBER OF HYBRID/READ-THROUGH UNIGENES
While full length unigenes are the goal of an assembly, no hybrid
unigenes should be produced. These result from the joining of two
target transcripts matching two different reference transcripts into
one unigene. Two different kinds of hybrid unigenes can be pro-
duced. Illumina resequencing of Arabidopsis leaf transcriptomes
identified unigenes that were assembled from adjacent transcripts
(Schliesky, unpublished). Read mapping to the genome revealed
that these hybrid unigenes resulted from read-through transcrip-
tion. They thus likely reflect the true transcriptome. The second
class of hybrid unigenes is undesirable. In this case, the similarity
of sequences, sequencing errors, or incomplete read trimming and
filtering cause the merging of two target transcripts into one ref-
erence unigene. A read mapping in this case identifies no evidence

for this feature. Different assembly parameters favor or do not
favor the creation of this second class of hybrids (Schliesky, unpub-
lished) and thus hybrid detection should be included in the quality
control. One strategy for hybrid detection by alignment to Ara-
bidopsis could be designed as follows. Based on the outcome of
an alignment, all unigenes that map to multiple genes get tagged
as hybrid (also known as chimera or fusion genes), if the match
takes place in distinct, i.e., non-repetitive, sections of the uni-
gene sequence. Subsequently the chromosomal position is used to
classify the type of hybrid to either read-through (matching neigh-
boring genes) or second class hybrids (matching non-neighboring
genes). A high proportion of second class hybrids points to a bad
assembly algorithm, to bad assembly parameters (e.g., k-mer too
large) or to a contamination of some sort (e.g., genomic DNA or
low quality reads).

If no closely related reference is available, the hybrid detection
strategy probably needs to be amended. With increasing evolution-
ary diversity mapping accuracy will decrease. Therefore mapping
errors may lead to incorrectly detected hybrids. That may be
solved by increasing the required matching length during mapping
(increasing accuracy) at the cost of not mapping some unigenes
at all (decreasing sensitivity). Alternatively, hybrid unigenes may
be detected by mapping the reads back to the unigenes. At the
position of error, read coverage is likely lower than in the adjacent
regions. Detecting and cropping those bridging regions reliably
will reduce the number of hybrid transcripts. This approach is
based on same idea as an assembly algorithm with a sliding reso-
lution window for per base coverage. If the quality assessment was
completely independent of a reference sequence, lineage specific
genes which have no match in reference database would also be
included in the quality assessment.

EXAMPLE WORKFLOW
As a step toward comparable transcriptome assessments a collec-
tion of Perl and Unix scripts, which are automating parts of the
assessment, is provided in this review. It resembles an example
workflow (Figure 2, Supplementary Presentation 1) for assem-
bling and assessing reads of Arabidopsis mRNA. This out-of-the-
box pipeline consists of five blocks; (i) vigorous read pruning, (ii)
assembling, (iii) mapping to a reference, (iv) collecting quality
parameters, and (v) polishing the assembly for publication.

Carrying out transcriptome assembly in a standardized way has
not been publicly pursued prior to this review. In order to keep
the workflow repeatable and comparable we provide a step by step
instruction set on how to use the supplemental scripts to assemble
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FIGURE 2 | Workflow scheme for a transcriptome assembly and quality
assessment: (I) preprocessing of the raw reads, (II) assembly of
processed reads, (III) mappings for annotation and for subsequent

quality assessment, (IV) collecting quality information from assembly
and mappings, (V) final polishing to create an easy to use, thus easy to
share file from the assembly.

a sequencing run and conduct quality assessment on the assem-
bly. Please be aware that the workflow including all scripts was
designed with Arabidopsis as the target reference. Scripts might
or might not be adaptable to other species. The workflow was
established and tested on a Linux machine running 64 Bit Ubuntu
10.04 and having installed BioPerl, BioPython, the FASTX-toolkit,
BLAT, and BLAST.

First, all scripts need to be extracted and copied into a
folder (Supplemental Scripts 02–12), together with the raw reads
(fastq.gz files) and the reference. Start a terminal and change to the
directory containing the scripts. All commands needed are in Sup-
plemental Script 1. Lines proceeded by a #-symbol present com-
ment lines and are used for explanation. Illumina reads obtained
from a sequencing facility are supplied as ∗.fastq.gz files. To unzip
and concatenate them, the zcat command is used (Supplemental
Script 1 line 4).

READ CLEANING (SUPPLEMENTAL SCRIPT 1 LINES 6–11)
While reads coming off the sequencer are not dirty in the
traditional sense, they may contain low quality reads, adaptor
sequences, and low quality bases. Reads are cleaned to remove
as much non-biological variation as possible. As discussed previ-
ously read cleaning is crucial for a good assembly. The workflow

starts by removing reads flagged as inappropriate by the sequencer
(line 7). For quality trimming knowledge of the average overall
base quality is needed. This is evaluated using the FASTX-Toolkit
(line 8). Visual aids (e.g., fastq_quality_boxplot_graph.sh) may
ease interpretation of the results. The stats file provides one line
per base (i.e., in Illumina 101 bp reads 101 lines) and for each base
a median quality score is calculated. Frequently, read quality will
be low toward the end of the read. If at any point, say from base 86
to base 87, the median quality drops dramatically, the ideal quality
cut-off will be in between this range. For sequencing runs with
good library preparation and no problems during the sequencing
we recommend a cut-off of 30.

The actual cleaning is conducted in three steps; (i) trimming
(line 9), which prunes the ends off of the reads if they are below
the defined quality cut-off and subsequently discards all reads
that are shorter than a defined length cut-off (we suggest half the
read length, i.e., 50) after trimming. (ii) Filtering (line 10), which
discards all reads that do not meet the required quality cut-off
with at least a defined length (in percent of the total read). For
the majority of sequencing runs, the values suggested above are
a good starting point. Trimming and filtering does not discard
more than 15% of the reads if library preparation and sequencing
went well. In other cases, values might have to be adjusted and
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trimming and filtering values might have to be relaxed. (iii) Col-
lapsing (line 11), since memory requirements are lower if fewer
reads are assembled.

ASSEMBLY (SUPPLEMENTAL SCRIPT 1 LINES 13–27)
Lines 13–27 contain an out-of-the-box pipeline from cleaned
reads to assembled best transcript isoforms using Velvet/Oases.
The pipeline can be adapted for other assemblers. Velvet/Oases is
called in three steps. In the first one, output directory, k-mer size
and input files are declared (line 15). In the subsequent steps a
de Bruijn Graph is built (line 16) and resolved with an algorithm
optimized for transcriptomes, i.e., Oases (line 17). Oases outputs
a huge amount of transcripts, which is due to the fact that Oases
resolves bubbles and branches in the Graph into all possible tran-
script isoforms of a locus. The number of transcripts is, compared
to the number of unique loci detected by Oases, frequently two
(or more) times higher. Picking the best transcript for each locus
is a challenge as there is no standard to what “best” means. The
longest transcript is often the least supported (i.e., covered by k-
mers), whereas the most supported often is the shortest one. To
solve this problem a script (line 22, Supplemental Script 02) has
recently been published on Google Code13 (by Adrian Reich 2012)
that essentially chooses the most supported transcript (i.e., highest
k-mer coverage) that has at least XX% length of the longest tran-
script in this locus. In our hands a length cut-off of 20% showed
the best results in subsequent quality assessment.

Many assembly papers include a length cut-off to reduce the
number of transcripts. Although this curation is, in essence, cheat-
ing with the number of unigenes, the pipeline includes a Perl script
for cropping the database (line 27, Supplemental Script 03).

MAPPING (SUPPLEMENTAL SCRIPT 1 LINES 29–46)
A major bottleneck – conceptually as well as computationally – if
working with non-model species is the read mapping. When work-
ing on non-model species there is no sequenced genome available
to use as a reference. Mapping to a close relative works if precau-
tions are taken to account for the evolutionary distance. Modern
mapping algorithms are designed for speed and allow only one
mismatch. These algorithms will fail to map to a related refer-
ence. Therefore in cross-species mapping the use of traditional
mapping algorithms like BLAST and BLAT in protein-space is rec-
ommended. While mapping unigenes to the reference (line 31)
finishes in the order of minutes, mapping reads to the reference
will take much longer (depending on the library size in the order
of weeks). This limitation can be bypassed by parallelizing BLAT
with a script (line 34–36, Supplemental Script 04) on the number
of CPUs available. The script splits the read file, starts parallel sin-
gle BLAT runs and merges the results. The number of CPUs can
be changed within Supplemental Script 04 in line 3 (default is 2).
Alternatively BLAST, which natively supports multiple CPUs, can
be used for the mapping (line 39, 40).

Multiple mappings can be resolved to only one single best
hit per query (i.e., per read) by using the best hit scripts for
either BLAST (line 42, Supplemental Script 05) or BLAT (line 46,
Supplemental Script 06).

13http://code.google.com/p/oases-to-csv/

QUALITY ASSESSMENT (SUPPLEMENTAL SCRIPT 1 LINES 48–87)
As discussed above the most frequently used measures to evalu-
ate the quality of an assembly are number of unigenes and N50.
A Perl script to calculate the read length histogram of a fasta file
(line 50, Supplemental Script 07) was developed by Joseph Fass
(modified from a script by Brad Sickler). The script produces a
histogram that can be easily visualized, and calculates the number
of unigenes, N25, N50, and N75.

The percentage of unigenes that match a reference are calcu-
lated using the total number of references and the number of
matching unigenes. The total number of references is counted
(line 54). The number of unigenes which map to a reference is
produced by extracting the query identifiers from the mapping
table and by counting unique occurrence (line 56). The mapping
efficiency (ratio of mappable unigenes by total references) can be
interpreted as a measure of completeness with the caveat that sin-
gle tissue transcriptomes are not expected to represent a complete
transcriptome.

Hybrid unigenes can be detected with the help of mapping.
In hybrid unigenes, different sections of the unigene map to dif-
ferent loci in Arabidopsis. These hybrid unigenes can either be
read-throughs of two adjacent genes or misassemblies. While it
is desirable to have no hybrid unigenes that represent transcripts
fused by the assembler, it might add to the understanding of cellu-
lar mechanisms to identify read-throughs. Therefore we provide
two Perl scripts, which (i) detect any hybrid unigenes (line 60,
Supplemental Script 08) and (ii) subsequently classify those as
read-throughs or not (lines 63–67, Supplemental Script 09). While
hybrid unigenes are undesirable in an assembly, they can be tol-
erated for single gene analysis. A read mapping provides visible
cues whether coverage is even or whether parts of the unigene
are only supported by few reads. Only with more and more tran-
scriptomes being assembled and large scale comparisons enabled,
hybrid unigenes will become an issue in comparison.

The quality of an assembly can also be measured by comparing
the number of reference genes hit by unigenes with the number
of reference genes hit by reads. This is based on the assumption
that genes, which are expressed (i.e., hit by a read) will gener-
ate a transcript (i.e., unigene) during the assembly which maps
to the same reference. Comparing the numbers of genes hit by
reads (lines 70, 71) and by unigenes (lines 74, 75) provides a quick
assessment whether those values are in the same range. Subse-
quently, it is assessed whether the reference genes hit by reads
are also hit by unigenes. This question is answered using stan-
dard Unix commands and set theory. Given two files “genes hit
by unigenes” and “genes hit by reads” with a unique set of iden-
tifiers in each, adding (i.e., concatenating) one file and twice the
other file yields a new set which has each identifier either occur-
ring once, twice, or three times. Extracting lines by count yields
three groups, (i) genes only present in the file used once (line
84), (ii) genes only present in the file used twice (line 85) and
(iii) genes that are present in both files and therefore commonly
hit by unigenes and reads (line 86). A large percentage of the
latter group indicates that the assembled transcripts reflect the
expressed genes. An alternative way to determine the intersect
between two files is based on the Unix “join” command (lines
90–92).
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FINAL POLISH OF THE ASSEMBLY (SUPPLEMENTAL SCRIPTS 1 LINES
89–99)
Prior to publication, an annotated fasta database of the assem-
bly needs to be generated. The scripts provided incorporate an
annotation to the sequence headers, e.g., best hit in Arabidopsis
(lines 96, 97, Supplemental Script 10) and number the iden-
tifiers of unigenes sequentially to get rid of awkward assem-
bler headers (line 100, Supplemental Script 11). If only a sub-
set of sequences are needed a Perl script (line 104, Supple-
mental Script 12) can extract it if given a one-per-line list of
identifiers.

APPLYING THE WORKFLOW (QUICK AND DIRTY)
The complete workflow discussed in this review is attached as a
script (Supplemental Presentation 1) and could be run unsuper-
vised. This requires the fastq.gz files to be in the same folder as all
the Supplemental Scripts along with an Arabidopsis reference that
is named “TAIR10_cdna.fasta”. Additionally Perl, Python, BioPerl,
BioPython, BLAST, BLAT, Velvet, Oases, and the FASTX-Toolkit
have to be installed on the system. The hardware requirements of
the assembly in terms of memory are rather high. Assembly was
limited to 50 M reads with 96 GB RAM available.

Due to these strict requirements, we strongly recommend read-
ing and adjusting the workflow to your specific needs. All scripts

have either a help output (if ran with - - help or - ? as parame-
ter) or a Perldoc documentation (opened by running “perldoc
script_name”) or both.

CONCLUSION
Next generation sequencing and transcriptome assembly have
already proven beneficial for research. However, current assemblies
are still far away from an accurate representation of a transcrip-
tome. Detailed description of the assembly method including read
treatment prior to assembly, assembly parameters, and stringent
quality control will make different assemblies more compara-
ble and will make it easier to reproduce successful assemblies.
This first attempt to bring the quality assessment in line helps
to make transcriptomic resources much more comparable and
reusable for the community. At the very least, each assembly pub-
lication should include a fasta file with all unigenes. Until full
length single molecule sequencing for transcriptome sequences
becomes technically feasible, transcriptome assembly will remain
the major bottle neck during transcriptome sequencing. We are
not there yet!

SUPPLEMENTARY MATERIAL
The Supplementary Material for this article can be found online at
http://www.frontiersin.org/Plant_Systems_Biology/10.3389/fpls.
2012.00220/abstract.
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