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As sessile organisms that cannot evade adverse environmental conditions, plants have
evolved various adaptive strategies to cope with environmental stresses. One of the
most successful adaptations is the formation of symbiotic associations with beneficial
microbes. In these mutualistic interactions the partners exchange essential nutrients
and improve their resistance to biotic and abiotic stresses. In arbuscular mycorrhiza
(AM) and in root nodule symbiosis (RNS), AM fungi and rhizobia, respectively, penetrate
roots and accommodate within the cells of the plant host. In these endosymbiotic
associations, both partners keep their plasma membranes intact and use them to
control the bidirectional exchange of signaling molecules and nutrients. Intracellular
accommodation requires the exchange of symbiotic signals and the reprogrammming
of both interacting partners. This involves fundamental changes at the level of gene
expression and of the cytoskeleton, as well as of organelles such as plastids, endoplasmic
reticulum (ER), and the central vacuole. Symbiotic cells are highly compartmentalized
and have a complex membrane system specialized for the diverse functions in molecular
communication and nutrient exchange. Here, we discuss the roles of the different cellular
membrane systems and their symbiosis-related proteins in AM and RNS, and we review

recent progress in the analysis of membrane proteins involved in endosymbiosis.
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INTRODUCTION

In nature, the majority of plants live in association with fun-
gal and/or bacterial symbionts. The most widespread symbiosis
in all taxa of extant land plants is arbuscular mycorrhiza (AM).
The fossil record and phylogenetic analysis suggest an early origin
of AM before the Devonian period, approximately 450 Ma ago
(Redecker et al., 2000; Heckman et al., 2001; Kistner and Parniske,
2002). AM occurs between fungi of the phylum Glomeromycota,
also referred to as AM fungi, and the majority of land plants
in almost all ecological niches (Wang and Qiu, 2006), and is
thought to be essential for plant survival in harsh environments
such as deserts and hot springs (Bunn et al., 2009; Al-Yahya'ei
et al., 2011). Whereas AM fungi can colonize the majority of
land plants, root nodule symbiosis (RNS) with bacteria (rhizo-
bia), which has evolved considerably later than AM (Kistner and
Parniske, 2002), involves almost exclusively legumes (Fabaceae).

Abbreviations: AM, Arbuscular mycorrhiza; CCaMK, Calcium and calmodulin-
dependent protein kinase; DMI, Does not make infections; ER, Endoplasmic
reticulum; IT, Infection thread; LCO, Lipochitooligosaccharide; LRR, Leucine-rich
repeat; LYK, LysM-containing receptor-like kinase; LYM, LysM-containing pro-
tein; LysM, Lysin motif; MAPK, Mitogen-activated protein kinase; MF, Myc factor,
mycorrhization factor; MFR, Myc factor receptor; NCR, Nodule-specific cysteine-
rich; NE, Nod factor, nodulation factor; NFR, Nod factor receptor; NPC, Nuclear
pore complex; PAM, Periarbuscular membrane; PIT, Pre-infection thread; PPA,
Prepenetration apparatus; PT, Phosphate transporter; RNS, Root nodule symbiosis;
SNARE, soluble N-ethylmaleimide-sensitive factor attachment protein receptor;
SPC, Signal peptidase complex; SYMRK, Symbiosis receptor kinase; SYP, Syntaxin
of plants; VAMP, Vesicle-associated membrane protein.

AM and RNS are both regulated by a common set of genes
that define the common SYM pathway. They encode a receptor
kinase localized to the plasma membrane, components of signal
transduction to the nucleus, and a nuclear CCaMK (calcium and
calmodulin-dependent protein kinase; Parniske, 2008; Oldroyd
et al.,, 2011; Singh and Parniske, 2012).

Upon detection of AM fungal hyphopodia, epidermal cells
generate an infection structure, the prepenetration apparatus
(PPA) that is essential for infection of epidermal cells (Genre et al.,
2005, 2008). At later stages of AM, finely branched hyphal struc-
tures, the arbuscules, are formed by AM fungi which serve to
increase the surface area for nutrient exchange. In RNS, root hair
cells form a curl in which bacteria are entrapped and subsequently
guided through an infection thread (IT) toward the root cortex
(Fournier et al., 2008). Cortical cells prepare for infection with a
pre-infection thread (PIT) before they come into contact with the
rhizobia (Van Brussel et al., 1992). Ultimately, in the mature nod-
ules, bacteria differentiate into bacteroids inside the cytoplasm of
the host (Jones et al., 2007; Oldroyd et al., 2011).

The arbuscules and bacteroids are contained within host-
derived membranes that represent specialized symbiotic inter-
faces dedicated to nutrient exchange (Spaink, 1995; Limpens
et al., 2005; Parniske, 2008). As a consequence of the large con-
tact area between the host and the endosymbiont, the membrane
surface area of host cells (comprising plasma membrane and
the membrane around the endosymbiont) increases several-fold
during arbuscule formation (Cox and Sanders, 1974), and up to
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20-fold in the case of nodule cells filled with nitrogen-fixing bac-
teria (Verma et al., 1978). Similarly, the endomembrane system
undergoes a general expansion since the amount of organelles
such as ER, plastids, and mitochondria is amplified (Genre et al.,
2005; Lohse et al., 2005; Fournier et al., 2008; Genre et al., 2008;
Figures 1 and 2). These adaptations during the transition of a
cortical cell to an active symbiotic machinery requires the produc-
tion of large amounts of new membrane material in the host, and
of specialized membrane proteins for symbiotic communication
and nutrient exchange.

While the components involved in recognition and signal
transduction are expressed constitutively, the machinery required
for the functioning of endosymbioses is induced as a consequence
of the transcriptional reprogramming of the symbiotic host cells.
Many of these genes, which encode among others transporters of
various mineral nutrients, are expressed only in symbiotic cells
and are therefore likely to play symbiosis-specific roles. In the
case of AM, the plant receives nutrients such as phosphorus (P),
nitrogen (N), sulfur (S), zinc (Zn), and copper (Cu), which are
taken up by the periarbuscular membrane (PAM) in arbuscule-
containing cells (Clark and Zeto, 2000; Karandashov and Bucher,
2005; Allen and Shachar-Hill, 2009; Tian et al., 2010; Smith and
Smith, 2011), whereas in RNS, the plant is provided with N only
(Prell and Poole, 2006). In exchange plants provide carbohydrates
(C) to their symbionts (Prell and Poole, 2006; Smith and Smith,
2011). Consistent with a central role of membranes in symbio-
sis, a large part of the symbiosis-related proteins are localized to
membranes. Here, we discuss the different roles of membrane

FIGURE 1 | Transmission electron micrograph of a cortical cell of

P hybrida colonized by G. intraradices (Rhizophagus irregularis). For
clarity, cellular components are pseudocolored as follows: green,
fragmented plant vacuole; blue, plant mitochondria and plastids; light
brown, fungal vacuoles; red, symbiotic interface. Note the very close
contact of the periarbuscular membrane (PAM) with fungal hyphae (white
arrows), and the proximity of the tonoplast with the PAM (black arrows).

systems in endosymbiosis and we review recent progress in the
analysis of symbiosis-related proteins on membranes and their
roles in signaling, intracellular accommodation, and nutrient
transport.

SYMBIOTIC SIGNALING

FLAVONOIDS, STRIGOLACTONES, NOD FACTORS, AND MYC FACTORS
The rhizosphere is a habitat for a plethora of microbes (Pini et al.,
2012). Most of them are neutral commensalists, but some are
relevant for plants, either as pathogens or as mutualists. Since
it is vital for the plant to react early and adequately, commu-
nication in the rhizosphere is crucial for plant survival. Most
plant species constitutively release from their roots diffusible
signal molecules, strigolactones that stimulate hyphal branch-
ing in AM fungi (Akiyama et al., 2005; Besserer et al., 2006),
as well as in fungal pathogens (Dor et al., 2011). However,
whereas AM fungal metabolism is stimulated by strigolactones
(Besserer et al., 2006), the growth of fungal pathogens is inhibited
(Dor et al., 2011).

Strigolactone is secreted from roots of petunia (Petunia
hybrida) by the ATP-binding cassette subtype G (ABCG) trans-
porter PDR1 (Kretzschmar et al., 2012; Figure3). PDRI is
expressed preferentially during P starvation, a condition that
favors AM. PDRI1 is localized to the plasma membrane of the
subepidermal passage cells, which are the preferred entry point
for AM fungi (Sharda and Koide, 2008). Hence, PDR1 may play a
role in establishing strigolactone gradients that direct AM fungal
hyphae toward suitable points for root penetration (Kretzschmar
et al., 2012).

The roots of legumes secrete flavonoids that are perceived
as diffusible attractants by rhizobia and that activate them to
produce a specific symbiotic signal, the nod factor (NF; Hassan

FIGURE 2 | Schematic representation of a cortex cell with an
arbuscule. The arbuscule takes most of the space that is normally
occupied by the central vacuole. Cellular compartments are colored in
light green (plant vacuole), dark green (plant plastids), blue (plant
mitochondria), yellow (plant cytoplasm), gray (nucleus), red (symbiotic
interface), purple (trunc portion of the symbiotic interface), and brown
(plant cell wall). The cellular constituents of the host are marked with
letters as follows: ¢, cytoplasm; m, mitochondria; n, nucleus; p,
plastids; v, vacuole. The fungal arbuscule is marked as well (a).
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FIGURE 3 | Schematic representation of a plant cell with the major
components involved in symbiotic signaling and defense signaling. The
central vacuole has been omitted for clarity. Solid arrows indicate transport
fluxes whereas dashed arrows represent signaling pathways. Receptor
complexes involving LysM proteins originate from different plant species.
Perception of bacterial peptidoglycan (PGN) is represented by CERK1,
LYM1, and LYM3 of Arabidopsis. Chitin perception is represented by rice
proteins CERK1 and CEBIP. The nod factor receptors (NFR1 and NFR5) are
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from L. japonicus, whereas the elusive nature of the myc factor receptors
(MFR1 and MFR2) is shown with question marks. The common SYM
pathway is represented by SYMRK, NENA, NUP85, NUP133, CASTOR,
POLLUX, CCAMK, and CYCLOPS from L. japonicus. The remaining
components (MCA8, SIP2, FLOT4, PUB1, SYMREM1, SINA4, and HMGR1)
were described in M. truncatula or L. japonicus, except for PDR1 that was
discovered in petunia. See Table A1 and the main text for more information
on the respective genes and their function in symbiosis.

and Mathesius, 2012). NFs are lipochitooligosaccharides (LCOs)
that induce early plant responses such as root hair curling (Gough
and Cullimore, 2011) and nodule organogenesis.

Only recently, LCO signal molecules similar to NFs were iso-
lated from AM fungi, referred to as myc factors (MF; Maillet et al.,
2011), indicating that AM and RNS involve similar symbiotic sig-
nals. In view of the obvious similarities in signaling between AM
and RNS, it is still a mystery why RNS is characterized by a distinct
host-specificity and very narrow host ranges (Wang et al., 2012),
whereas AM exhibit a very low degree of specificity, resulting in
extremely large host ranges (Smith and Read, 2008).

LysM RECEPTORS

Legumes have dedicated NF receptors (NFRs) that are localized
to the plasma membrane and consist of an extracellular domain
with two to three lysin motif (LysM) repeats and an intracellular
kinase domain (Madsen et al., 2003; Radutoiu et al., 2003; Arrighi
et al., 2006; Lohmann et al., 2010). LysM repeats were first iden-
tified in bacterial enzymes where they are involved in the binding
of peptidoglycans (Buist et al., 2008). LysM-containing receptor-
like kinases (LYKs) are plant-specific and occur as families of 5-21
members per species (Zhang et al., 2009). NF perception requires

two LysM-containing proteins, which may function as dimers like
many eukaryotic receptor systems (Gough and Cullimore, 2011;
Gust et al., 2012; Figure 3). In Lotus japonicus they are referred to
as Nod factor receptorl (NFR1) and NFR5 (Madsen et al., 2003;
Radutoiu et al., 2003), whereas in Medicago truncatula they are
referred to as LYK3 and Nod factor perception (NFP), respectively
(Ben Amor et al., 2003; Smit et al., 2007). Interestingly, the
members of one of the subfamilies (including NFR5 and NFP)
have a non-functional kinase domain, consistent with the idea
that they may form a signaling complex with a second recep-
tor that contains a functional kinase domain (Madsen et al.,
2011). Domain swapping experiments between different NFRs
and mutation analysis of the extracellular LysM domain support
the idea that this part of the receptor (in particular LysM repeat
2) may be involved in the recognition of NFs (Radutoiu et al,,
2007; Bensmihen et al., 2011). Indeed, NFR1 and NFR5 were
recently shown to bind NF, presumably with their glycosylated
extracellular LysM domain (Broghammer et al., 2012).

LCOs have an N-acetylglucosamine backbone (Dénarié et al.,
1996) that they share with chitin and peptidoglycan (Lovering
et al., 2012), the major components of fungal and bacterial
cell walls, respectively. Plants have very sensitive receptors for
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chitin and peptidoglycan oligomers that are structurally related
to NFRs (Figure 3). In rice (Oryza sativa), two LysM-containing
proteins, CEBIP (chitin oligosaccharide elicitor-binding protein)
and CERKI (chitin elicitor receptor kinasel), interact to form
a chitin receptor at the plasma membrane (Kaku et al., 2006;
Shimizu et al., 2010). In Arabidopsis, CERK1 which contributes to
resistance against fungal pathogens, and LYM2 (LysM-containing
protein2), a close homolog of CEBiP, can bind chitin (Miya
et al., 2007; Wan et al., 2008; Petutschnig et al., 2010). However,
recent mutant analysis suggests that despite its chitin-binding
activity LYM2 is dispensable for chitin signaling (Shinya et al.,
2012). Indeed, CERKI alone, in particular its LysM repeat 2,
can bind chitin oligomers and dimerize to form a functional
receptor (Liu et al., 2012). Nevertheless, another LysM pro-
tein, LYK4, contributes to chitin signaling (Wan et al., 2012).
Interestingly, CERK1 of Arabidopsis could also form a trimeric
receptor complex with LYM1 and LYM3 that recognizes bacte-
rial peptidoglycan. The binding activity is attributed to LYM1
and LYM3, whereas CERK1 appears to be responsible for subse-
quent defense signaling (Gimenez-Ibanez et al., 2009; Willmann
etal., 2011). These results suggest that in general LysM-containing
receptors may be formed by combinatorial oligomerization of dif-
ferent LYKs and LYMs (Figure 3). Notably, despite its inability to
engage in symbiosis, Arabidopsis can perceive NFs at nanomolar
concentrations (Khan et al., 2011), indicating that chitin or pep-
tidoglycan receptors may have an affinity for LCOs. The fact that
AM-competent plants such as rice (see above), and M. truncatula
(Fliegmann et al., 2011) have chitin receptors raises the question
how AM fungi escape defense response (see below).

While the NFRs of legumes recognize only one or few NFs,
thereby limiting the host range in RNS (Wang et al., 2012),
an NFP homolog of the non-legume Parasponia andersonii
(Cannabaceae) serves as a common receptor in AM and RNS (Op
Den Camp et al., 2011), suggesting that in this case the receptor
can recognize different NFs and MFs. These results indicate that
AM and RNS may have originally depended on the same recep-
tor(s), which later diversified to produce functionally separate
receptors for MFs and NFs in legumes. The functional character-
ization of further MF receptors (MFRs) from non-legume species
will help understand the evolution and function of the LYKs.

SYMRK
A central component of symbiotic signaling is the symbiosis
receptor-like kinase SYMRK that is essential for both AM and
RNS (Figure3). SYMRK was initially identified in Medicago
sativa and L. japonicus (Endre et al., 2002; Stracke et al., 2002) but
later was found to be conserved in most angiosperms. SYMRKs
from different symbiosis-competent species in different families
can complement each other indicating that SYMRK is function-
ally conserved and does not contribute to host specificity in RNS
(Gherbi et al., 2008; Markmann et al., 2008). Indeed, SYMRK
is considered to be the first component of the common SYM
pathway which presumably integrates intermediary signals result-
ing from perception of MF and NF at the plasma membrane
(Parniske, 2008).

In addition to its role in AM and in RNS of legumes, SYMRK is
also involved in the actinorrhizal nodule symbiosis of Casuarina

glauca (Fagales) and Datisca glomerata (Cucurbitales) with acti-
nobacteria of the genus Frankia (Gherbi et al., 2008; Markmann
et al,, 2008). Hence, SYMRK can be considered the central
symbiotic entry point of endosymbioses in plants. Interestingly,
SYMRK occurs in different forms, which define its symbiotic
potential. All nodulating species, including legumes, D. glom-
erata, alder (Alnus glutinosa), as well as the non-nodulating
species poplar (Populus trichocarpa) and Tropaeolum majus,
have a long version of SYMRK with a long N-terminal extra-
cellular region (NEC domain) and three leucine-rich repeat
(LRR) motifs (Markmann et al., 2008). Non-nodulating species
such as tomato (Solanum lycopersicum) and poppy (Papaver
rhoeas), have a slightly shorter version with only two LRR
motifs, while in the monocots, SYMRK lacks the entire NEC
domain and has two LRR motifs (Markmann et al., 2008).
Interestingly, only the full length SYMRK of nodulating plant
species among the eurosids can fully complement nodulation in
the L. japonicus symrk mutant, whereas the two shorter types
of SYMRK complement only AM but not RNS. Surprisingly,
full length SYMRK of the non-nodulating Tropaeolum was
able to restore nodulation in L. japonicus (Markmann et al.,
2008). This indicates that the longest version of SYMRK has
gained the potential to induce bacterial accommodation in the
AM-competent common ancestor of all nodulating plants, and
that this ability led to the independent evolution of bacterial
endosymbioses in several clades of the eurosids, whereas oth-
ers (e.g., Tropaeolum), remained only AM-competent. Based on
sequence comparison, the predisposition to bacterial symbio-
sis may be related to the third LRR motif in the full-length
SYMRK.

PROTEINS ASSOCIATED WITH SYMBIOTIC SIGNALING

COMPONENTS AT THE PLASMA MEMBRANE

In order to better understand the biochemical function of the
receptors in symbiotic signaling, interacting protein partners
have been searched for. A yeast two-hybrid screen with SYMRK
yielded a MAPKK (mitogen-activated protein kinase kinase)
termed SIP2, for SYMRK-interacting protein2 (Chen et al., 2012;
Figure 3), which is conserved at least between L. japonicus and
M. truncatula (Chen et al., 2012). MAPKKs are components of
MAP kinase cascades, which are well known signal transduction
pathways in plant-pathogen interactions (Tena et al., 2011). SIP2
is necessary for nodulation and may be subject to negative regu-
lation from SYMRK in L. japonicus (Chen et al., 2012), indicating
that fine-tuning of the MAPK cascade may be required for suc-
cessful symbiosis.

Another interactor of SYMRK is the E3 ubiquitin ligase SINA4,
Seven in absentia4 (Den Herder et al., 2012; Figure 3). SINA4
recruits SYMRK to small puncta at the plasma membrane that
may represent microdomains dedicated to symbiotic signaling
(see below). SINA4 negatively regulates SYMRK abundance and
consequently modulates symbiosis signaling. In agreement with
this notion, overexpression of SINA4 leads to defects in rhizobial
infection (Den Herder et al., 2012). The NFR of M. truncatula
LYK3 interacts with PUB1 (Plant U-box E3 ubiquitin ligasel),
another type of E3 ligase induced during RNS (Mbengue et al.,
2010; Figure 3). LYK3, which is involved in NF selectivity (Smit
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et al., 2007), can phosphorylate PUBI, which in turn acts as a
negative regulator of LYK3 function in infection and nodulation
(Mbengue et al., 2010). Hence, PUB1 may indirectly modulate
symbiosis signaling.

Interaction with several symbiosis-related receptor kinases was
recently shown for remorins, a plant-specific gene family, of
which at least one member, SYMREM], is involved in nodulation
(Jarsch and Ott, 2011). SYMREMI1 interacts with the symbiosis
receptor kinases NFP, LYK3, and DMI2 (Does not make infec-
tions2) in M. truncatula (Lefebvre et al., 2010), and with their
respective orthologs in L. japonicus NFR5, NFR1, and SYMRK
(Toth et al., 2012) (Figure 3). SYMREMI is strongly and specif-
ically upregulated in nodules and localizes to ITs, in particular
at their tips where unwalled infection droplets form, and in
symbiosomes (Lefebvre et al., 2010; Toth et al., 2012).

In M. truncatula an isoform of the isoprenoid biosynthetic
enzyme HMGR (3-hydroxy-3-methylglutaryl coenzyme A reduc-
tase) was identified as an interactor of SYMRK (Kevei et al.,
2007; Figure 3). Only one member of the HMGR gene family
(HMGR1) interacted with SYMRK, demonstrating the speci-
ficity of the interaction. Reduction of HMGR1 activity, either by
RNA interference or pharmacological inhibition of the enzyme,
resulted in a strong reduction of nodulation. HMGR activity is
involved in the biosynthesis of sterols, terpenoids, and in partic-
ular cytokinin, which plays an important role in RNS (Oldroyd
etal., 2011). HMGRI has two membrane-spanning domains and
it localizes to small intracellular compartments of unknown iden-
tity (Kevei et al., 2007). It remains to be shown how HMGR1
interacts with SYMRK, which is localized to the plasma mem-
brane, and what its role in nodulation is.

MEMBRANE MICRODOMAINS AS SIGNALING PLATFORMS
IN SYMBIOSIS?
The plasma membrane of eukaryotes has long been thought to
consist of fluid lipid bilayers in which proteins freely diffuse
laterally like soluble molecules in a two-dimensional solution
(Singer and Nicolson, 1972). However, biophysical as well as
cell biological studies revealed that the plasma membrane is not
homogeneous, but instead contains microdomains with sizes in
the range of 10-100 nm in diameter that are different in their
lipid and protein composition from the surrounding membrane.
These microdomains are rich in sphingolipids and sterols and
form platforms that can move laterally along the plasma mem-
brane, a feature for which they were termed “lipid rafts” (Simons
and Tkonen, 1997). Lipid rafts contain proteins involved in cel-
lular signaling and membrane trafficking, whereas other general
plasma membrane proteins are excluded from them. A large part
of the “lipid raft” literature is based on fractionation of detergent-
resistant membrane material, a technique that has been criticized
for its potential to produce artifactual results (Tanner et al., 2011).
We therefore focus here on proteins of which the localization has
been confirmed in vivo with fluorescent markers or with trans-
mission electron microscopy using immunogold labeling and
we use the more generic term “microdomain” instead of “lipid
rafts”

One of the first microdomain protein markers identified
in plants is remorin (Jarsch and Ott, 2011). Remorins lack

a transmembrane domain or membrane anchor, hence their
localization to IT and symbiosome membranes is likely to
result from binding to integral membrane proteins such as
LysM receptors and SYMRK (see above). The co-localization of
SYMREMI1 with these receptor kinases (Lefebvre et al., 2010;
Toth et al.,, 2012) indicates that either SYMREMI1 localiza-
tion is a consequence of the receptors being concentrated in
microdomains, or that it is involved in recruiting these recep-
tors to microdomains, although such a mechanism has not been
directly documented by fluorescently tagged proteins as in the
case of SINA4 (Den Herder et al., 2012).

Recently, flotillins have been implicated in RNS (Haney and
Long, 2010; Haney et al., 2011) (Figure 3). Flotillins are well con-
served proteins in animals and plants (Banning et al., 2011), and
like remorins, they have no membrane spanning domain, but they
localize to the plasma membrane, and they are concentrated in
microdomains. In M. truncatula, which has a flotillin gene fam-
ily of seven members, FLOT2 and FLOT4 are required for RNS
(Haney and Long, 2010). Inoculation of M. truncatula with rhizo-
bia favors co-localization of FLOT4 with LYK3 in microdomains
of root hairs (Haney et al., 2011). In analogy to their function in
animal systems, plant flotillins may function by bringing together
in microdomains components of NF signaling, thereby increasing
the efficiency and perhaps the specificity of symbiosis signaling at
the membrane.

Taken together, NFRs and SYMRK, together with SYMREM1,
FLOT4, and SINA4, could occur primarily in membrane
microdomains that serve as dedicated signaling platforms at
the plasma membrane (Simon-Plas et al., 2011). The obser-
vation that down-regulation of the membrane steroid-binding
protein MSBP1 in M. truncatula interferes with AM (Kuhn
et al,, 2010), indicates that regulation of sterol homeostasis
may be important for AM. Given the fact that microdomains
are enriched in sterols, MSBP1 could affect AM by interfering
with microdomain assembly. Interestingly, signaling platforms
on membrane microdomains are involved not only in symbio-
sis, but also in plant-pathogen interactions (Bhat et al., 2005;
Keinath et al., 2010). In addition, recent evidence suggests that
membrane microdomains are also involved in sugar transport
(Doidy et al., 2012).

INTRACELLULAR CALCIUM SIGNALING AT PERINUCLEAR

MEMBRANES

Besides the plasma membrane proteins involved in symbiont
recognition and early signal transduction (see above), membrane
proteins with essential functions in symbiosis are localized to
the nuclear envelope and the ER (Figure 3). The central second
messenger in symbiosis is a rhythmic calcium transient (calcium
spiking) that triggers transcriptional reprogramming in host cells
(Oldroyd and Downie, 2006). Calcium spiking occurs around
the nucleus, suggesting that the responsible calcium channels are
localized to the membrane of the nuclear envelope, and that
the calcium derives from the nuclear envelope (Capoen et al,
2011). Several components of the nuclear pore complex (NPC)
are required for symbiotic signaling (Parniske, 2008). Mutations
in the nucleoporins (NUPs) NUP85, NUP133, and NENA lead
to defective calcium spiking and aborted symbiosis (Kanamori
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et al., 2006; Saito et al., 2007; Groth et al., 2010). Although their
role in symbiosis remains elusive, one possibility is that NUPs are
involved in the translocation of membrane proteins between the
inner and the outer membrane of the nuclear envelope.

The common SYM pathway also involves cation channels,
DMII in M. truncatula and its homologs in L. japonicus, CASTOR
and POLLUX, which all localize to the nuclear envelope (Riely
etal., 2007; Charpentier et al., 2008; Parniske, 2008). These cation
channels are thought to mediate potassium fluxes to compen-
sate the charge imbalance resulting from calcium fluxes (Peiter
et al.,, 2007; Charpentier et al., 2008). While the calcium chan-
nels that release the calcium are elusive, a calcium ATPase of
M. truncatula (MCAS) has recently been described as an essential
component in calcium spiking, presumably involved in reload-
ing the calcium into the lumen of the nuclear envelope (and the
ER), thereby replenishing its stores and resetting the low rest-
ing concentration of calcium in the cytoplasm and nucleoplasm
(Capoen et al., 2011).

The specific calcium signatures in AM (Kosuta et al., 2008;
Chabaud et al., 2011) and RNS (Oldroyd and Downie, 2006) are
thought to be decoded by CCaMK (Oldroyd and Downie, 20065
Singh and Parniske, 2012). Activation of downstream transcrip-
tional programs requires interaction with, and phosphorylation
of, the CCaMK substrate CYCLOPS (Yano et al., 2008; Horvath
et al., 2011). The orthologue of CYCLOPS, IPD3 (Interacting
Protein of DMI3), is required for symbiosis in M. truncatula,
rice and pea (Pisum sativum), respectively (Messinese et al., 2007;
Chen et al., 2008; Horvath et al., 2011; Ovchinnikova et al., 2011).

EVOLUTION OF SYMBIOTIC SIGNALING

Based on the fossil record and on the widespread occurrence of
AM among the majority of vascular plants, the origin of AM is
likely to have predated the radiation of land plants (Kistner and
Parniske, 2002). It is conceivable that AM may even have been
a precondition for successful colonization of land (Brundrett,
2002), although AM may not have been the earliest mycorrhizal
association of land plants (Bidartondo et al., 2011). The finding
that the common SYM genes are functionally conserved among
mono- and dicotyledonous plant species (Chen et al., 2007,
2008; Gutjahr et al., 2008, 2012), and that they occur in lower
plants such as liverworts, hornworts, mosses, and lycophytes has
proven their ancient origin (Wang et al., 2010a). Interestingly,
non-mycorrhizal angiosperms such as Arabidopsis have lost most
common SYM genes, whereas the moss Physcomitrella patens has
retained homologs of all SYM genes analyzed (Wang et al., 2010a),
despite its apparent inability to undergo endosymbiosis (Wang
and Qiu, 2006; Ligrone et al., 2012). It remains to be seen whether
the common SYM genes of mosses play a role in other fungal asso-
ciations, or whether the SYM pathway may serve other functions
in the life of mosses.

Based on the fact that a number of genes are commonly
required for both, AM and RNS, and that RNS ooccurs only in
few taxa of the angiosperms, it was concluded that RNS evolved
less than 100 Ma ago in an angiosperm predecessor that was
already competent to engage in AM (Kistner and Parniske, 2002).
Considering the different nodulation types, it is interesting to
note that the common SYM genes are conserved also in species

that form actinorhizal symbiosis (e.g., A. glutinosa, C. glauca)
(Hocher et al., 2011), supporting the view that actinorrhizal sym-
biosis may have evolved independently from RNS in legumes,
but from a common ancestor that became predisposed for bac-
terial symbiosis (Soltis et al., 1995; Pawlowski and Demchenko,
2012), perhaps by the modification of the LRR domain of SYMRK
(Markmann et al., 2008) (see above).

The similarities between NFs and MFs (Maillet et al., 2011),
and their receptors (Op Den Camp et al., 2011), also argue for a
common evolutionary root of AM and RNS. In addition, the close
homology of NFRs with the chitin receptor CERK1 indicates that
the recognition of symbionts and pathogens derive from a com-
mon ancestral perception mechanism (Zhang et al., 2009). Since
chitin, peptidoglycans and NF/MF share a common basic struc-
ture, the N-acetylglucosamine backbone, and since they are all
perceived by LysM receptors, it is conceivable that recognition of
symbiotic signals has evolved from a recognition mechanisms for
an unspecific microbial signal such as chitin. The diversification
of symbiotic signaling may then have been fostered by coevolu-
tion of NFRs with NFs during the evolution of RNS (Aguilar et al.,
2004; Martinez-Romero, 2009). Interestingly, NFR1 and CERK1
are still so close that a few amino acid substitutions in the kinase
domain of CERK1 are sufficient to confer to it the ability to induce
nodules, when fused to the extracellular NF-binding domain of
NFR1 (Nakagawa et al., 2011).

HOW SYMBIONTS AND PATHOGENS INFLUENCE THEIR

PERCEPTION IN PLANTS

An open question is still why infection by AM fungi does not
elicit a defense response in roots. Symbiotic plants retain, besides
their NFRs and MFRs, potent receptors for microbial cell wall
constituents such as chitin and peptidoglycan oligomers, which
can trigger defense responses (Shimizu et al., 2010; Willmann
et al,, 2011). Hence, given the fact that AM fungal cell walls con-
sist mainly of chitin, the perception of chitin fragments by plants
could be expected to trigger a defense response that could block
symbiosis. Indeed, some defense markers show a small transient
induction at early stages of AM (Garcia-Garrido and Ocampo,
2002), indicating that general microbe-associated molecular pat-
terns (MAMPs) from AM fungi are perceived and elicit a transient
defense response, which later is suppressed. Suppression may
result from symbiotic signaling downstream of NFRs and MFRs
or from manipulation by the AM fungus.

In order to escape a defense response, many microbes, ben-
eficial and pathogenic, have evolved tools to interfere with their
recognition either by hiding or by interfering with the deploy-
ment of a defense response (Zamioudis and Pieterse, 2012). The
fungal pathogen Cladosporium fulvum has found a particularly
elegant way to use the chitin-binding LysM motif to avoid its
recognition: it secretes large amounts of a LysM-containing pro-
tein (Ecp6) that binds to soluble chitin fragments, thereby seques-
tering them from detection by the chitin receptors of the plant
(Bolton et al., 2008; De Jonge et al., 2010). Hence Ecp6 is an effec-
tor protein that prevents detection of the pathogen by the host,
and therefore contributes to virulence of the pathogen. Recently,
an effector of an AM fungus has been described that is taken up
by the host and functions through modification of defense-related
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gene expression in the nucleus (Kloppholz et al., 2011). It remains
to be seen whether AM fungi have also tools to directly interfere
with the perception of MAMPs such as chitin. Bacterial pathogens
produce their own effectors to interfere with LysM receptor func-
tion, thereby preventing their detection (Gimenez-Ibanez et al.,
2009; Zeng et al., 2012). Bacterial effectors are in many cases
delivered directly into the cytoplasm of the host by the type-three
secretion system that also exists in rhizobia (Kambara et al., 2009).
Interestingly, rhizobia contain homologs of pathogen effectors
that influence infectivity and host range in RNS (Lewis et al.,
2011; Soto et al., 2011).

INFECTION AND INTRACELLULAR ACCOMMODATION

INITIAL ACCOMMODATION: INFECTION THREAD AND
PREPENETRATION APPARATUS

Intracellular accommodation of the microbial partner is the cen-
tral unifying aspect of endosymbioses. In order to keep the
invaded host cells intact, the microbial endosymbiont has to
remain separated from the host cytoplasm by a host-derived
membrane, which also has the role to control the environment
of the microbe and to retrieve nutrients from it. Thus, endosym-
bioses require reorganization of the entire cell, in particular of the
membrane system.

In order for rhizobia to invade root hair cells, the cell wall has
to become locally softened and permeable. This implies a reduc-
tion in turgor pressure to avoid the plasma membrane of the
host cell to rupture at the entry point. In addition, the invagi-
nation of the plasma membrane is likely to require a lowering of
the turgor pressure, because the rhizobia cannot exert any inward
force to promote invagination. On their way through the root hair
cell, rhizobia are guided through the IT, a tubular hollow struc-
ture in which the bacteria remain confined and start to multiply.
Toward the center of the root and below infected root hairs, files
of cortical cells prepare for bacterial infection, before the rhizobia
reach them, implying long distance transmission of a symbiotic
signal (Oldroyd and Downie, 2008). Preparation of cortical cells
involves migration of the nuclei to the cell center and formation
of a cytoplasmic bridge through the central vacuole that traces the
route for the formation of the IT, as in root hairs. This structure

composed of cytoplasm and endomembranes has been termed
the PIT (Van Brussel et al., 1992). On its centripetal path, the
nucleus heads the PIT machinery which consists of large amounts
of cytoplasm with ER thought to produce the elements of the IT
(Fournier et al., 2008). Elements of the microtubular cytoskele-
ton are involved in the formation of the IT as well (Timmers et al.,
1998). The absence of bacteria from the growing tip of the IT sug-
gests that it is formed by the host without a direct contribution of
rhizobia, although continuous signaling from the bacteria (e.g.,
trough NF) may influence IT development (Timmers et al., 1998;
Fournier et al., 2008).

When epidermal cells are in contact with AM fungi, a similar
process is triggered which consists of nuclear migration toward
the contact point and assembly of an infection structure referred
to as PPA. The PPA consists of dense cytoplasm with large
amounts of ER cisternae, Golgi stacks, trans-Golgi network, and
multivesicular bodies (Genre et al., 2005, 2008). These features of
the PPA signify a strong biosynthetic activity, possibly associated
with the invagination of the plasma membrane, in which the fun-
gus inserts upon penetration of the cell wall. In dmi2 and dmi3
mutants, the nucleus of epidermal cells travels toward the fungal
hyphopodium, but PPA formation does not occur (Genre et al.,
2005), indicating that it is after nuclear migration and before PPA
assembly that symbiotic signaling occurs.

GENERATION OF SYMBIOTIC MEMBRANE SYSTEMS

The generation of the host-derived membranes associated with
PIT, IT, and PPA requires de novo synthesis of new membrane
material and of membrane proteins with specific symbiosis-
related functions in signaling and transport. Intense vesicular
trafficking has indeed been observed at the growing tip of ITs
(Robertson and Lyttleton, 1982). Likewise, infecting hyphae of
AM fungi are surrounded by dense cytoplasm with ER, numer-
ous Golgi stacks, vesicles, and other markers of exocytotic activity
(Genre et al., 2008, 2012). Finally, the formation of the arbuscules
in AM and the multiplication of the bacteroids in RNS, respec-
tively, is associated with the massive expansion of the surfaces of
the PAM and of the collective symbiosome membranes (Box 1).
These observations demonstrate the need for intense membrane

Box 1| What is the Identity of the Periarbuscular and the Symbiosome Membranes?

At the first intracellular stages of AM and RNS, the microbes are surrounded by the invaginated plasma membrane, and in the case of
AM and some legume species that host the bacteria in fixation threads (Naisbitt et al., 1992), the PAM and the peribacteroid membrane
remain continuous with the plasma membrane. The symbiosomes of most legumes, however, are isolated entities like organelles in
the cytoplasm, and could therefore be compared topologically with vesicles or little vacuoles, rather than with the plasma membrane.
Indeed, symbiosomes exhibit several common features with prevacuolar compartments that could turn into, or fuse with, lytic vacuoles to
digest their content (Mellor, 1989). Interestingly, the analysis of membrane markers revealed an intermediate identity of the symbiosome
membrane. The specific localization of the M. truncatula syntaxin MtSYP132 to symbiosome membranes signifies plasma membrane
identity, indicating that the bacteroids reside in an “intracellular apoplastic domain” (Catalano et al., 2004, 2007; Limpens et al., 2009).
Thereafter, the symbiosome membrane also carries Rab7 a marker for late endosomal/early vacuolar identity. This indicates that the
symbiosome membrane goes through a phase of chimeric identity between plasma membrane and vacuolar identity (Limpens et al.,
2009). At the onset of senescence, the appearance of the SNARE markers SYP22 and VTI11 signifies the identity of a lytic vacuole, in
which the bacteroids are digested (Limpens et al., 2009). It is concluded that active symbiosomes are locked in a state of prevacuolar
identity with contributions of plasmalemma identity. Considering the numerous symbiosis-specific features of symbiosome membrane
and PAM, e.g., symbiosis-specific nutrient transporters (see main text), they may have a third, new identity which partially overlaps with
plasma membrane and tonoplast identity. In addition, the PAM is subdivided into an arbuscule trunk region and the fine branches (Figure 2),
which are characterized by different marker proteins (Pumplin and Harrison, 2009).
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biosynthesis and trafficking during infection and endosymbiont
accommodation.

Membrane trafficking proceeds through vesicles that are fused
with target membranes by a highly conserved protein machinery
(Pratelli et al., 2004; Jahn and Scheller, 2006). Central players in
vesicular trafficking are the SNAREs (soluble N-ethylmaleimide-
sensitive factor attachment protein receptors), of which there
are two main types: R-SNAREs (also referred to as VAMP for
vesicle-associated membrane proteins) on vesicle membranes and
Q-SNARE: (some called syntaxins) on target membranes such as
plasma membrane or tonoplast.

VESICLE TRAFFICKING TO HOST-DERIVED PERIMICROBIAL
MEMBRANES

Intense cellular trafficking occurs in both mutualistic and
pathogenic plant-microbe interactions (Wang and Dong, 2011;
Yun and Kwon, 2012). It contributes to the local supply of
new membrane material or to the delivery of cargo material
(proteins or secondary metabolites) to the site of the interac-
tion. A genetic screen in Arabidopsis identified PEN1/SYP121
(PENETRATION1/Syntaxin of plants121), a syntaxin with a
specific role in plant immunity (Collins et al., 2003). PEN1 forms
a SNARE complex with SNAP33 (Soluble N-ethylmaleimide-
sensitive factor Adaptor Protein 33), VAMP721 and/or VAMP722,
thereby providing an exocytotic delivery system for antifun-
gal substances that contribute to full immunity in non-host
resistance (Kwon et al., 2008). A related syntaxin of Nicotiana
benthamiana (NbSYP132) plays a role in resistance against a
bacterial pathogen, presumably by transporting antimicrobial
proteins toward the site of bacterial infection (Kalde et al., 2007).

The symbiosome membranes of M. truncatula contain a syn-
taxin that is closely related to the aforementioned NbSYP132,
namely MtSYP132 (Catalano et al., 2007). MtSYP132 may be
involved in vesicle trafficking toward symbiosomes, however, the
fact that it persists on the symbiosome membrane throughout its
active period until senescence (Limpens et al., 2009) indicates that
its function may reach beyond the generation of the symbiosome
membrane, perhaps in the regulation of ion channels as it was
shown for SYR1 (Syntaxin-related proteinl) of Nicotiana tabacum
(Leyman et al., 1999).

In M. truncatula, two vacuolar components of the quar-
ternary SNARE complex, VAMP721d and VAMP721e, which are
closely related to the PENT1 interactor VAMP721 of Arabidopsis
(see above), play an essential role in intracellular accommoda-
tion of bacteroids and arbuscules (Ivanov et al., 2012). However,
whether they interact with SYP132 on the symbiosome mem-
brane, and what the cargo of the concerned vesicles might be,
remains to be established. Taken together, these results show that
in symbiosis as well as in pathogenesis of plants, a closely related
machinery acts to either support intracellular accommodation
of mutualistic microbes, or to fend off pathogens, respectively
(Wang and Dong, 2011).

Recent evidence suggests that not all symbiosis-related fac-
tors delivered to the symbiotic interface through secretion rely
on a symbiosis-specific trafficking pathway. Targeting of P trans-
porters to the PAM may be independent of specific determinants
of subcellular localization, and rather results from a general

reorientation of protein trafficking from the plasma membrane
toward the PAM (Pumplin et al., 2012). According to this sce-
nario, localization to the PAM does not require specific targeting
signals, but merely depends on the timing of gene expression.

SECRETION TOWARD DEVELOPING BACTEROIDS

Further evidence for a role of protein trafficking and secretion
during RNS comes from the finding that the development of
functional nodules requires the signal peptidase complex, SPC
(Wangetal., 2010b). Secreted or integral membrane proteins have
an N-terminal signal peptide that is recognized by a signal peptide
recognition particle early during translation. The nascent protein
together with the ribosome is then attached to the ER, so that
the protein becomes inserted into the ER membrane or trans-
ported through it. Concomitantly, the signal peptide is removed
by a signal peptidase, an essential step for further processing of the
protein. The mutant defective in nitrogen fixationl (dnfl) carries a
mutation in the subunit SPC22 of the SPC. Although it is not the
catalytic subunit, its homolog in yeast is essential for signal pep-
tidase activity and cell growth (Fang et al., 1997). Surprisingly,
dnfl has no developmental phenotype (Starker et al., 2006), sug-
gesting that the function of the SPC22 subunit in M. truncatula
is symbiosis-specific. Dnfl mutants accumulate nodule-specific
cysteine-rich (NCR) peptides in the ER, instead of secreting them
into symbiosomes, where they cause the terminal differentiation
of bacteroids, a prerequisite for determinate nodule development
(Van De Velde et al., 2010).

Bacteroids can differentiate in two ways which differ in
their degree of determinacy. In L. japonicus, the bacteroids
retain their morphology and reproductive capacity, i.e., they
remain indeterminate, whereas in M. truncatula, they termi-
nally differentiate, involving a large size increase and the inability
to divide. The fate of bacteroids is thought to depend on the
plant, as some rhizobia can adopt both fates in function of their
host (Mergaert et al., 2006). Indeed, expression of M. truncat-
ula NCR peptides in L. japonicus causes rhizobia to terminally
differentiate (Van De Velde et al., 2010). NCR247 peptide can
trigger terminal differentiation of Sinorhizobium meliloti also
in vitro (Van De Velde et al., 2010). Interestingly, high concen-
trations of NCR247 peptide interfere with bacterial membrane
integrity, thereby exerting antimicrobial activity. This effect is
particularly pronounced toward bacA mutants of S. meliloti,
revealing a protective effect of BacA against NCR peptides (Haag
et al., 2011). As BacA is predicted to encode a cytoplasmic sub-
unit of an ABC transporter, this protein could be involved in
either the uptake or efflux of NCR peptides in order to prevent
plasma membrane damage (Haag et al., 2011). BacA mutants
are protected in the dnfl mutant because NCRs are retained in
the ER. These results show that RNS does not represent per-
fect harmony but rather a balance between cooperation and
control.

ROLES OF ORGANELLES IN SYMBIOSIS

Cells with arbuscules and symbiosomes generally contain large
amounts of organelles, indicative of intense metabolic activity
(Figures 1 and 2). The plastids in mycorrhizal cells are of particu-
lar interest because they are closely associated with the arbuscules,
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and they considerably change their shape to a network-like sys-
tem, referred to as stromules (Lohse et al., 2005, 2006; Strack
and Fester, 2006). The plastids of mycorrhizal roots are active in
carotenoid and apocarotenoid metabolism, which may be signifi-
cant for symbiosis due to their role in the biosynthesis of the hor-
mones gibberellin, ABA and strigolactone (Walter et al., 2010).
Furthermore, plastids serve as factories for fatty acid biosynthe-
sis, which is a prerequisite for the expansion of the membrane
systems in symbiotic cells.

During AM and RNS the large central vacuole of colonized
cells fragments to yield room for the accommodation of the
symbiont (Cox and Sanders, 1974; Bonfante-Fasolo, 1984; Van
Brussel et al., 1992; Hause and Fester, 2005). The close association
of the symbiosome membrane with the tonoplast in mycorrhizal
cells (Figure 1) may indicate a role of vacuolar membranes or
vacuolar constituents in symbiosis.

A NEW CELLULAR COMPARTMENT INVOLVED IN SYMBIOSIS?

In a genetic screen for mutants affected in intracellular accom-
modation of AM fungi in P. hybrida, the mutant penetration
and arbuscule morphogenesis] (paml), was isolated (Sekhara
Reddy et al., 2007). PAMI encodes a novel plant-specific pro-
tein with an N-terminal major sperm protein (MSP) domain
that is also found in the VAMP-associated proteins (VAPs) which
are involved in vesicle trafficking (Lev et al., 2008; Feddermann
et al., 2010). The C-terminus consists of 11 ankyrin repeats
(Feddermann and Reinhardt, 2011), which are involved in
protein—protein interactions in eukaryotes (Bennett and Baines,
2001; Mosavi et al., 2004). Due to this domain structure, the
protein is referred to as VAPYRIN. VAPYRIN homologs were
found in almost all plant species, including the non-symbiotic
moss P. patens, but with the notable exception of A. thaliana.

Functional conservation of VAPYRIN was shown in M. trun-
catula, where vapyrin mutants are defective in both AM and
in RNS, indicating that intracellular accommodation, like the
common SYM pathway, is shared between bacterial and fungal
endosymbioses (Pumplin et al., 2010; Murray et al.,, 2011).
The fact that calcium spiking is normal in vapyrin mutants
shows that VAPYRIN acts downstream of the calcium signal
and perhaps of the entire common SYM signaling pathway
(Murray et al., 2011).

Petunia VAPYRIN localizes to the nucleus and the cytoplasm,
with a conspicuous accumulation to mobile spherical structures
that are associated with the tonoplast, and therefore termed
tonospheres (Feddermann et al., 2010). In AM of petunia, tono-
spheres associate with fungal hyphae (Feddermann et al., 2010).
In M. truncatula, mobile puncta with VAPYRIN-GEFP protein that
probably correspond to tonospheres, accumulate exclusively in
colonized cells (Pumplin et al., 2010). VAPYRIN does not contain
a signal peptide, nor any predicted transmembrane domain, indi-
cating that the association with membranes is likely to result from
protein—protein interaction with resident membrane proteins
(Feddermann and Reinhardt, 2011).

MEMBRANE TRANSPORTERS IN SYMBIOSIS

The “raison d’étre” of endosymbioses is the exchange of nutrients
representing a mutual benefit to both symbiotic partners (Box 2).
In RNS this involves primarily the transfer of N in the form of
ammonium from bacteroids to the plant, and the reverse trans-
fer of dicarboxylic acids such as malate, fumarate, or succinate to
the bacteroids (Prell and Poole, 2006). In the case of AM, there
is a range of nutrients that AM fungi can deliver to plants, with
the most prominent examples of P, N, and S (Allen and Shachar-
Hill, 2009; Smith and Smith, 2011). However, AM fungi can also

Box 2 | Are Nutritional Fluxes between Plants and AM Fungi Interrelated?

The ancient origin and the wide distribution of AM raises the question how mutualism has been stabilized over evolutionary time, but
also during ontogenetic development. Mutualism requires a high degree of coordination and synchronization between the partners, and
is prone to exploitation by one or the other, leading to a parasitic or pathogenic interaction. Indeed, heterotrophic (achlorophyllous) plants
have in multiple independent cases turned into parasites of AM fungi (Merckx et al., 2012). In a less extreme converse scenario, an AM
interaction can result in a negative growth effect on the plant reflecting a parasitic relationship where the costs of the interaction exceed
the benefit for the plant (Li et al., 2008). However, in most cases, AM are mutualistic, and exploitation is the exception.

How is mutualism stabilized in AM? One possibility is that the partners prevent exploitation by imposing sanctions on their partner in
case of reduced symbiotic service. There are indeed indications for such a scenario: for example, the flux of P; toward the plant influences
to which extent the fungus is allowed to proliferate in the root. If P; delivery is blocked by a mutation in the PT of the plant, fungal
colonization is reduced, and intracellular fungal structures are subject to premature senescence (Maeda et al., 2006; Javot et al., 2007).
On the other end of the scale, high levels of P; also repress AM fungal colonization (Breuillin et al., 2010). In both cases, the phenotype is
different than in common SYM mutants, indicating that symbiosis is blocked at a rather late stage. However, high P; supply is also known
to impact on early signaling through the inhibition of strigolactone biosynthesis (Balzergue et al., 2011).

Direct insight into sanctions come from measurements of nutrient flux in monoxenic root cultures as a function of nutrient supply and
environmental conditions. For example, plants can reduce C allocation to AM fungi, when they are supplied with optimal P; levels through
fertilization (Olsson et al., 2010). Conversely, when AM are supplied with limited C levels, P; accumulates in the AM fungus instead of
being transferred to the plant (Hammer et al., 2011). However, the question arises, whether in a more natural setting, when plants and AM
fungi occur simultaneously in combinations with several potential partners, plants and AM fungi can selectively identify and reward better
mutualists. This question was tested in an elegant approach, where isotope incorporation into newly synthesized fungal RNA allowed the
separation of material from different AM fungi hosted by the same plant, allowing to estimate their relative consumption of sugar from the
plant (Kiers et al., 2011). These experiments directly showed that plants colonized by two AM fungi preferentially reward the fungus that
provides more P; (Kiers et al., 2011). Conversely, AM fungi allocate P; and N preferentially to roots that supply them with more C (Fellbaum
et al., 2011; Kiers et al., 2011). These results document that AM involve a bidirectional rewarding system which can be considered a
“biological market” and which is believed to help maintain mutualism within individual AM interactions and over evolutionary times.
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acquire water and micronutrients from the soil and deliver them
to the plant host in exchange for fixed C (Clark and Zeto, 2000).

WATER RELATIONS AND AQUAPORINS

AM fungi can increase the drought resistance of plants in sev-
eral ways. Firstly, some AM fungi can considerably promote
water uptake of mycorrhizal plants (Marulanda et al., 2003),
and they can prevent leaf dehydration during drought and salt
stress (Aroca et al., 2007). Furthermore, mycorrhizal plants have
a lower and more stable root hydraulic conductance than non-
mycorrhizal plants, leading to increased water use efficiency
(WUE) that is higher amounts of photosynthate generated per
volume of acquired water (Augé, 2001). Improved water relations
may result from a generally improved nutritional status, but direct
effects of AM fungi on water uptake and transport have also
been reported (Marulanda et al., 2003; Egerton-Warburton et al.,
2007).

In principle, water flux across membranes proceeds passively
through osmosis along proteinaceous pores that facilitate water
diffusion through the membrane (Zeuthen, 2010). Aquaporins
facilitate water transfer through membranes along an osmotic
gradient, but they cannot actively pump water against a water
potential gradient. In plants, aquaporins occur as exceptionally
large and diverse gene families, suggesting that they play impor-
tant roles in various processes of plant life (Maurel et al., 2009;
Anderberg et al., 2012). Aquaporins of higher plants are classi-
fied into five groups, according to their subcellular localization,
expression pattern, and protein structure: plasma membrane
intrinsic proteins (PIPs), tonoplast intrinsic proteins (TIPs),
nodulin26-like intrinsic proteins (NIPs), small and basic intrinsic
proteins (SIPs), and X intrinsic proteins (XIPs) (Danielson and
Johanson, 2010).

Besides their function as water channels, aquaporins have been
shown to facilitate the diffusion across membranes of low molec-
ular weight neutral solutes such as glycerol, ammonia, and carbon
dioxide (Dean et al., 1999; Uehlein et al., 2008; Hwang et al.,
2010). Consistent with a role in endosymbiosis, several members
of the PIP-, TIP-, and NIP-subfamilies are induced in both AM
and RNS in rice, M. truncatula, L. japonicus, and petunia (Giiimil
et al., 2005; Hohnjec et al., 2005; Guether et al., 2009a; Breuillin
et al., 2010). In particular the NIP NOD26, which can account
for 10% of the total symbiosome membrane protein (Rivers et al.,
1997; Catalano et al., 2004) is of considerable interest. With its
ammonia transport activity, NOD26 would be well suited to allow
for N transfer along the source to sink gradient between bac-
teroids and plant. The fact that NOD26 is also induced in AM
(Guimil et al., 2005; Hohnjec et al., 2005; Guether et al., 2009a;
Breuillin et al., 2010) is in line with the finding that AM fungi,
like rhizobia, release N to the plant host in the form of ammonia
(Govindarajulu et al., 2005). However, it should be noted that in
the acidic environment of the symbiotic interface around arbus-
cules and bacteroids, ammonia is almost completely protonated
to the charged form ammonium (NHZ, pKb = 9.25), for which
permeability in NOD26 has not been shown. Hence N uptake
from the symbiotic interface into the host cytoplasm is more likely
to be mediated by ammonium transporters (see below) than by
NOD26.

In addition to their transport activity, aquaporins can medi-
ate close interactions of juxtaposed membranes for example in
the lens of mammals (Engel et al., 2008). Vacuolar subcom-
partments with multiple membrane layers and high contents of
y- and 3-TIP were observed in Arabidopsis cotyledons (Saito et al.,
2002). These structures are highly mobile and move along the
inner surface of the tonoplast to which they remain attached.
Similar mobile structures were identified in mycorrhizal roots,
where they contain the VAPYRIN protein (see above). Despite a
number of reports about the involvement of aquaporins in AM
and RNS, their exact biochemical function in symbiosis, as in
many processes of plant development, remains to be established
(Hill et al., 2004).

H*-ATPases

In contrast to the aquaporins, mineral nutrient transporters
require an active transport mechanism, since they often act
against a concentration gradient. Most nutrient transporters
in the plasma membrane use the energy of the proton elec-
trochemical gradient generated by HT-ATPases. In the direct
(non-symbiotic) nutrient uptake pathway, plants acquire nutri-
ents from the soil, whereas in the indirect mycorrhizal pathway,
nutrients are taken up from the periarbuscular space over the
PAM. In both cases, transport is energized by proton gradi-
ents. HT-ATPases are induced in AM (Gianinazzi-Pearson et al.,
2000; Krajinski et al., 2002) and are thought to contribute to
the uptake of inorganic phosphate (P;) and other nutrients
from the symbiotic interface by proton symport (Karandashov
and Bucher, 2005). Indeed, the periarbuscular space is acidified
(Guttenberger, 2000), an observation which is compatible with
the localization of an ATPase activity at the PAM (Marx et al,,
1982). Hence, to energize nutrient uptake from the symbi-
otic interface, plants generate a proton gradient (Ferrol et al.,
2002) to which the mycorrhizal fungus may also contribute
(Requena et al., 2003; Breuninger and Requena, 2004; Balestrini
and Lanfranco, 2007; Ramos et al., 2009). An activity analogous
to the HT-ATPase in the PAM was identified at the symbiosome
membrane, which provides both the plant and the bacteroids with
an electrochemical gradient for nutrient uptake from the peribac-
teroid space (Fedorova et al., 1999; Saalbach et al., 2002; Catalano
et al., 2004).

PHOSPHATE TRANSPORT

The most thoroughly studied nutrient transport pathway in
AM is the transport of P; (Karandashov and Bucher, 2005)
which is taken up from the soil by fungal P; transporters (PTs)
(Harrison and Van Buuren, 1995; Maldonado-Mendoza et al.,
2001; Requena et al., 2003; Benedetto et al., 2005). Surprisingly,
a PT of Glomus mossae (GmosPT) is expressed at similar lev-
els in the extraradical and intraradical mycelium (Benedetto
et al., 2005). Hence, the AM fungus could potentially control P;
flux toward the plant by partial re-uptake of P; from the root
(Benedetto et al., 2005; Balestrini et al., 2007). AM fungi store
P; as polyphosphate in tubular vacuoles (Uetake et al., 2002; Kuga
etal., 2008; Olsson et al., 2011). Polyphosphate is a linear P; poly-
mer that can comprise thousands of P; residues. Polyphosphate
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as vacuolar storage form helps to keep P; levels in a physiologi-
cal range in the fungal cytoplasm, and prevents osmotic effects.
Furthermore, the low cytoplasmic concentration of free P; favors
further P; uptake from the soil. Polyphosphate is translocated
in mobile vacuoles from the extraradical mycelium to the myc-
orrhizal roots (Maldonado-Mendoza et al., 2001; Hijikata et al.,
2010), and released as free P; into the periarbuscular space, where
it is taken up by plant PTs.

The best-characterized symbiotic PT of plants is the M. trun-
catula AM-specific low-affinity transporter MtPT4, which is
localized exclusively to the PAM (Harrison et al., 2002). MtPT4
activity is required not only for improved shoot P; status, but
also for sustained AM colonization of the root system (Javot
et al., 2007). In mtpt4 mutants, arbuscules accumulate polyphos-
phate, indicative of an impairment of P; transfer, and they senesce
prematurely. Thus plants can sense the quality of symbiotic ser-
vice and sustain or terminate symbiosis, depending on the result-
ing benefit (Javot et al., 2007). Solanaceae such as tomato and
petunia have three AM-responsive PT genes (PT3-PT5) among
which PT4 is the only AM-specific one (Wegmiiller et al., 2008;
Nagy et al., 2009). This redundancy complicates functional anal-
ysis compared to M. truncatula. In mycorrhizal tomato roots, high
levels of LePT3 and LePT4 were detected in arbuscule-containing
cells (Balestrini et al., 2007). In potato, the related StPT3 gene is
active in cells with arbuscules as with hyphal coils (Rausch et al.,
2001; Karandashov et al., 2004), consistent with active P; uptake
in colonized cells of both Arum- and Paris-type AM. Expression of
the AM-specific low-affinity rice PT OsPT11 is correlated with the
degree of G. intraradices colonization, as MtPT4 (Harrison et al.,
2002; Paszkowski et al., 2002; Kobae and Hata, 2010). OsPT11,
which was studied in both Arum-type and Paris-type mycorrhiza,
localizes exclusively to the membrane around branched hyphae,
but not at the plasma membrane neither around hyphal coils or
hyphal trunks, a pattern similar to MtPT4 (Harrison et al., 2002;
Pumplin and Harrison, 2009; Kobae and Hata, 2010). Hence, the
expression pattern and the subcellular localization of AM-specific
PTs in mono- and dicotyledonous plants reveals a conserved P;
uptake pathway in colonized cells of Arum- and Paris-type AM.

Interestingly, symbiosis-related PTs of monocots [e.g., OsPT11
of rice and ZmPT6 of maize (Zea mais)] and dicots (e.g., MtPT4
of M. truncatula and LePT4 of tomato) share a common phy-
logenetic root with the PT families of the lower land plants
P. patens and Selaginella moellendorffii, documenting their com-
mon ancestral origin relative to the more derived members of
the constitutive P; uptake pathway in angiosperms (Paszkowski,
pers. communication). A close evolutionary relationship among
the symbiosis-specific PT is also documented by the conserva-
tion of their promoter sequences relative to related PTs that are
induced by AM to a lesser degree, such as the PT3 lineage of the
Solanaceae (Rausch et al., 2001; Chen et al., 2011).

NITROGEN TRANSPORT

AM fungi, like roots, can acquire N from the soil primarily
as nitrate (NO3') or as ammonium (NHI) (Tian et al., 2010),
although organic forms may also be involved (Cappellazzo et al.,
2008). Two ammonium transporters, GintAMT1 and GinAMT2,
were identified in Glomus intraradices. The high affinity
transporter GintAMT1 is substrate-inducible and is expressed

preferentially in the extraradical mycelium (Lopez-Pedrosa et al.,
2006; Perez-Tienda et al., 2011), whereas GintAMT? is preferen-
tially expressed in the intraradical mycelium and is not substrate-
regulated (Perez-Tienda et al., 2011). Interestingly, GintAMT1
and GintAMT? are both expressed in arbuscule-containing cells
(Perez-Tienda et al., 2011), indicating that they may modulate the
amount of delivered N by reuptake, as it has been proposed for P;
transport (see above).

Once in the extraradical mycelium, N is thought to be translo-
cated in the form of arginine which carries four N atoms per
molecule and therefore represents a concentrated transport form
of N (Govindarajulu et al., 2005). The fate of N from the soil to
the plant through the AM fungus has been well described through
the analysis of the enzymatic steps of ammonium assimilation,
arginin biosynthesis in the extraradical hyphae, and arginine
catabolism in intraradical hyphae (Govindarajulu et al., 2005;
Tian et al.,, 2010). N is then thought to be transferred to the
periarbuscular space in an inorganic form probably as ammo-
nium, which can be taken up by the PAM via ammonium trans-
porters such as LJAMT?2.2 in L. japonicus (Guether et al., 2009b),
GmAMT4.1 in soybean (Glycine max) (Kobae et al., 2010), and
their homologs in M. truncatula (Gomez et al., 2009; Gaude et al.,
2012).

Like AM fungi, the bacteroids in nodules release fixed N
in the form of ammonia which is taken up by ammonium
transporters in the symbiosome membrane (Kaiser et al., 1998;
Rogato et al., 2008). Whether the ammonia-permeable aqua-
porin NOD26 plays a prominent role in N uptake of plants,
as suggested by Hwang et al. (2010) is not clear (see above).
However, patch clamp experiments have revealed a channel-like
activity through which ammonium from the peribacteroid space
can be taken up into the cytoplasm of the host (Tyerman et al.,
1995;Kaiser et al., 1998).

CARBOHYDRATE TRANSPORT

Recent progress has significantly advanced our understanding of
sugar transport within plants and in the interaction with benefi-
cial and pathogenic microbes (Doidy et al., 2012). For nutrition of
endosymbiotic microbes, two sugar transport steps are required.
First, symbiotic tissues such as nodules and mycorrhizal roots
need to attract photosynthate in competition with other sinks,
and they need to take up sugar either directly from the phloem,
or from the surrounding apoplast. Secondly, symbiotic cells need
to release an appropriate form of C to the microbe at the symbi-
otic interface. In plants, the mobile form of reduced C is primarily
sucrose which is cleaved to hexoses (glucose and fructose) in sink
tissues. Hence, sink tissues of plants can acquire carbohydrate
either by sucrose transporters or by monosaccharide (hexose)
transporters. Candidates for sink-related transporters in symbio-
sis are the AM-inducible hexose transporter Mtstl in M. truncat-
ula (Harrison, 1996), and the sucrose transporter LjSUT4 induced
during nodule development in L. japonicus (Flemetakis et al.,
2003).

It has long been an open question how hexoses may be released
from cells in general, and from AM colonized cortex cells in par-
ticular. Only recently, a family of plant hexose transporters has
been identified (SWEET) that can serve for hexose export from
cells (Chen et al., 2010). SWEETS are uniporters that can transfer
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hexoses in both directions, depending on the sugar gradient over
the plasma membrane. In animals, SWEETs release hexoses to
extracellular compartments such as the blood (Chen et al., 2010).
A. thaliana has 17 SWEETS, suggesting that they play diverse roles
in plant life. SWEETSs can be exploited by pathogens for their own
nutrition (Chen et al., 2010). Interestingly, the nodule-specific
MItN3 is a member of the M. truncatula SWEET family, and may
therefore be involved in the nutrition of the bacteroids in nodules.
Whether members of the SWEET family indeed play a role in AM
or RNS remains to be shown.

Hexoses are the likely transfer form to supply the heterotrophic
AM fungus with fixed C (Pfeffer et al., 1999). AM fungi have a
hexose transporter, MST2, that can take up glucose, galactose,
mannose and the oxidized sugars glucuronic and galacturonic
acid (Helber et al., 2011). MST?2 is required for fungal prolifer-
ation in roots, indicating that it is involved in nutrition of the
fungus during symbiosis (Helber et al., 2011).

The C source provided to bacteroids in nodules consists of
dicarboxylic acids (Long, 1989). Indeed, S. meliloti possesses a
dicarboxylate transporter, DctA, which is suggested to transport
several compounds, mainly malate and fumarate (Yurgel and
Kahn, 2005). DctA is required for RNS, in particular for the
energy-demanding N fixation by bacteroids, since dctA mutants
are impaired in N fixation.

OTHER TRANSPORTERS WITH POTENTIAL ROLES IN SYMBIOSIS

Some proteins are required for the establishment of a func-
tional endosymbiosis, but their cellular and biochemical function
remains elusive. For instance the L. japonicus mutant senl can
form nodules when colonized with Mesorhizobium loti, but the
nodules remain pale and small, and N fixation is abolished
(Hakoyama et al., 2012). SEN1, which is expressed specifically in
the infected cells of nodules, is homologous to vacuolar cation
transporters for iron and manganese. It is conceivable that a
depletion in iron or manganese may hamper N fixation in bac-
teroids since iron is required for the nitrogenase complex, apart
from general bacteroid metabolism (Hakoyama et al., 2012).

In AM, a likely candidate for a sulfate transporter was recently
identified in M. truncatula (Casieri et al., 2012), however, its func-
tional relevance in symbiosis, as well as its subcellular localization
remain to be established. Two half-size ABC transporters of the
same species, STUNTED ARBUSCULE (MtSTR) and MtSTR2
are essential for functional arbuscules (Zhang et al., 2010). MtSTR
and MtSTR2 are expressed specifically in arbuscule-containing

cells, where they localize to the PAM. MtSTR and MtSTR2 were
found to heterodimerize creating a full-size transporter that is
localized to the PAM around young and mature arbuscules, but
not around the hyphal trunk. Homologs of MtSTR and MtSTR2
were found in rice (OsSTRI and OsSTR2; Gutjahr et al.,, 2012),
but not in the non-symbiotic model species A. thaliana, consis-
tent with a specific role in symbiosis. However, their function in
symbiosis remains elusive since their substrates are unknown.

CONCLUSIONS

Membranes are a central feature of life, since they allow the inte-
rior of cells to establish controlled conditions separated from the
environment to provide optimal conditions for biochemical pro-
cesses. In endosymbiosis, this aspect is accentuated, since two
organisms cooperate in such close proximity that not much more
than a membrane, a thin cell wall, and some interstitial material
separates their cytoplasms. Therefore, highly organized mem-
brane systems are at the core of endosymbioses. They are involved
at all levels from initial recognition over intracellular accommo-
dation to the establishment of the symbiotic interface, over which
nutrients are exchanged. A topic that will attract increasing inter-
est in coming years is the compartmentalization of the plasma
membrane and the peri-microbial membranes (PAM and sym-
biosome membrane). An emerging scenario is that plants—Ilike
animals—have membrane microdomains that serve as signaling
platforms in symbiosis and in plant-pathogen interactions. These
membrane microdomains contain receptors and signaling com-
ponents that are subject to dynamic regulation in space and
time. Also, the emerging notion that the recognition of micro-
bial pathogens and symbionts by LysM-containing receptors may
share a common origin from non-self recognition mechanisms
line out exciting new avenues for future research. Comparison
of the molecular basis of symbiotic signaling and development
in different taxa will help elucidate the evolution of AM in the
ancestors of vascular plants, and the multiple emergence of RNS
in a predisposed monophyletic clade within the angiosperms.
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