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Understanding the regulatory networks coordinating seed development will help to manip-
ulate seed traits, such as protein content and seed weight, in order to increase yield and
seed nutritional value of important food crops, such as legumes. Because of the cardinal
role of the nucleus in gene expression, sub-proteome analyses of nuclei from developing
seeds were conducted, taking advantage of the sequences available for model species. In
this review, we discuss the strategies used to separate and identify the nuclear proteins
at a stage when the seed is preparing for reserve accumulation. We present how these
data provide an insight into the complexity and distinctive features of the seed nuclear pro-
teome. We discuss the presence of chromatin-modifying enzymes and proteins that have
roles in RNA-directed DNA methylation and which may be involved in modifying genome
architecture in preparation for seed filling. Specific features of the seed nuclei at the transi-
tion between the stage of cell divisions and that of cell expansion and reserve deposition
are described here which may help to manipulate seed quality traits, such as seed weight.
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INTRODUCTION
Because seeds, such as those of legumes and cereals, are a source
of nutrients for animal and human nutrition, breeding objectives
include improving seed quality and yield and/or stabilizing these
traits under fluctuating environmental conditions. To develop an
understanding of the genetic factors controlling these traits, omics
studies of seed development were performed from the year 2000
onward exploiting the availability of genome sequence for several
species, including Arabidopsis, rice, and Medicago truncatula. This
last species was adopted in 2001 as a model for legumes because of
its small genome size compared to other legumes (Bell et al., 2001).
Genomics resources were then developed in this species (Young
et al., 2011) and extensively exploited, notably to study seed biol-
ogy. Proteomics has been used to identify candidate proteins with
roles in seed development (Thompson et al., 2009). While only
abundant soluble proteins were identified by proteomics targeted
to entire seed tissues, transcriptome studies provided informa-
tion about low-abundance expression of some genes (Thompson
et al., 2009). By comparing the timing of appearance of the pro-
teins with that of their corresponding transcripts during seed
development, divergent patterns were found for 50% of the pro-
teins detected in the M. truncatula seed proteome (Gallardo et al.,
2007). This indication of major post-transcriptional events high-
lighted the need to choose a proteomics approach to identify the
regulatory mechanisms governing seed development. Targeted to
the nucleus, proteomics allowed identification of regulatory pro-
teins in leaves, suspension cells, or seedlings from various species,
including Arabidopsis, rice (Oryza sativa), maize (Zea mays), and

chickpea (Cicer arietinum; Bae et al., 2003; Khan and Komatsu,
2004; Ferreira et al., 2006; Pandey et al., 2006; Tan et al., 2007; Li
et al., 2008). To provide a list of nuclear proteins with potential
regulatory role(s) in developing M. truncatula seeds, the approach
of combining nuclei isolation with proteomics was applied at 12
days after pollination (dap; Repetto et al., 2008). This key stage is
characterized by the switch from an embryogenesis-oriented pro-
gram, with frequent cell divisions, to a filling program associated
with embryo cell expansion and reserve accumulation. In a parallel
study, a nuclear proteomics approach was applied to the filial tissue
of rice seeds (i.e., the endosperm) at 9 dap (Li et al., 2008). At this
stage, the embryo is differentiated and the reserves start to accu-
mulate (Luo et al., 2011). Because understanding the processes
underlying the embryogenesis/filling transition might help greatly
to modulate both seed size and storage capacities, after outlining
the strategies used to identify nuclear proteins from developing
seeds, we describe the specificities of the seed nuclear proteome,
and discuss the proteins that might play key roles in controlling
this transition.

SEED NUCLEI PURIFICATION AND PROTEIN EXTRACTION
Nuclear isolation methods based on density gradients were applied
to immature seeds or seed tissues in flax (Linum usitatissimum),
M. truncatula, rice, and maize (Table 1), with the objective of
obtaining nuclei of sufficient yield and quality for protein profiling
(Ferreira et al., 2006), proteomics (Li et al., 2008; Repetto et al.,
2008), or gel shift experiments (Renouard et al., 2012). Castillo
et al. (2000) also succeeded in isolating nuclei from ungerminated
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pea embryonic axes to purify and sequence a nuclear protein
induced by dehydration (Table 1). The isolation of nuclei from
developing seeds is challenging due to the presence of storage
compounds such as globulins, oils, and carbohydrates (Gallardo
et al., 2008). In M. truncatula, we tested several nuclear separation
procedures from seeds collected at different developmental stages,
including flow cytometry, sucrose or percoll density gradients,
before adopting a sucrose-based “semi-pure” nuclear prepara-
tion of the CelLytic plant nuclei isolation kit (Sigma-Aldrich) to
which we have made some modifications described in Repetto et al.
(2008). At the 12 dap stage, the M. truncatula seed possesses nuclei
of 5–15 μm diameter with low DNA C-value (0.48 pg; Arumu-
ganathan and Earle, 1991). Observations of nuclei preparations
from M. truncatula seeds at later stages reveal few and larger seed
nuclei, along with many starch granules probably originating from
the seed coats (Abirached-Darmency et al., 2005). Optimizations
are necessary to obtain high-purity nuclei at these stages, which
differ in the number of contaminants (e.g., protein bodies, starch
granules), average nuclear size, and DNA content. Interestingly, a
cotton filtration step was set up by Li et al. (2008) for starch grain
removal from rice endosperm at 9 dap, and a protocol allowing
the removal of mucilage and phenolic compounds from seed coats
before nuclei isolation was developed by Renouard et al. (2012);
(Table 1).

Two of the nuclei isolation methods presented in Table 1 were
combined with mass spectrometry (MS) for sub-proteome analy-
ses. In Repetto et al. (2008), the nuclei-containing pellets obtained
from 12 dap M. truncatula seeds were directly resuspended in a
high salt concentration buffer (1 M NaCl), and then sonicated
to destroy the nuclear membranes. After validating the enrich-
ment for nuclear proteins by western blotting with antibodies for
histone H1 and for proteins specific for other subcellular com-
partments, the resulting protein extract was directly separated by
mono-dimensional gel electrophoresis (1-DE) and the whole lane
was sequentially cut into 36 portions for MS analyses (Figure 1). A
different approach was used by Li et al. (2008). They first removed
the highly abundant bands corresponding to storage proteins from
the 1-DE profile by excision, and then crushed the rest of the gel
to extract the low abundance proteins using a phenol extraction
buffer. After precipitation, the protein pellet was dissolved in 6 M
urea with 100 mM Tris–Cl for MS analyses.

IDENTIFICATION OF SEED NUCLEAR PROTEINS
In Repetto et al. (2008), the in-gel trypsin-digested peptides were
separated by liquid nano-chromatography (nanoLC) and fur-
ther measured and fragmented (MS/MS experiments) in a hybrid
quadrupole-time-of-flight mass spectrometer. A search in both
a wide databank (UniRef100) and a targeted databank made of
expressed sequence tags from M. truncatula (the TIGR MtGI
release 8 database) was realized from the mass data. The databank
search program was MASCOT 2.2 and proteins were identified
when at least two of their peptides matched the databank entry
with a p-value <0.05. We succeeded in identifying 179 polypep-
tides, corresponding to 143 distinct proteins, using this approach.
Sequence annotations were manually checked or completed by
(cross-) BLAST “parameters” searches against the NCBI non-
redundant database. The proteins were functionally classified

according to the MapMan ontology (Usadel et al., 2005) as well
as to a manual assignment not limited to homologs as described
in Gallardo et al. (2007). A complete list of proteins is available in
Repetto et al. (2008) that remains to date the most comprehensive
description of the M. truncatula nuclear proteome.

In a parallel study, a shotgun proteomics approach was used
by Li et al. (2008) to characterize the rice nuclear proteome. The
complex peptide mixtures derived from trypsin digestion were
subjected to 2-D liquid chromatography coupled to an ESI-IT
(electro spray ionization-ion trap) mass spectrometer. A search in
the rice non-redundant protein database (NCBInrPDB) was done
from the mass data, and proteins were identified when at least two
of their peptides matched the databank entry with a p-value <0.01.
This approach identified 468 proteins from the nuclear enriched
fractions of rice endosperm. A nuclear localization was assigned
for 47% of these proteins by searching the Gene Ontology (GO)
database (http://www.geneontology.org/). It should be noted that
prediction of nuclear localization of proteins is far from being
easy and entirely reliable. In fact, the nucleo-cytoplasmic protein
shuttling through the nuclear pore complex (NPC) is a highly
dynamic and complex system (Grünwald and Singer, 2012), and
for many proteins (e.g., ribosomal and cytoskeletal) there is a con-
sistent evidence for multiple locations. Moreover, only a fraction
of the proteins localized in nuclei possess nuclear localization sig-
nals for NPC-mediated transport into the nucleus. Therefore, the
prediction of nuclear localization based on the presence of signal
peptides (e.g., PSORT; Nakai and Horton, 1999) is usually cou-
pled with homology-based GO annotations, and must ideally be
confirmed by further experiments, for example using fluorescent
protein fusions or specific antibodies.

Among the proteins identified in the M. truncatula seed nucleus
that may be multifunctional and might display different organelle
functions and localizations, are certain enzymes of intermedi-
ary metabolism. Previous studies also reported the presence of
these enzymes in the nucleus although no obvious nuclear local-
ization signal was found in their sequences (Yamamoto et al., 1997;
Markova et al., 2006; Li et al., 2008; Lee et al., 2012). As an example,
sulfite reductase, a key plastid enzyme involved in sulfur reduc-
tion in plants, was identified in the M. truncatula seed nucleus.
This enzyme was shown to bind to DNA in the chloroplast, and
thus to repress genomic activity (i.e., transcription) through DNA
compaction (Sato et al., 2003; Sekine et al., 2007). Although fur-
ther experiments are needed to confirm their nuclear localization,
the presence of such proteins raises the possibility of a regulation
of transcriptional activities in seeds through nuclear targeting of
metabolic enzymes. They may be able to monitor metabolic status
in response to various stimuli by transmitting the changes to the
transcriptional apparatus.

SPECIFICITIES OF THE SEED NUCLEAR PROTEOME
A comparison of nuclear proteomes from different organs and
species might help to decipher the level of conservation of nuclear
proteins and to identify tissue- or species-specific nuclear func-
tions. With the aim to identify specific nuclear features in seeds,
we compared the nucleus proteome of M. truncatula seeds with
that of the rice endosperm at a milky stage (Li et al., 2008), and that
of chickpea seedlings (Pandey et al., 2006) and Arabidopsis leaves
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FIGURE 1 | Workflow of the nuclear proteomics approach applied to

M. truncatula seeds at a key stage between embryogenesis and seed

filling. Organelles were purified from 12 dap seeds (1 seed = 1.5 mm length),
and the proteins were extracted and separated by mono-dimensional gel
electrophoresis (1-DE). A typical 1-DE profile is shown with intense bands at
about 10–15 kDa corresponding to histones (H). After assessing the purity of

the nuclear protein fraction by Western blotting using antibodies against
proteins specific of different cell compartments, the in-gel digested peptides
were analyzed by nanoLC coupled to MS and MS/MS analyses. The peptide
mass data were subjected to a database search for putative protein
identification, and the proteins were functionally classified after a search for
nuclear peptide signals. SP, storage proteins. dap, days after pollination.

(Bae et al., 2003). Interestingly, two protein classes were particu-
larly enriched in the M. truncatula seed nucleus at a stage preparing
for reserve deposition: RNA processing and ribosome biogenesis.
In particular, an abundant pool of proteins (22% of the proteins
identified) was found that are members of the ribosomal protein
families comprising the 40S and 60S subunits synthesized within
the nucleolus in eukaryotes. The abundance of their transcripts
decreased sharply at the beginning of seed filling (i.e., 14–16 dap;
Gallardo et al., 2007). A salient feature of 12 dap M. truncatula
seeds is therefore the storage of a large pool of ribosomal proteins
within the nucleus, that can presumably be further readily used for
storage protein synthesis during seed filling. This may contribute
to our understanding of the mechanisms allowing legume seeds to
synthesize large amounts of storage proteins while entering into a
quiescent state. It also raises an important question of whether the
stored ribosomal proteins could be involved in the intricate con-
trol of homeostasis of protein amount per seed under challenging
environmental conditions. Interestingly, a PESCADILLO-like pro-
tein that may play a role in the biogenesis of ribosomal subunits
was identified in the nuclear proteome of both the rice endosperm
and M. truncatula seeds (Table 1). This protein is not functionally
characterized in plants but implicated in rRNA precursor process-
ing and ribosomal subunit assembly in human and mammalian
cells (Andersen et al., 2002; Lerch-Gaggl et al., 2002).

In the nuclear proteomes of both the M. truncatula seed and
rice endosperm the proportion of functionally annotated proteins
belonging to the DNA metabolism class (12% in M. truncatula and
29% in rice) exceeded that found in chickpea seedlings (Pandey
et al., 2006) and Arabidopsis leaves (Bae et al., 2003). Some of these
proteins are involved in the epigenetic regulation of the genome (Li
et al., 2008; Repetto et al., 2008). There is increasing evidence that
some components of the chromatin modification machinery play a

significant role in developing seeds. Recent surveys demonstrated
that genomic imprinting primarily occurs in the endosperm in
both rice and Arabidopsis, and that gene-specific imprinting in the
embryo also exists in maize (Ikeda, 2012 and references therein).
By comparing candidate imprinted genes from rice and Arabidop-
sis, Luo et al. (2011) found a low degree of conservation, suggesting
that imprinting targets have evolved independently in dicots and
monocots. In seeds, the epigenetic regulation of the genome,
which modulates chromatin structure to limit the expression of
genes to a particular tissue at a specific developmental stage, could
play a crucial role in the developmental switch of the dicot embryo
cells from division to expansion and filling (Figure 1). In legumes,
final seed weight is largely determined by the number of cotyle-
don cells (Munier-Jolain and Ney, 1998). Therefore, identifying
the epigenetic components of legume seeds that regulate the tim-
ing of the transition between cell division and cell expansion might
help to manipulate final seed weight.

Among the epigenetic components detected in the M. trun-
catula seed nuclei were histone deacetylases HD2A that are
good candidates for regulating the transition from an embryonic
program to a filling mode. HD2A are plant-specific chromatin-
remodeling factors participating in transcriptional repression via
the modification of gene accessibility (Li et al., 2002). Interest-
ingly, these proteins were also identified in the filial tissue of
rice (Table 1). HD2A are expressed strongly in embryonic tissues
and their ectopic expression under the control of the 35S pro-
moter resulted in developmental abnormalities, including aborted
seed development (Zhou et al., 2004). Importantly, Tanaka et al.
(2008) demonstrated that histone deacetylases are involved in
the repression of embryonic properties upon germination via
direct or indirect repression of embryo-specific transcription
factors. It is therefore possible that HD2A also plays a role in
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regulating the switch from embryogenesis to seed filling in eudicots
and monocots. Although this hypothesis requires experimental
confirmation, it holds promise to resolve the presently unclear
mechanisms shifting the seed developmental program to reserve
deposition (Figure 1).

The histone modifications induced by HD2A may be associated
with other chromatin modifications, such as DNA methylation,
to silence gene expression in response to developmental stim-
uli. Interestingly, two proteins needed for RNA-directed DNA
methylation (i.e., DNA methylation guided by 24 nucleotide
small interfering RNAs) were identified in the M. truncatula seed
nucleus: a subunit of the plant-specific RNA polymerase IV, and
argonaute 4 (AGO4). These proteins were not identified in nuclei
from rice endosperm (Table 1), chickpea seedlings (Pandey et al.,
2006), or Arabidopsis leaves (Bae et al., 2003), suggesting a spe-
cific role in legume seeds and/or in immature embryos. RNA
polymerase IV is required for the biogenesis of a major class of
24-nucleotide small interfering RNAs, which are predominantly
expressed in the developing endosperm of Arabidopsis seeds (Lu
et al., 2012). Li et al. (2006) showed that the C-terminal domain
of a RNA polymerase IV subunit interacts with AGO4 within
nucleolus-associated bodies (i.e., Cajal bodies), which have been
proposed to be a site for the generation of siRNA/protein com-
plexes acting in RNA-directed DNA methylation. The detection
of these proteins in the M. truncatula seed nucleus suggests they
may interact in 12 dap seeds in concert with HD2A to repress
the expression of genes via chromatin remodeling. To elucidate
the mechanism of repression, it will be necessary to identify the
target genes, some putative candidates could be described in the
following section.

PROTEINS IMPLICATED IN TRANSCRIPTIONAL REGULATION
When targeted to the nucleus, proteomics offers the opportunity
to identify regulatory factors controlling cell development, dif-
ferentiation, and cell growth by binding to DNA and regulating
gene expression. In seeds, there is great interest in identifying such
factors to manipulate seed size and weight. A putative transcrip-
tional regulator which was found specifically in the M. truncatula
seed nucleus may control cell division but its function in seeds
has not yet been characterized. This protein, named EBP1 (epi-
dermal growth factor receptor binding protein), recruits histone
deacetylase activity in human cells to mediate the transcriptional
repression of E2 promoter binding factors (E2F) controlling cell
cycle progression (Zhang et al., 2003). In potato and Arabidop-
sis, Horváth et al. (2006) demonstrated that EBP1 regulates organ
size through cell growth and proliferation: elevating or decreas-
ing EBP1 levels in transgenic plants resulted in a dose-dependent
increase or reduction in leaf surface area, respectively. In the

same study, they showed that EBP1 is required for expression of
cell cycle genes in an auxin-dependent manner. This is likely to
occur through the repression of RBR1 (retinoblastoma binding
protein-like) that blocks cell cycle progression by inhibiting E2F-
dependent transcription, which is required for expression of many
genes involved in S-phase and cell cycle progression (Lai et al.,
1999). The presence of EBP1 in the M. truncatula seed nucleus
suggests this protein could play a key role in the control of cell
division during seed development. Various other regulatory pro-
teins were specifically detected in the rice endosperm nucleus (e.g.,
basic leucine zipper and basic helix-loop-helix transcription fac-
tors) or in the M. truncatula seed nucleus (e.g., DNA-binding
domain interacting protein DIP2, Alba protein-like; Table 1).
In plants, the exact functions of some of these proteins remain
to be defined. The Alba protein has been proposed to control
chromatin structure through interaction with histone deacetylase
in Archaea and could also have a function in RNA metabolism
(Bell et al., 2002; Aravind et al., 2003). The DIP2 protein displays
similarities with the animal transcriptional coactivator ALY, sug-
gesting it could be involved in transcriptional regulation. In plants,
DIP2 interacts with the DNA-binding domain of plant poly(ADP-
ribose) polymerases possibly implicated in chromosome dynamics
and modifying proteins involved in different signaling pathways
from DNA damage to energy metabolism (Babiychuk et al., 2001;
Storozhenko et al., 2001).

CONCLUSION
The availability of data from next-generation technologies, now
used for de novo sequencing of genomes in crops, such as pigeon-
pea (Varshney et al., 2011), will facilitate the identification of seed
nuclear proteins in these species. Ethyl methanesulfonate (EMS)
and TnT1 insertion mutant populations have been developed in
M. truncatula and EMS mutants in pea and rice (Dalmais et al.,
2008; Tadege et al., 2008; Le Signor et al., 2009; Wang et al., 2012;
Cooper et al., 2013). Both reverse and forward genetics can be
applied to study mutants from these collections. Moreover, a series
of EMS mutations could be identified by TILLING in candidate
genes for regulating the embryogenesis-filling transition, which
in addition to providing mutants for functional studies, could
reveal favorable alleles to be used in selection for seed quality
improvements.
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