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The aim of this short review was to summarize recent advances in the field of viral cell-to-cell
movement mediated by the triple gene block (TGB).The growing body of new research has
uncovered links between virus cell-to-cell trafficking and replication, silencing suppression,
virus spread over the plant, as well as suggested the roles of nucleus/nucleolus in plant
virus transport and revealed protein-membrane associations occurring during subcellular
targeting and cell-to-cell movement. In this context, our review briefly summarized current
views on several potentially important functions of TGB proteins and on the development
of new experimental systems that improved understanding of the molecular events during
TGB-mediated virus movement.
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INTRODUCTION
In recent years, the molecular mechanism of triple gene block
(TGB)-mediated cell-to-cell movement of plant viruses was
extensively studied and reviewed (Morozov and Solovyev, 2003;
Verchot-Lubicz et al., 2010; Hyun et al., 2011; Niehl and Heinlein,
2011; Schoelz et al., 2011; Torrance et al., 2011). Three overlapping
TGB genes encode proteins designated TGB1, which contains the
domain of RNA helicase of superfamily 1, TGB2 and TGB3, which
are small membrane-associated proteins. Our previous reviews
focused on common and distinct properties of two major classes
of TGB modules, potex-like and hordei-like TGBs (Morozov and
Solovyev, 2003; Verchot-Lubicz et al., 2010). The TGB2 protein
is highly conserved in both TGB classes, whereas the structural
properties of TGB1 and TGB3 proteins differ considerably between
potex-like and hordei-like TGBs (Figure 1; Morozov and Solovyev,
2003).

The analysis of recently published sequences of new TGB-
containing viruses allowed us to reveal two additional TGB classes,
one included the TGB of Beet necrotic yellow vein virus (BNYVV)
and several related viruses belonging to the unassigned genus
Benyvirus, and the other was TGB of bacilliform Hibiscus green
spot virus (HGSV; Figure 1A; Morozov and Solovyev, 2012). Sim-
ilar to the hordei-like TGB3 proteins, the BNYVV TGB3 has two
transmembrane domains. However, the BNYVV TGB3 protein dif-
fers from hordei-like proteins by the N-terminal transmembrane
domain located close to the protein terminus and a conserved
sequence signature found only in the genus Benyvirus (Morozov
and Solovyev, 2003, 2012; Figure 1B). The HGSV TGB1 heli-
case is very distantly related to other TGB1 proteins and shows
more similarity to the superfamily 1 replicative helicases of the
genus Benyvirus; and HGSV TGB3 contains two long hydropho-
bic segments with extremely short central hydrophilic region and

no similarity to any of three other groups of TGB3 proteins
(Figure 1B; Melzer et al., 2012). Moreover, despite the high-
est conservation of TGB2 among hordei-, beny-, and potex-like
TGB proteins (Morozov and Solovyev, 2003), the HGSV pro-
tein has the central hydrophilic segment only distantly related to
other TGB2 proteins (Morozov and Solovyev, 2012; Figure 1B).
The relation of the TGB1 protein to the replicative helicases
of alpha-like positive-stranded RNA viruses (Koonin and Dolja,
1993), occurence of two helicase domains in the RNA replicase
of an endornavirus (Koonin and Dolja, 2012) and the ability to
suppress RNA silencing observed for helicase domains of viral
replicases as well as TGB1 proteins (Bayne et al., 2005; Sen-
shu et al., 2009, 2011) allowed us to put forward the hypoth-
esis of a multi-step TGB evolution (Morozov and Solovyev,
2012).

In this review, only three directions of TGB research where con-
siderable progress has been achieved in recent years were selected
for detailed discussion. The advances in functional analysis of
TGB-mediated virus movement are summarized in Table 1 and
Figure 1C.

TGB-MEDIATED SILENCING SUPPRESSION AND VIRUS
MOVEMENT
The pioneering work of Bayne et al. (2005) proposed that the
virus movement depends on multiple functions including silenc-
ing suppression. The idea that silencing suppression mediated
by the Potato virus X TGB1 protein could be required for cell-
to-cell PVX movement came from the finding that the move-
ment function of some TGB1 mutants could be restored by the
heterologous silencing suppressors P19 and HcPro provided in
trans. However, at least one of the other functions of the potex-
like TGB1 protein (the movement function per se) is essential
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FIGURE 1 | (A) Genome organization of the new TGB-containing virus HGSV.
Boxes represent genome-encoded open reading frames. Replicase gene
domains are shown in the yellow box: MT, methyltransferase; PRO, protease;
HEL, RNA helicase; POL, RNA-dependent RNA polymerase. Green boxes
represent the TGB. Blue box specifies the viral coat protein (CP). (B)
Molecular organization of TGB1, TGB2, and TGB3 proteins. Nucleolar
localization sequences and helicase domain regions of TGB1 are shown above
the BSMV TGB1. Characteristic signature sequences in TGB2 and TGB3 are

shown. Dark green boxes indicate hydrophobic transmembrane sequence
segments. (C) General scheme of TGB-mediated intracellular movement and
interactions of macromolecules. Processes specific for potex-like and
hordei-like TGBs are shown by blue and red arrows, respectively. Note that
the box ‘binding to chaperone SGT1’ means a functional interaction between
TGB3 and SGT1 (Ye et al., 2012). Transport steps common for both potex-
and hordei-like TGBs are shown by parallel arrows. Processes that are

(Continued)
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FIGURE 1 | Continued
not proved to be involved directly in virus cell-to-cell movement are shown
by dashed arrows. Numbered gray arcs indicate alternative pathways of
intracellular trafficking. (1) TGB2 and TGB3 may travel to their destinations
in specific membrane containers such as vesicles formed in a
COPII-independent manner, or ER-specific membrane rafts (Verchot-Lubicz
et al., 2010; this review). (2) Trafficking to the cell periphery of the TGB1
protein (and TGB1-containing RNPs) may exploit the cytoskeleton-based

pathway with the immediate movement to PD-associated compartment,
or via binding to TGB2/TGB3-containing membrane subdomains involved in
cytoskeleton-dependent transport (Verchot-Lubicz et al., 2010; this review).
(3) TGB2/3-specific membrane containers may bind movement-competent
RNPs containing TGBp1. On the other hand, these complexes may be
delivered directly to the neck region of PD through interactions with
cytoskeleton (see above; Verchot-Lubicz et al., 2010; this review). For
further details, see text.

for virus movement, since several TGB1 protein mutants are
movement-defective but fully competent as silencing suppressors,
and strong silencing suppressors could not support movement
of such TGB1-deficient PVX (Bayne et al., 2005). In accordance
with these data, a specific mutation in TGB1 of Alternanthera
mosaic virus, another potexvirus, proved to significantly reduce
the TGB1 silencing suppression ability but retained the pro-
tein movement functions unaffected (Lim et al., 2010a). A sim-
ilar effect of this particular TGB1 point mutation on silencing
suppression is observed in other potexviruses too (Lim et al.,
2010b).

Five different potexviruses exhibit strong variations in the abil-
ity to suppress RNA silencing in Nicotiana benthamiana, and these
variations result from the differences in the suppressor activities
of their TGB1 proteins (Senshu et al., 2009). Moreover, recent data
demonstrate that some of the potexvirus TGB1 proteins suppress
both intracellular silencing and the silencing spread through the
plant, while others such as TGB1 encoded by potexvirus PVX and
Potato virus M, a carlavirus, mainly suppress the spread of the
silencing signal (Voinnet et al., 2000; Senshu et al., 2011). The clue
to understanding the drastic functional differences observed in
N. benthamiana for TGB1 proteins encoded by viruses with dif-
ferent natural hosts was made in the study where PVX, which is
not competent for movement in Arabidopsis thaliana, was able
to infect the A. thaliana triple dicer mutant (dcl2, dcl3, and
dcl4). Moreover, the restriction of PVX systemic movement on
A. thaliana also depended on AGO2 (RNAse H-like Argonaute
protein; Jaubert et al., 2011). Thus, the ability of PVX to infect
the Arabidopsis triple dicer mutant and AGO2 mutant suggests
that the PVX TGB1 protein does not function as an effective
silencing suppressor in this host (Alvarado and Scholthof, 2009;
Jaubert et al., 2011). The specificity of TGB1 interaction with host
and non-host proteins is one of the explanations of this phe-
nomenon. Indeed, previous reports have shown that several viral
silencing suppressors directly target AGO proteins and either pre-
vent siRNA loading or induce AGO degradation (Alvarado and
Scholthof, 2009; Csorba et al., 2010; Burgyán and Havelda, 2011;
Shimura and Pantaleo, 2011; Schott et al., 2012). Recently, the
PVX TGB1 protein was also reported to interact with AGO1,
AGO2, AGO3, and AGO4 and destabilize AGO1 (Chiu et al.,
2010).

Recently, Duan et al. (2012) demonstrated that the interac-
tion of silencing suppressor 2b encoded by cucumoviruses with
AGO proteins in vivo was required, in addition to the sup-
pression function itself, for the nucleolar targeting of 2b and
contributed to the re-distribution of both the 2b and AGO pro-
teins in the nucleus. Therefore, TGB1 can be expected to be
capable of trafficking to the nucleus and nucleolus. Indeed, the

TGB1 proteins encoded by two potexviruses, Alternanthera mosaic
virus and Narcissus mosaic virus, were shown to localize partly
in the nucleus and nucleolus, and their nucleolar localization
was experimentally proved to be essential for the efficient sup-
pression of RNA silencing, probably through TGB1 interaction
with nucleolar components of the host RNA silencing machin-
ery (Lim et al., 2010b). However, the PVX TGB1 protein was
localized to the nucleus but not to the nucleolus (Samuels et al.,
2007).

POSSIBLE LINK BETWEEN THE TGB1 NUCLEOLAR
LOCALIZATION AND VIRUS LONG-DISTANCE MOVEMENT
An increasing number of reports reveals that the proteins of many
RNA viruses localize to the nucleus and its sub-compartments
(mainly, to the nucleolus and the Cajal bodies), interact with
nuclear/nucleolar proteins and divert host protein functions in
order to exert novel role(s) during virus infection (Hiscox, 2007;
Greco, 2009; Taliansky et al., 2010).

Analysis of TGB1 amino acid sequences employing the web
service NoD, the nucleolar localization sequence detector (Scott
et al., 2011), reveals nucleolar localization signals (NoLS) nei-
ther in HGSV, PVX, and other potex-like TGB1 proteins, nor
in benyvirus-encoded proteins (our unpublished observations).
On the other hand, all analyzed hordei-like TGB1 proteins are
predicted to possess at least one NoLS: two NoLS sequences
(NoLS A and B) were found in the proteins of all hordeiviruses,
while a single NoLS was predicted in the pomovirus and peclu-
virus proteins (Figure 1B). Therefore, we propose that the abil-
ity of the potexvirus TGB proteins to localize to the nucleolus
can be due to their interactions with cell proteins (see above),
whereas the transport of hordeivirus and pomovirus TGB1 pro-
teins to the nucleolus can be directed by their own targeting
signals.

In agreement with the NoLS predictions in hordei-like TGB1
proteins, several reports demonstrate the nuclear/nucleolar tar-
geting of pomovirus and hordeivirus GFP-tagged TGB1 pro-
teins observed along with their cytoplasmic localization (Wright
et al., 2010; Semashko et al., 2012a). The NoLSs in TGB1 pro-
teins encoded by viruses of both genera were predicted in the
unstructured N-terminal domain (NTD; Figure 1B), which is
present in all hordei-like TGB1 proteins (Makarov et al., 2009).
These predictions are validated by the observation that the iso-
lated N-terminal fragments of TGB1 can partly localize to the
nucleolus (Wright et al., 2010; Semashko et al., 2012a). More-
over, mutations of basic residues in this region of the hordei-like
pomovirus TGB1 protein abolish its nucleolar accumulation (Tor-
rance et al., 2011). Similarly, mutagenesis of the basic amino
acid residues in predicted hordeivirus NoLS A (aa107-136) and B
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Table 1 | Overview of recent achievements in the cell biology studies ofTGB.

Research directions Novel advances Reference

TGB-mediated silencing

suppression and virus

movement

Five different potexviruses exhibit strong variations in the ability to suppress RNA silencing in

Nicotiana benthamiana

Senshu et al. (2009)

A specific mutation in potexvirus TGB1 significantly reduces the TGB1 silencing suppression

ability but retains the protein movement functions unaffected

Lim et al. (2010a,b)

Carlavirus TGB1 suppresses systemic RNA silencing in Nicotiana benthamiana Senshu et al. (2011)

PVX is able to infect triple dicer and AGO2 mutants of the non-host plant Arabidopsis thaliana Jaubert et al. (2011)

PVX TGB1 protein interacts with and destabilizes AGO1 Chiu et al. (2010)

Localization of the TGB1

protein in the nucleus

and nucleolus

Potexvirus TGB1 proteins are shown to localize partly in the nucleus and nucleolus Samuels et al. (2007), Lim

et al. (2010b)
The isolated N-terminal fragments of hordei- and pomovirus TGB1 can partly localize to the

nucleolus

Wright et al. (2010),

Semashko et al. (2012a)

Hordeivirus TGB1 interacts with nucleolar proteins fibrillarin and coilin Semashko et al. (2012a,b)

Protein-membrane

association in the

TGB-mediated

intracellular movement

Potexvirus TGB3 exhibits the affinity to highly curved subdomains of cortical ER Lee et al. (2010), Wu et al.

(2011)
Potexvirus TGB3 protein is targeted to membrane bodies at the cell periphery of yeast and

plant cells and directs the TGB2 protein to these structures

Wu et al. (2011)

TGB3 multimer formation is required for the transport to specific peripheral compartments Lee et al. (2010)

Protein regions necessary for the multimerization and subcellular targeting are mapped in

both potex- and hordeivirus TGB3 proteins

Wu et al. (2011), Shemyakina

et al. (2011), Sun and Zhang

(2012)

Interaction of the TGB

proteins with the

cytoskeleton

Pomovirus TGB1 interacts with microtubules, and this interaction is not required for virus

movement

Wright et al. (2010), Torrance

et al. (2011)
Hordeivirus TGB1 interacts with microtubules, and this interaction is involved in protein

trafficking to plasmodesmata and aggresomes

Shemyakina et al. (2011)

Assembly of potexvirus TGB1 rod-like inclusions depends on actin microfilaments but not on

microtubules

Yan et al. (2012)

The potexvirus TGB1 protein remodels host actin Tilsner et al. (2012)

Actin cytoskeleton is important for BSMV cell-to-cell movement and for localization of TGB3 Lim et al. (2012)

Association of the TGB

proteins with the sites of

virus replication

The potexvirus TGB3 protein is co-localized with the viral replicase in the ER Bamunusinghe et al. (2009)

Potexvirus TGB1 is responsible for virus genome compartmentalization in infected cells Tilsner et al. (2012)

The role of the virus coat

protein in potexvirus

movement

The interaction between the potexvirus replicase and the coat protein is critical for virus

movement in plant hosts

Lee et al. (2011)

Potexvirus CP mutants deficient in the interaction with TGB1 can form virus particles but is

unable to move in plant tissues

Tilsner et al. (2012)

The N-terminal region of the PlAMV potexvirus coat protein is required for cell-to-cell

movement but is dispensable for virion assembly

Ozeki et al. (2009)

Genomic cis-elements

involved in TGB-mediated

movement

The stem-loop structure in the 5′-terminal region of potexvirus RNA controls viral movement

by interacting with the several host proteins and the virus coat protein

Cho et al. (2012a,b,c)

TGB-induced ER stress PVX TGB3 induces unfolded protein response Ye et al. (2011), Ye and

Verchot (2011)

Hordeivirus TGB3 overexpression induces severe changes of endomembrane system Solovyev et al. (2012), Lim

et al. (2012)

Eliciting of hypersensitive

response

Hordeivirus TGB1 elicits hypersensitive response and binds host Bsr1 R-protein Cui et al. (2012), Lee et al.

(2012)

TGB3 upregulates host

chaperones

PVX TGB3 upregulates ER resident and ubiquitin ligase chaperones Ye et al. (2011, 2012), Ye and

Verchot (2011)

TGB1 and remorin PVX TGB1 protein binds to plant membrane raft protein remorin. This interaction impairs

cell-to-cell movement of the virus

Raffaele et al. (2009), Perraki

et al. (2012)
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(aa171-194) reveal that these protein regions are indeed involved
in the protein localization to the nucleolus (Semashko et al.,
2012a).

The hordeivirus TGB1 protein is able to bind fibrillarin, the
major nucleolar protein, in vitro. The interaction of the two
proteins, which involves the glycine-arginine-rich domain of fib-
rillarin and the 82 N-terminal amino acid residues of TGB1
protein, can also be detected by bimolecular fluorescence comple-
mentation upon transient coexpression in N. benthamiana plants
(Semashko et al., 2012a). Additionally, the TGB1 NTD of two
hordeiviruses is able to interact in vitro and in vivo with coilin,
the major structural component of Cajal bodies, the subnuclear
structures revealed in nuclei of many eukaryotes, including plants;
and substitutions in the NoLS A resulted in an almost complete
loss of the NTD ability to bind coilin (Semashko et al., 2012b;
Kalinina and Guseinov, unpublished results). Fibrillarin is known
to interact with the umbravirus ORF3 protein in the nucleolus,
and this complex re-locates from the nuclei to the cytoplasm and
takes part in the formation of viral cytoplasmic ribonucleoproteins
(RNPs), which are capable of long-distance movement (Taliansky
et al., 2010). In the hordeivirus and pomovirus TGB1 proteins,
positively charged motifs corresponding to NoLS proved to be
dispensable for the virus transport from cell-to-cell but neces-
sary for the long-distance virus movement (Kalinina et al., 2001;
Wright et al., 2010; Torrance et al., 2011). Collectively, these data
suggest that, unlike viruses with the potex-like TGB where the
nuclear localization of the TGB1 protein is due to its functions
in suppression of RNA silencing, the localization of hordei-like
TGB1 to the nucleus/nucleolus may result from its functions in
virus long-distance movement. We hypothesize that this differ-
ence can be explained by different structure of the transport form
of the viral genome in viruses with potex-like and hordei-like
TGB, namely, the TGB1-modified virions in the former group
and TGB1-formed non-virion RNPs in the latter one (Verchot-
Lubicz et al., 2010). Presumably, the formation of transport-
competent TGB1-containing virions does not require functions
of cell nucleolar protein(s).

PROTEIN-MEMBRANE ASSOCIATION IN THE TGB-MEDIATED
INTRACELLULAR MOVEMENT
Transport of the TGB1 protein to plasmodesmata is generally
accepted to require the functions of the TGB2 and TGB3 pro-
teins (Verchot-Lubicz et al., 2010). Previous data clearly demon-
strated that the TGB3 protein contains signals of intracellular
transport at least in viruses with the hordei-like TGB (Tilsner
et al., 2010; Shemyakina et al., 2011; Sun and Zhang, 2012).
Being capable of interaction with other TGB proteins, the TGB3
protein serves as a “driving force” of their intracellular trans-
port to plasmodesmata-associated sites (Zamyatnin et al., 2004;
Lim et al., 2008, 2009). Therefore, understanding the mecha-
nism of TGB3 protein translocation from sites of its synthe-
sis to plasmodesmata is of key importance for unraveling the
details of the intracellular phase of TGB-mediated transport
(Figure 1C).

In yeast cells, the behavior of the TGB3 protein encoded by
Bamboo mosaic virus (BaMV), a potexvirus, is similar to that in
plant cells: the protein is able to be targeted to the membrane

bodies at the cell periphery and to direct the TGB2 protein to
these structures (Lee et al., 2010). As in plant cells, the peripheral
membrane TGB3-containing structures in yeast cells represent a
subdomain of the cortical ER (Lee et al., 2010; Wu et al., 2011).
Moreover, the TGB3-containing structures in yeast cells reside
within discrete cortical ER regions enriched in cell reticulons
Rtn1 and Yop1. These proteins belong to two families of inte-
gral ER membrane proteins necessary for the formation of highly
curved membrane tubules of cortical ER in eukaryotic cells (Lee
et al., 2010). The potexvirus TGB3 protein co-localized with a
plant-encoded Rtn1-related protein in tobacco leaf cells as well,
thus, validating the data obtained in yeast cells (Lee et al., 2010).
Importantly, the desmotubule, an ER tubule, which locates in plas-
modesmata and interconnects ER networks in neighboring cells,
is extremely narrow and therefore has a high membrane curva-
ture. Tilsner et al. (2011) recently suggested that the Rtn1- and
Yop1-related proteins are required for the formation and stabi-
lization of desmotubule, while the TGB3 protein can exhibit a
high affinity to this specific plasmodesmal sub-structure. Indeed,
the hordei-like TGB3 proteins of BSMV and Potato mop-top virus
(PMTV) were shown to be retained within cell wall-embedded
structures upon plasmolysis (Lim et al., 2009; Tilsner et al.,
2010), which supports the hypothesis of their localization to the
desmotubule.

As demonstrated for both potex-like and hordei-like TGBs, the
TGB3 protein trafficking to plasmodesmata-associated membrane
structures is COPII-independent and, thus, employs an uncon-
ventional mechanism, which does not involve the exit from ER in
COPII-transport vesicles (Figure 1C; Schepetilnikov et al., 2005,
2008; Lee et al., 2010). The COPII-independent TGB3-specific
trafficking to plasmodesmata-associated peripheral ER compart-
ments requires specific signals in the TGB3 sequence. It was
demonstrated that the targeting of hordei-like TGB3 protein was
determined by a composite signal comprising the highly conserved
sequence motif YQDLN located in the central hydrophilic protein
region and the C-terminal transmembrane domain (Schepetil-
nikov et al., 2008; Tilsner et al., 2010; Lim et al., 2012). Recent
studies show that these TGB3 regions play distinct roles. Analyses
of the hordeivirus TGB3 protein demonstrate that the true sig-
nal of its intracellular transport resides in the protein C-terminal
transmembrane segment, while the YQDLN motif is involved in
protein oligomerization, which is essential for the functioning of
targeting signal (Shemyakina et al., 2011; Sun and Zhang, 2012).
Therefore, the hordeivirus TGB3 protein with the functional C-
terminal targeting signal is able to enter its specific transloca-
tion pathway only in the form of multimeric complexes. Such
TGB3-containing complexes represent the natural form of this
protein found in hordeivirus-infected tissue (Shemyakina et al.,
2011).

The residues responsible for specific targeting and self-
interaction have been recently mapped in the BaMV TGB3 pro-
tein. The targeting to Rtn1/Yop-enriched cortical ER subdomains
requires the C-terminal hydrophilic protein region, specifically,
several critical residues conserved in the TGB3 proteins encoded
by different potexviruses (Wu et al., 2011). Therefore, the func-
tionally equivalent transport signals identified in the hordeivirus
TGB3 protein (the transmembrane sequence domain) and the
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potexvirus TGB3 protein (the hydrophilic sequence region) are
strikingly different in their properties. The potexvirus TGB3 is
capable of multimer formation, and the residues involved in pro-
tein self-interaction were mapped to the TGB3 region containing
the protein sorting signal (Wu et al.,2011). It should be emphasized
that, similarly to the hordeivirus TGB3 protein, the potexvirus
TGB3 protein self-interaction is a pre-requisite for its correct
subcellular targeting (Shemyakina et al., 2011; Wu et al., 2011).

The mechanism of TGB3 intracellular transport was hypothe-
sized to involve either lateral translocation of TGB3-formed rafts,
which also incorporate the TGB2 protein, in the plane of the ER
membranes (Morozov and Solovyev, 2003; Wu et al., 2011) as pos-
tulated for the Tobacco mosaic virus MP (Epel, 2009), or vesicles of
unknown nature tightly associated with the cortical tubular ER as
observed for the PVX and PMTV TGB3 proteins (Samuels et al.,
2007; Verchot-Lubicz et al., 2010).

Thus, the new data clearly show that the potex-like and
hordei-like TGB3 proteins, which have markedly different struc-
ture (Morozov and Solovyev, 2003), nevertheless exhibit similar
functional properties (Figure 1C) including the abilities for multi-
merization and multimerization-dependent subcellular targeting.
Similar to hordeivirus TGB3 proteins, the BaMV TGB3 protein is
found in discrete membrane bodies located at the cell periphery
corresponding to highly curved subdomains of cortical ER (Wu
et al., 2011) and is able to interact with the TGB2 protein, therefore
ensuring the TGB2 co-targeting to TGB3-containing structures
(Lee et al., 2010; Wu et al., 2011). Another parallel between the
potex-like and hordei-like TGBs is provided by the recently shown
interaction between the BaMV TGB2 and TGB1 proteins (Wu
et al., 2011). This finding suggests that the complex containing the

two membrane proteins encoded by potex-like TGB may direct
the TGB1 protein to plasmodesmata-associated sites (Figure 1C).
This hypothesis agrees with the reported ability of the hordei-
like PMTV TGB2/TGB3 proteins to target the respective TGB1
protein to peripheral membrane compartments and to the plas-
modesmata interior (Zamyatnin et al., 2004) as well as with the
observed interactions of the BSMV TGB3 protein with both TGB2
and TGB1 proteins (Lim et al., 2008). The new findings make it
possible to propose a general model of intracellular transport for
hodeivirus and potexvirus TGB proteins (Figure 1C). This model
includes common and specific events for both types of proteins as
well as possible alternative pathways of trafficking process.

CONCLUSION
Studies carried out in the recent years reveal new aspects of
the TGB-mediated virus movement, such as the accumulation of
TGB3 protein in the cortical highly curved ER regions enriched in
cell reticulons and involvement of the TGB1 protein in the inter-
actions with the cellular RNA silencing machinery. The current
research uncovers tight links between virus replication and cell-
to-cell movement, the role of cytoskeleton, and the requirements
for specific genomic RNA regions for TGB-mediated transport. In
this short review we focused the reader’s attention on the three
trends in TGB studies to inspire further progress in the field.
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