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Following successful completion of the Brassica rapa sequencing project, the next step is to
investigate functions of individual genes/proteins. For Arabidopsis thaliana, large amounts
of protein–protein interaction (PPI) data are available from the major PPI databases (DBs).
It is known that Brassica crop species are closely related to A. thaliana. This provides an
opportunity to infer the B. rapa interactome using PPI data available from A. thaliana. In this
paper, we present an inferred B. rapa interactome that is based on the A. thaliana PPI data
from two resources: (i) A. thaliana PPI data from three major DBs, BioGRID, IntAct, and
TAIR. (ii) ortholog-based A. thaliana PPI predictions. Linking between B. rapa and A. thaliana
was accomplished in three complementary ways: (i) ortholog predictions, (ii) identification
of gene duplication based on synteny and collinearity, and (iii) BLAST sequence similar-
ity search. A complementary approach was also applied, which used known/predicted
domain–domain interaction data. Specifically, since the two species are closely related,
we used PPI data from A. thaliana to predict interacting domains that might be conserved
between the two species.The predicted interactome was investigated for the component
that contains known A. thaliana meiotic proteins to demonstrate its usability.

Keywords: Brassica rapa, Arabidopsis thaliana, interactome, protein–protein interaction, domain–domain interac-
tion, meiosis

INTRODUCTION
For Arabidopsis thaliana, large amounts of protein–protein inter-
action (PPI) data are available from the major PPI databases (DBs;
Galperin and Fernandez-Suarez, 2012), for example BioGRID
(Stark et al., 2006) and IntAct (Aranda et al., 2010). The vol-
ume of these PPI data continues to increase with information
from recently published articles (Arabidopsis Interactome Map-
ping Consortium, 2011). Assuming the same rate of interaction
as in budding yeast, researchers estimate that the protein products
of the A. thaliana genome participate in approximately 200,000
PPIs, a large proportion of which are yet to be validated (Lin et al.,
2009). Therefore, efforts have been made to predict PPIs at the
level of the entire A. thaliana genome, i.e., to produce a predicted
interactome (Geisler-Lee et al., 2007; Cui et al., 2008; Morsy et al.,
2008; Lee et al., 2010; Lin et al., 2010; Gu et al., 2011). Broadly
speaking, two types of strategies can be applied. One approach is
based on functional conservation between orthologous proteins,
so called “interologs,” where A. thaliana protein orthologs in other
species are first predicted and interacting orthologs reveal possi-
ble interactions in A. thaliana. An example of this type of work
was reported by Geisler-Lee et al. (2007), where they surveyed
PPI data in budding yeast (Saccharomyces cerevisiae), nematode
worm (Caenorhabditis elegans), fruitfly (Drosophila melanogaster),
and human (Homo sapiens), and built an interactome based on
orthologs predicted using InParanoid (Ostlund et al., 2010). This
interactome is now in version 2.0 and distributed with the latest
TAIR 10 release (Lamesch et al., 2012). Software tools and web

servers have now been made available to enable researchers to
implement the “interologs” strategy, for example see Gallone et al.
(2011). The second strategy does not rely on any other species,
but solely on genomic/proteomic/transcriptomic features of A.
thaliana (Cui et al., 2008; Brandao et al., 2009; Lin et al., 2010;
Gu et al., 2011). For example, in the work by Lin et al. (2009), 14
features including gene expression and domain interactions were
extracted to construct positive/negative training sets, and support
vector machines were built to recognize the “pattern” of inter-
action. Normally this type of strategy is more computationally
demanding, as it needs to employ machine learning techniques in
an iterative manner.

Following the production of an interactome for the model
plant A. thaliana, the next challenge is to develop similar inter-
actomes for crop plants. The close relationship between Brassica
crop species and A. thaliana (Lagercrantz et al., 1996; Trick et al.,
2009; Wang et al., 2011) provides an opportunity to infer the Bras-
sica rapa interactome by utilizing the substantial amount of PPI
data available for A. thaliana. Despite large amounts of experi-
mental and predicted PPI data for A. thaliana, as of June 2012, no
interactions were recorded in the NCBI Entrez gene DB for Brassica
sub-species (Taxid 3705). Here, we have constructed the inferred
B. rapa interactome based on A. thaliana PPI data from two
resources: (i) A. thaliana PPI data from three major DBs, BioGRID,
IntAct and TAIR; and (ii) ortholog-based A. thaliana PPI predic-
tion data (Geisler-Lee et al., 2007). Linking between B. rapa and A.
thaliana was accomplished in three ways: (i) ortholog prediction
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using InParanoid, (ii) identification of gene duplications in the
Plant Genome Duplication Database (PGDD; Tang et al., 2008),
and (iii) BLAST sequence similarity search. In addition, we fol-
lowed a complementary approach, by looking at the specificity of
PPI data at the level of domains. Domains are evolutionarily con-
served protein subunits and earlier studies have shown that their
interactions are also conserved across species, in a manner that is
more conserved than the PPIs themselves, and that these domain
pairs can be used as building blocks of the PPIs (Itzhaki et al., 2006;
Schuster-Bockler and Bateman, 2007). Here we used the repertoire
of domain–domain interactions (DDIs) inferred from A. thaliana
PPI data, using the message-passing (MP) algorithm (Iqbal et al.,
2008) to predict novel protein interactions in B. rapa, as well as
to validate and examine the specificity of PPIs predicted using
other orthology-based methods mentioned above. We also com-
pared and combined these DDI data with experimentally observed
and computationally predicted interacting domain data from the
Database of Protein Domain Interactions (DOMINE; Yellaboina
et al., 2011). Briefly, Pfam domains were assigned to each B. rapa
protein using the HMMER software (Finn et al., 2010, 2011).
By combining the MP algorithm with extant information based
on DOMINE, we were able to predict PPIs from protein domain
information.

In constructing the interactome, special attention was paid to
the fact that B. rapa and A. thaliana genes/proteins do not necessar-
ily follow a simple one-to-one relationship. Although sequencing
of the B. rapa genome has confirmed its almost complete tripli-
cation relative to A. thaliana, since formation of the postulated
original hexaploid ancestor, substantial gene loss (fractionation)
has occurred, and B. rapa contains 41,174 identified protein-
coding genes compared with 33,602 in A. thaliana (Wang et al.,
2011; Lamesch et al., 2012). In addition, it is worth noting that of
a total of approximately 17,000 B. rapa gene families, only 5.9%
appeared to be lineage-specific, with 93% shared with A. thaliana
(Wang et al., 2011). When considering the possibility of functional
divergence of genes which are duplicated/triplicated in B. rapa rel-
ative to A. thaliana, it is also worth noting that duplicated genes
encoding products which interact with other proteins or are part
of networks may be expected to be less likely to diverge than those
which are less well connected (Zhang et al., 2005).

The inferred B. rapa interactome presented here, together with
the B. rapa (Chiifu-401-42) genome sequence (Wang et al., 2011),
provide a useful starting point for functional PPI studies and
knowledge transfer from the model plant A. thaliana to Brassica
crop species. One such example is the EU PP7 project MEIOsys
(Systematic Analysis of Factors Controlling Meiotic Recombina-
tion in Higher Plants), which is aimed at identifying factors con-
trolling crossover frequency and distribution in higher plants. This
project uses affinity-based techniques to isolate meiotic protein
complexes from Brassica oleracea for analysis by mass spectrome-
try (Osman et al., in press). For this, the B. rapa (Chiifu-401-42)
genome sequence and the predicted interactome presented in this
paper have already proved to be valuable resources, facilitating the
screening of B. oleracea peptides for protein identification and the
identification of possible PPIs. As such, we believe that the pre-
dicted interactome is also a useful resource for the wider Brassica
research and crop-breeding community.

MATERIALS AND METHODS
ACCESSING PPI DBs
Usually PPI DBs provide a web-interface, where an individual or
list of protein/gene IDs can be used to query the DB. Some DBs
can also be downloaded in a customized format for further inves-
tigation, e.g., the Database of Interacting Proteins (Xenarios et al.,
2002). An increasing number of DBs also provide a version that
complies with the Proteomics Standards Initiative – Molecular
Interaction (PSI-MI) standard format (Kerrien et al., 2007). How-
ever, implementations of the PSI-MI format differ slightly from
each other, which limit the reusability of existing codes. As a recent
effort, PSI common query interface (PSICQUIC) was introduced
(Aranda et al., 2011), which aims at providing a uniform query
access for different PPI DBs. Queries to supporting DBs can be
performed over the web in a manner as if it was a single DB. How-
ever, querying and compiling these DBs remains a challenging task,
especially for large data sets, because, for example, different DBs
use different unique IDs.

Three major A. thaliana PPI DBs were used in the current study:
BioGRID, IntAct, and TAIR. The most recent versions at the time
of the analysis were BioGRID 3.1.87, IntAct 2012-03-15, and TAIR
10. The DBs were presented according to different interpretations
of experimental results. The simplest case is yeast two-hybrid,
where two proteins form a direct binary/pairwise interaction.
Other methods of analysis, for example co-immunoprecipitation,
can identify protein complexes, which result in more complicated
forms of representation of the DB. A popular choice of represen-
tation is the spoke model, in which such experimental results are
interpreted as a set of binary interactions between the bait protein
and co-precipitating proteins. Another form of representation, so
called “matrix form,” assumes all co-precipitating proteins form
binary interactions with each other. But this representation is con-
sidered less accurate (Bader and Hogue, 2003; Lysenko et al., 2009).
Examples of both can be seen in Figure 1. In the current study,
we downloaded all DBs in the PSI-MI TAB format, which uses the
spoke model (Kerrien et al., 2007).

PPI DATA COMPILATION
An important aspect of a PPI is its detection method. Accord-
ingly, if the same binary interaction was detected using differ-
ent methods, or in different studies, all three DBs mentioned
would list these binary interactions as separate entries. An exam-
ple of this is seen in Figure 2. Although the detection method
provides extra information for the DBs, in the current cir-
cumstances it leads to duplication and was thus removed dur-
ing our data preparation. In fact, during the pre-processing of
these DBs, we kept only the information of the two partners
involved in the binary interaction, along with the original pub-
lication where the experiments appeared (i.e., PMID number);
all other information provided with the PSI-MI TAB format was
removed.

The compiled A. thaliana PPI data (denoted by D1) consists of
16,644 binary interactions from 1,398 published research articles.
The total number of proteins involved in D1 is 6,451, which does
not include splicing variants. The contributions of the three source
DBs to D1 can be seen in Figure 3. BioGrid is the largest source
of interactions, followed by IntAct. Although TAIR is the smallest
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FIGURE 1 | Different interpretations of experimental data result in different DB formation. (A) Using the spoke model, interaction EBI-533336 shows as
five binary interactions on the IntAct website; (B) the same interaction shows in PSI-MI XML format as an interaction with six participants.

FIGURE 2 | Interaction between SIRANBP (At1g07140) and RAN-1 (At5g20010) was recorded in BioGRID as two separate entries because they were
detected using two different methods, despite being from the same publication.

DB, it contains records complementary to the two main resources,
and so is still valuable. It is interesting to note that although there
were significant overlaps among the three DBs in terms of binary
interactions and interacting proteins (Figures 3A,B), it seems that
the overlap in terms of publication is not significant (Figure 3C).
This highlights the importance of multiple data sources in the PPI
prediction.

Besides experimentally verified PPIs from the three DBs, pre-
dicted PPIs were also used in our study. Geisler-Lee et al. (2007)
studied PPIs in four model organisms, and predicted 72,266
PPIs based on interologs. Thus far, with information from recent
publications, 3,453 of these have been confirmed. For example,
the predicted interaction between AtSPO11-1 (At3g13170) and
AtPRD1 (At4g14180) was later confirmed by yeast two-hybrid
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FIGURE 3 | Contributions of the three source DBs to the compiled
data set (D1) in terms of: (A) binary interactions, (B) publication,
and (C) interacting proteins. The largest contribution comes from
BioGrid, although the overlap among the three is significant. (D) A
small part of interaction predictions made by Geisler-Lee et al. (2007)

were confirmed in PPI DBs, while the remaining form the
complementary source of PPI data in our study. Venn diagrams
showing correct proportions were drawn using Venn Diagram Plotter
Pacific Northwest National Laboratory, http://omics.pnl.gov/
software/VennDiagramPlotter.php

assay (De Muyt et al., 2007) and recorded under ID EBI-1540718
in IntAct. The remaining 68,813 PPIs that are yet to be confirmed
were used in the current study as a complementary PPI source,
denoted by D2. The relationship between the data compiled from
the three DBs (i.e., D1) and the prediction made by Geisler-Lee
et al. (2007) can be seen in Figure 3D.

LINKING THE TWO SPECIES
The objective of the present research is to use known A. thaliana
PPI data in order to expand the predicted B. rapa interactome.
It is vital that the links between the two species are established
correctly. An obvious way of achieving this is to identify orthologs
between them. Using InParanoid, a total of 17,859 orthologous
clusters were detected, which contain 18,830 and 21,873 proteins
for A. thaliana and B. rapa respectively. Note that the number of
orthologous clusters is less than the number of proteins for both
species. This is a desirable feature as it may be indicative of possible
gene duplication events within each species. Thus, in terms of DB
implementation, this creates multi-to-multi relationships within
the orthologous clusters.

In general, ortholog prediction methods can be classified into
two broad categories: methods based on pairwise alignments, for

example InParanoid, and methods based on phylogenetic trees
(Kuzniar et al., 2008). The pairwise alignment methods have been
found to outperform tree-based methods (Ostlund et al., 2010),
which is why they were adopted in the current study. A comple-
mentary way of identifying related proteins, however, is to look at
synteny and collinearity. In fact, since the release of the B. rapa
genome sequence, several comparative genomics DBs (Lyons and
Freeling, 2008; Tang et al., 2008; Tang and Lyons, 2012) have made
use of the sequence. One of these, PGDD (Tang et al., 2008), iden-
tified 682 gene/protein blocks between A. thaliana and B. rapa,
each of which consists of the same number of genes/protein from
both species. PGDD allows a single gene/protein to appear in
several different blocks. This effectively creates a multi-to-multi
relationship. The total number of proteins covered in PGDD is
18,207 and 27,536 for A. thaliana and B. rapa respectively. Com-
bining InParanoid and PGDD, a “bridging” DB was obtained,
covering 21,624 and 31,423 proteins for A. thaliana and B. rapa
respectively.

The total number of protein-coding genes released in the B.
rapa sequencing project is 41,173. This leaves 9,750 B. rapa pro-
teins that are not associated with any partners in A. thaliana.
Therefore, we performed a BLAST similarity search using these
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9,750 proteins against A. thaliana with a cut-off e-value of 1.0e−6.
It was found that 7,307 had a hit in A. thaliana and interestingly,
1,376 hits reported an e-value of 0 (i.e., too small to report). These
one-to-one data were then added to the previously compiled set to
form the final “bridging” DB, denoted as D3. B. rapa proteins not
covered by D3 account for approximately 5.93% (2,443/41,173).
This is in agreement with a previous study which found that 95.8%
of gene models have a match in at least one of the public protein
DBs (Wang et al., 2011).

B. RAPA PROTEIN DOMAIN ASSIGNMENTS
The total number of B. rapa proteins covered by D3 was 38,730,
which still falls short of the B. rapa total of 41,173. To predict
possible interactions for those B. rapa proteins that do not have
counterparts in A. thaliana, as well as to complement the above
mentioned methods of interactome prediction, we used other
means of prediction in building the final interactome, i.e., look-
ing at the level of DDIs. This not only increases the coverage of
the interactome, but also gives a higher level of confidence. In
addition, it provides more detailed information concerning which
domains are potentially mediating the protein interactions. For
this purpose, B. rapa protein domain assignments and interacting
domain data (inferred using PPI data from A. thaliana as well as
known domain interactions) can be used to predict possible pro-
tein interactions. HMMER (Finn et al., 2011) was used to search
B. rapa protein sequences against the Pfam-A DB (Finn et al.,
2010), using stringent criteria (e-value= 1.0e−10). As a result,
3,482 Pfam-A domains were assigned to 27,452 B. rapa proteins.
On average, we had 1.43 domains assigned to each B. rapa pro-
tein. This is comparable with the TAIR Pfam annotation (1.41
domains/protein).

DOMINE: THE INTERACTING DOMAIN DATABASE
The DOMINE DB (Yellaboina et al., 2011), which contains both
experimental and predicted DDIs, was used in combination with
the above mentioned B. rapa domain assignments. Here we used
only known (i.e., observed) and high confidence predictions from
DOMINE, which accounts for 8,173 unique interacting domain
pairs. Known interacting domain data in DOMINE come from
iPfam and 3did (Stein et al., 2011). With the release of Pfam
version 26.0, additional entries were added. Fusing these entries
together with DOMINE, we obtained 8,366 unique interacting
domain pairs (denoted D4).

THE MP ALGORITHM AND TRAINING SETS
Since B. rapa and A. thaliana are closely related, it is reason-
able to assume that some interacting domains are conserved
between the two species. In order to predict novel interacting
domains, we employed the MP algorithm (Iqbal et al., 2008).
MP is a popular method in the statistical inference commu-
nity and has been applied in many hard inference problems in
many fields (Berendsen et al., 1995; Richardson and Urbanke,
2001). Given the set of interacting and non-interacting protein
pairs and their domain assignments, the MP method models this
data as a factor graph which has two types of nodes: variable
nodes which are the domain–domain pairs, and function nodes
which are protein pairs (either interacting or non-interacting).

The function nodes put constraints on the underlying variable
nodes, as follows:

• For an interacting protein pair, at least one of the underlying
domain pairs must be interacting.
• For a non-interacting protein pair, none of its underlying

domain pairs should be interacting.

Given the existence of false positives in PPI data and our
hypothesized negative data, the above constraints need to be
“softened” to take into account the errors in the interaction
map. This error is incorporated via an additional parameter ε,
which ranges between 0 and 1 and quantifies our confidence
in the PPI data (ε= 0 means the PPI network is 100% reli-
able). Another parameter, the a priori probability (β), takes into
account any prior knowledge of the DDIs. Given the above
constraints, the goal is to assign 1 s and 0 s to the domain
pairs such that the maximum number of constraints is satisfied.
For that purpose, under this factor graphical modeling frame-
work, a powerful statistical inference method, belief propaga-
tion (BP), is employed to infer the domain–domain interaction
probabilities.

Belief propagation performs exact inference if the underlying
graph is a tree, which corresponds to the global minimum of a
function, called Bethe free energy (Yedidia et al., 2005). Bethe
free energy is a function of beliefs, which in our case are domain
interaction probabilities. It has been shown that, even in the case
of graphs with cycles, on convergence solutions obtained by BP
correspond to the local minimum of Bethe free energy. Hence,
as in Iqbal et al. (2008), an inference scheme using BP is used
here by minimizing Bethe free energy which helps to estimate two
known parameters in our model, i.e., ε and β. For details of the
MP algorithm and BP, see Iqbal et al. (2008).

The input to the algorithm is an interaction map among a set
of proteins, and a set of domain assignments for the relevant pro-
teins. The output is a list of probabilities of interaction between
each pair of domains. Domain assignments for A. thaliana were
taken from the Pfam DB (Finn et al., 2010). The PPI data compiled
previously were used as positive inputs. However, not all inter-
action detection methods accurately detect binary interactions,
for example HTP (Lin et al., 2009). To minimize false positives
and also to reduce the computational burden, only a subset of
D1 (yeast two-hybrid data) was used (denoted D1-sub). The MP
algorithm also requires negative samples, i.e., non-interacting pro-
tein pairs. It is difficult to build an accurate set of negative samples
because it is inherently impossible to exclude non-interacting pro-
tein pairs with certainty, and hence such results do not usually
appear in the literature. Researchers have used various methods
for constructing “hypothetical” non-interacting protein pairs, for
example those based on randomness or proteins separated in dif-
ferent subcellular localizations (Xu et al., 2010). In the current
study, we adopt a random approach, with additional stricter rules.
Two random proteins were taken to be non-interacting if: (i) they
do not appear in D1, (ii) their domain pairs do not appear in D4,
(iii) they must have the same GO term in terms of cellular com-
ponent, and (iv) the absolute value of their co-expression is less
than 0.4. The last two restrictions ensure that expression patterns

www.frontiersin.org January 2013 | Volume 3 | Article 297 | 5

http://www.frontiersin.org
http://www.frontiersin.org/Plant_Genetics_and_Genomics/archive


Yang et al. Inferring the Brassica rapa interactome

Brassica rapa interactome

Brassica rapa

D3: InParanoid,

PGDD, and BLAST

Arabidopsis thaliana

P3: domain basedP1: PPI basedP2: interologs based

D1: PPI

databases

D2: PPI

prediction

D1-sub: two-hybrid

subset of D1

D5: non-interacting

protein pairs

Message-passing

algorithm

D4: interacting

domains

Protein domains

Protein domains

FIGURE 4 | Overview of data and methods used in the present study. Three sets of interaction predictions were obtained: P1, PPI based; P2, interologs
based; and P3, domain-based.

of the two proteins/genes do not imply interaction (Allocco et al.,
2004). The gene expression data were from ATTED-II (Obayashi
and Kinoshita, 2010). As a result, 25,246 domain pairs and 9,076
positive/negative training samples were fed into the algorithm to
make interaction domain predictions. The negative samples were
denoted D5.

RESULTS AND DISCUSSION
An overview diagram illustrating data and methods used in the
present study is shown in Figure 4. Three sets of B. rapa inter-
action predictions were obtained: PPI based interaction (denoted
P1), interologs based interaction (P2), and interacting domain-
based interaction (P3). P1 and P2 were obtained using physical
and predicted PPI data in D1 and D2, and the “bridging” DB
D3. P3 were obtained using B. rapa protein domain assignments
and the interacting domain data, which combine both “generic”
known/high confidence interacting domain data in D4, and the A.
thaliana “specific” interacting domain predictions using the MP
algorithm and D1-sub/D5.

Restriction rules were applied to P3 to reduce the number of
predictions and also increase the reliability: (i) two proteins in
the pair need to share the same Gene Ontology (GO) cellular
component terms in order for the domain-based prediction to
take effect; (ii) if not predicted to be interacting in P1 or P2,
a protein pair needs to have more than one interacting domain
pairs; (iii) if predicted to be interacting in P1 and P2, a pro-
tein pair can have only one interacting domain pair. GO terms
were assigned to B. rapa sequences using Argot2 (Fontana et al.,
2009) with a stringent“internal confidence”value of 0.55, based on
sequence similarity (UniProtKB/Swiss-Prot) and protein domain
information (Pfam-A).

NOVEL INTERACTING DOMAINS
Two parameters had to be fine-tuned for the MP algorithm to
work correctly: the a priori probability, β, and the degree of relia-
bility of the interaction datasets available for the inference, ε (Iqbal
et al., 2008). Different values of β and ε were tested using training
samples D1-sub and D5 to minimize Bethe free energy (Yedidia
et al., 2005) as in Figure 5. For β values ranging from 0.1 to 0.8, a

minimum Bethe free energy was reached for β= 0.2 (Figure 5A).
Examining details of the minimum point, it was found that ε is
equal to 0.02 (Figure 5B). These two values were taken forward to
produce the final results.

The algorithm assigned probabilities of interactions to all
25,246 domain pairs. Special attention was paid to determine the
cut-off value; on the one hand, a higher cut-off probability pro-
duces more reliable results but conversely it will produce fewer
interacting domains, which does not fully represent the train-
ing sample. In the present study, a cut-off of 0.85 was used to
select 2,389 high confidence interacting domain predictions. It
was found that among these 2,389 domain pairs, 182 were also
present in D4 (i.e., they were either physical interacting domain
pairs observed in iPfam/3did, or high confidence predictions in
DOMINE). A large proportion of these domain pairs (2,283) are
the only domain pair in their respective protein pair in the pos-
itive training set D1-sub. They were successfully recognized; for
example, domain pair PF01627 and PF03962 in protein pair AHP2
(At3g29350) and AtMND1 (At4g29170). (Interactions between
AHP2 and AtMND1 were recorded under ID BIOGRID: 337481
and EBI-1555097). These predictions were considered unique con-
tributions of the MP algorithm, and possibly conserved between
A. thaliana and B. rapa. Combining results from the MP algo-
rithm and D4, 10,573 unique interacting domain pairs were used
to make prediction P3.

THE PREDICTED INTERACTOME
P1, P2, and P3 contain 77,073, 316,128, and 364,768 predicted
interactions respectively; all three datasets gave a total number of
740,565 unique predicted interactions (the predicted B. rapa inter-
actome, denoted by P-all). The relationship among the three sets
is shown in Figure 6A. The histogram of the number of interact-
ing partners for each protein in P-all is shown in Figure 6B. The
peak in Figure 6B is the first bin (i.e., degree < 10), which con-
tains nearly half of proteins present in P-all (10,254 vs. 20,677).
It is also worth noting that there are a small number of protein
“hubs” with interacting partners between 700 and 1,774. These
hubs may be important because they link the network together.
On average, each protein in P-all interacts with 71 partners, which
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protein) for P-all.

is higher than the estimation that a single protein interacts with
about 5–50 proteins (Deng et al., 2002). The group of the 10 most
connected hubs of P-all are shown in Table 1, which based on
their known functions is not unexpected. Furthermore, some in
this group do not have symbols, indicating that they have not been
experimentally identified.

The three sets of PPI predictions constitute two levels of con-
fidence of the predicted interactome. The high confidence predic-
tion (Phc) has support from at least two sources of evidence, the
low confidence prediction (Plc) has support from only one. Phc
and Plc contain 17,255 and 723,310 interactions respectively. Some
structural properties depicting P-all and the two different confi-
dence level sub-networks were calculated using R package igraph
(Csardi and Nepusz, 2006), as seen in Table 2. In all three cases
there were large numbers of self-interactions. While these self-
interactions constitute an important aspect of the interactome,
they were removed from further analysis of the network structure.
Interestingly, the network diameter (largest distance between two

proteins) and the averaged shortest path length for Phc were sig-
nificantly larger than those of Plc. This suggests that Phc contains
a large sparsely connected network. It was also interesting to note
that the average number of interacting partners, transitivity (i.e.,
clustering coefficient) and centralization of Plc are dramatically
larger than those of Phc. This indicates that although Plc may
contain less confident predictions, it is still useful in that it gives a
densely connected network that contains all possible interactions.

INTERACTOME COVERAGE
Using Argot2 (Fontana et al., 2009), 66% of all B. rapa protein-
coding sequences (27,179/41,173) were assigned at least one GO
term. We then categorized these proteins (i.e., genome) and the
proteins from P-all (i.e., interactome) in terms of GO plant slim
categories using AgBase (McCarthy et al., 2006). The results are
shown in Figure 7.

From Figure 7 it is evident that in every category the num-
ber of proteins present in the interactome (purple line) follows

www.frontiersin.org January 2013 | Volume 3 | Article 297 | 7

http://www.frontiersin.org
http://www.frontiersin.org/Plant_Genetics_and_Genomics/archive


Yang et al. Inferring the Brassica rapa interactome

Table 1 |Top 10 interaction hubs of P-all and their A. thaliana counter parts.

B. rapa Interactions A. thaliana Resources Symbols Description

Bra014387 1774
At2g47610 I Ribosomal protein L7Ae/L30e/S12e/Gadd45 family protein

At3g62870 P Ribosomal protein L7Ae/L30e/S12e/Gadd45 family protein

Bra003119 1540 At5g52640 P HSP81-1 Heat shock protein 90.1

At1g65350 I UBQ13 Ubiquitin 13

At3g09790 I, P UBQ8 Ubiquitin 8

At4g02890 I UBQ14 Ubiquitin family protein

Bra009542 1144 At4g05320 I UBQ10 Polyubiquitin 10

At5g03240 I, P UBQ3 Polyubiquitin 3

At5g20620 I UBQ4 Ubiquitin 4

At5g37640 I UBQ9 Ubiquitin 9

Bra024839 867 At2g01950 B VH1 BRI1-like 2

Bra024840 867 At2g01950 B VH1 BRI1-like 2

Bra016839 794 At1g11320 P Unknown protein

Bra032392 759 At1g30470 P SIT4 phosphatase-associated family protein

Bra021474 755
At3g02200 P Proteasome component (PCI) domain protein

At5g15610 P Proteasome component (PCI) domain protein

Bra013661 740 At4g22930 P PYR4 Pyrimidin 4

Bra036269 738 At4g02410 B Concanavalin A-like lectin protein kinase family protein

B, BLAST; I, InParanoid; P, PGDD.

Table 2 | Structural properties depicting the interactome P-all and two

confidence levels of the sub-network: high confidence (Phc) and low

confidence (Plc).

Phc Plc P-all

No. of proteins 4,483 20,537 20,677

No. of interactions 17,255 723,310 740,565

No. of isolated proteins

(ignore self-interaction)

155 50 54

No. of self-interaction 1,881 5,367 7248

No. of protein clusters 628 116 129

Diameter 32 10 11

Averaged neighbors 6.86 69.92 70.93

Averaged shortest path length 10.64 3.62 3.61

Transitivity 0.58 0.75 0.75

Centralization 0.01 0.08 0.08

Density 1.72E−3 3.43E−3 3.46E−3

the number of proteins in the genome (green line), and that
in most categories the interactome/genome ratio is greater than
50% (bars). There are several categories with very small interac-
tome/genome ratios, for example, cell–cell signaling and embryo
development in the biological process category (highlighted by
asterisk in Figure 7A), cell wall and nucleolus in the cellular
component category (Figure 7B), and receptor binding in the

molecular function category (Figure 7C). In these categories pro-
teins do not count for a large number in either the genome or the
interactome. On the other hand, most proteins from the interac-
tome or genome fall into several specific GO slim categories, and
have relatively high interactome/genome ratios. Those categories
include metabolic process in biological process (highlighted by
bars with solid borders in Figure 7A), intracellular and cytoplasm
in the cellular component (Figure 7B), and catalytic activity in
the molecular function (Figure 7C). From the above analysis, we
concluded that the interactome is generally representative of the
B. rapa genome. Given that a total number of 20,677 proteins
are present in P-all, the protein coverage of the interactome is
about 50%.

It is difficult to estimate the interaction coverage of the inter-
actome. However, assuming the same rate of interaction as in
A. thaliana (Lin et al., 2009), we estimated that there would be
approximately 220,000 interactions for approximately 21,000 pro-
teins in P-all. Thus the predicted interactome, with more than
740,000 interactions, is likely to have a very high false positive
rate. On the other hand, the high confidence Phc contains 17,255
unique interactions, which would be coverage of approximately
78%, and thus is likely to be missing many true interactions.
It is rare that, in terms of predicted interactomes, predictions
match expectations exactly. For example, in PAIR (the predicted
Arabidopsis interactome resource; Lin et al., 2009, 2010), the
high confidence predictions are expected to cover 29.02% of the
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Abbreviations: act, Activity; bind, binding; comp, compound; dev,
development; exp, expression; ext, extracellular; gen, generation; int,
intracellular; met, metabolic; mor, morphogenesis; nucl, nucleobase;
org, organization; reg, regulation; resp, response; seq,
sequence-specific; sti, stimulus; struct, structure.
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entire interactome. However, in the present study of B. rapa
the problem of coverage/false positive rates seems to be exag-
gerated. The reasons for this are twofold: (i) Because of gene
duplication/loss, genes of A. thaliana and B. rapa form a multi-
to-multi relationship. However, in the interologs based predic-
tion (P1 and P2), it is barely possible to rule out any predicted
interactions (Pennisi, 2012). (ii) In the domain-based predic-
tion P3, protein domains and GO terms were derived through
computational predictions. However, parameters of the predic-
tion algorithms, e.g., InParanoid/HMMER need to be fine-tuned
to achieve higher accuracy. In addition, we used all physical
interacting domain data from DOMINE, but it is possible that
certain domains may only be interacting under certain cellular
conditions. To address coverage/false positive rates issues, exper-
iments need to be carried out to test predicted interactions in
order that rules may be established to exclude any false positive
predictions.

GENE DUPLICATION AND THE “BRIDGING” DB
The source data of the predicted B. rapa interactome came from
A. thaliana. Thus it is vital that the relationships between the two
genomes were correctly defined. Importantly, consideration must
be given to the fact that there has been almost complete triplica-
tion of the B. rapa genome relative to A. thaliana, although since
formation of the postulated original hexaploid ancestor, substan-
tial gene loss has occurred (Wang et al., 2011). In this and the
following sections we use known A. thaliana meiotic genes as an
example to discuss gene duplication and its effect on the B. rapa
meiosis network.

Meiosis is a key biological process that underpins sexual repro-
duction. During meiosis, a single round of DNA replication is
followed by two rounds of nuclear division to produce four haploid
gametes. Many genes/proteins participate in meiosis, for example,
see reviews (Ma, 2006; Hultén, 2010; Osman et al., 2011). Here we
used the list of 71 meiotic genes presented in (Yang et al., 2010),
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with the addition of AtASY3 (At2g46980), recently described by
the Birmingham meiosis group (Ferdous et al., 2012).

For ease of interpretation we have presented the relationships
between the two species in a one-to-multi manner from the A.
thaliana perspective, as shown in Figure 8 and Table 3. Figure 8
shows chromosome positions of 72 known A. thaliana meiotic
genes and their “counterparts” in B. rapa. It is evident that in
our “bridging” DB there are conserved collinear blocks between
the two genomes, for example, between the end of A. thaliana
chromosome 2 (AT2) and the start of B. rapa chromosome 5
(BR5). This is in agreement with observations by Wang et al.
(2011). Furthermore, we modeled possible gene duplications of
A. thaliana meiotic genes, for example those on AT5 migrating to
BR2/BR3/BR6/BR10.

Table 3 gives some detailed information for several meiotic
genes presented in Figure 8, where related genes from the two
species are grouped together. Each group is led by an A. thaliana
meiotic gene, followed by its B. rapa counterpart(s) and the
inference resources. We also listed domain (Pfam) and GO term
names for these genes/proteins where available. We can see that

quite often the relationships were confirmed by more than one
method/resource. Furthermore, most related proteins have a sim-
ilar domain structure, for example AtMAD2 and its counterparts
in B. rapa (highlighted in Figure 8). However, in groups containing
AtSMC1 and AtRAD51, it seems that B. rapa genes have additional
functions compared to their counterparts in A. thaliana (i.e., addi-
tional AAA_23 and AAA_25 domains respectively). For GO terms,
as we used stringent criteria, fewer GO terms were assigned to B.
rapa proteins. However, assigned terms mostly agree with their
counterparts in A. thaliana.

THE MEIOSIS NETWORK
The sub-network formed by putative B. rapa meiotic proteins was
extracted from P-all (Figure 9) as an example to demonstrate the
utility of the predicted interactome. From Figure 9 it is obvious
that there is a large number of putative B. rapa meiotic proteins
which are sole copies of their A. thaliana counterparts. It is likely
that these proteins are functionally identical to those in A. thaliana.
Multi-copy proteins are also found and in some cases at least, their
functions appear to have differentiated. For example, there are four
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FIGURE 9 | A sub-network of the predicted interactome formed
by putative B. rapa meiotic proteins. It is a densely connected
network containing several hub proteins. B. rapa proteins are shown
by their A. thaliana counterparts’ names; their unique accession
numbers are not shown. Node color denotes the number of copies

that a single A. thaliana gene/protein has in B. rapa. The confidence
of interaction prediction is presented by edge colors. Node size is
set to be proportional to the number of interacting partners of each
individual protein. Figure generated using Cytoscape (Smoot et al.,
2011).
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FIGURE 10 | Domain interactions contained in the putative meiotic network. Types of “evidence” were shown as edge colors. Edges of self-interacting
domains were omitted, but highlighted by node (and node border) color.

B. rapa counterparts of AtSMC6, but two of them do not appear
to participate in meiosis. However, for the majority of multi-copy
proteins similar interacting partners are identified.

In terms of interactions, there were several hub proteins in the
network, e.g., RAD51 (26 connections), RAD50 (19 connections),
MLH1 (15 connections), SMC1 (14 connections), and MAD2 (13
connections). Interestingly, these hub proteins were identified by
the MCL algorithm (Enright et al., 2002) to form separate clusters
with their direct neighbors (shadowed areas in Figure 9). Most of
the interactions in the network were supported by only one piece
of evidence (low confidence), and high confidence interactions
were sparse and mainly self-interactions. However, it is a more
dense and complex network than those predicted for A. thaliana
(Lin et al., 2009) and rice (Aya et al., 2011) meiotic proteins.

Protein domains contained in the putative meiotic network
were extracted and their interactions are shown in Figure 10 (those
of the hub proteins can be seen in Table 3). Overall, it is a sparsely
connected network with mainly self-interactions. This suggests
that although the meiotic protein interaction network has a very
high density, the driving force mediating those interactions is pos-
sibly domain self-interactions. Most of the self-interactions are
experimentally verified and some of them are derived from the

MP algorithm, for example, self-interaction between TP6A_N.
The biggest cluster was formed by the interactions among several
domains, for example, MutS family domains (contained by MSH2,
MSH4, MSH5), RecA (RAD51 and DMC1), and DNA mismatch
repair (PMS1 and MLH1). Some of the proteins containing these
domains are already thought to form protein complexes during
meiosis. In vitro studies using purified human hMSH4 and hMSH5
have revealed that they act as complex to stabilize progenitor Hol-
liday junctions (Holliday, 1964). Evidence suggests this is also
likely the case in A. thaliana, for AtMSH4 and AtMSH5 (Higgins
et al., 2004, 2008; Snowden et al., 2004). Other studies suggest that
AtAHP2 (containing an Hpt domain) and AtMND1 (Mnd1) also
form a complex (Vignard et al., 2007). During budding yeast (Sac-
charomyces cerevisiae) meiosis, interactions were found among
MLH1, MLH3 (HATPase_c), and PMS1 (DNA mismatch repair
and HATPase_c; Argueso et al., 2002; Nishant et al., 2008), how-
ever, these are yet to be experimentally verified in A. thaliana.
Note that some of the self-interacting domains in Figure 10, for
example TP6A_N (SPO11), do not show direct interactions with
other domains. This does not necessarily mean that the interac-
tome contains no predictions, but that for ease of visualization, we
omitted indirect connections.
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CONCLUSION
In the present study, we have inferred the B. rapa interactome using
PPI data available from A. thaliana. These PPI data were either
physical interactions verified through experiments, or predictions
based on orthology. The relationship between the two genomes
was established by studying orthologs/collinearity/sequence sim-
ilarity. We also utilized domain interactions in our predictions.
Both known and predicted interacting domains, as well as pro-
tein domain assignments of B. rapa, were used to predict possible
interactions.

The inferred interactome contains 17,255 predicted interac-
tions at high confidence level, and 723,310 predicted interactions
at low confidence level. The interactome covers around 50% of the

proteins in the B. rapa genome, and its high confidence interac-
tion predictions give a coverage of around 78% for those proteins.
As a first effort of establishing a B. rapa interactome, our inferred
interactome could be a useful resource for experimental biologists
or other researchers using B. rapa as a working plant. The inter-
actome is available at http://www.meiosys.org/dissemination/ as
pure text files; other formats e.g., SQL are available upon request.

ACKNOWLEDGMENTS
The research leading to these results has received funding from
the European Community’s Seventh Framework Programme
FP7/2007-2013 under grant agreement number KBBE-2009-
222883.

REFERENCES
Allocco, D. J., Kohane, I. S., and

Butte, A. J. (2004). Quantify-
ing the relationship between co-
expression, co-regulation and gene
function. BMC Bioinformatics 5:18.
doi:10.1186/1471-2105-5-18

Arabidopsis Interactome Mapping
Consortium. (2011). Evidence for
network evolution in an Arabidopsis
interactome map. Science 333,
601–607.

Aranda, B., Achuthan, P., Alam-
Faruque, Y., Armean, I., Bridge, A.,
Derow, C., et al. (2010). The IntAct
molecular interaction database
in 2010. Nucleic Acids Res. 38,
D525–D531.

Aranda, B., Blankenburg, H., Kerrien,
S., Brinkman, F. S., Ceol, A., Chau-
tard, E., et al. (2011). PSICQUIC and
PSISCORE: accessing and scoring
molecular interactions. Nat. Meth-
ods 8, 528–529.

Argueso, J. L., Smith, D., Yi, J., Waase,
M., Sarin, S., and Alani, E. (2002).
Analysis of conditional mutations in
the Saccharomyces cerevisiae MLH1
gene in mismatch repair and in
meiotic crossing over. Genetics 160,
909–921.

Aya, K., Suzuki, G., Suwabe, K.,
Hobo, T., Takahashi, H., Shiono,
K., et al. (2011). Comprehen-
sive network analysis of anther-
expressed genes in rice by the
combination of 33 laser microdis-
section and 143 spatiotemporal
microarrays. PLoS ONE 6:e26162.
doi:10.1371/journal.pone.0026162

Bader, G., and Hogue, C. (2003). An
automated method for finding mol-
ecular complexes in large protein
interaction networks. BMC Bioinfor-
matics 4:2. doi:10.1186/1471-2105-
4-2

Berendsen, H. J. C., Van Der Spoel,
D., and Van Drunen, R. (1995).
GROMACS: a message-passing par-
allel molecular dynamics implemen-
tation. Comput. Phys. Commun. 91,
43–56.

Brandao, M. M., Dantas, L. L.,
and Silva-Filho, M. C. (2009).
AtPIN: Arabidopsis thaliana
protein interaction network.
BMC Bioinformatics 10:454.
doi:10.1186/1471-2105-10-454

Csardi, G., and Nepusz, T. (2006). The
igraph software package for complex
network research. InterJournal 1695,
1695.

Cui, J., Li, P., Li, G., Xu, F., Zhao, C., Li,
Y., et al. (2008). AtPID: Arabidopsis
thaliana protein interactome data-
base – an integrative platform for
plant systems biology. Nucleic Acids
Res. 36, D999–D1008.

De Muyt, A., Vezon, D., Gendrot, G.,
Gallois, J. L., Stevens, R., and Grelon,
M. (2007). AtPRD1 is required for
meiotic double strand break forma-
tion in Arabidopsis thaliana. EMBO
J. 26, 4126–4137.

Deng, M., Mehta, S., Sun, F., and
Chen, T. (2002). Inferring domain-
domain interactions from protein-
protein interactions. Genome Res. 12,
1540–1548.

Enright, A. J., Van Dongen, S., and
Ouzounis, C. A. (2002). An efficient
algorithm for large-scale detection
of protein families. Nucleic Acids Res.
30, 1575–1584.

Ferdous, M., Higgins, J. D., Osman,
K., Lambing, C., Roitinger, E.,
Mechtler, K., et al. (2012). Inter-
homolog crossing-over and synapsis
in Arabidopsis meiosis are dependent
on the chromosome axis protein
AtASY3. PLoS Genet. 8:e1002507.
doi:10.1371/journal.pgen.1002507

Finn, R. D., Clements, J., and Eddy, S. R.
(2011). HMMER web server: inter-
active sequence similarity searching.
Nucleic Acids Res. 39, W29-37.

Finn, R. D., Mistry, J., Tate, J., Cog-
gill, P., Heger, A., Pollington, J. E., et
al. (2010). The Pfam protein fami-
lies database. Nucleic Acids Res. 38,
D211–D222.

Fontana, P., Cestaro, A., Velasco,
R., Formentin, E., and Toppo,
S. (2009). Rapid annotation of

anonymous sequences from genome
projects using semantic similari-
ties and a weighting scheme in
gene ontology. PLoS ONE 4:e4619.
doi:10.1371/journal.pone.0004619

Gallone, G., Simpson, T. I., Armstrong,
J. D., and Jarman, A. P. (2011).
Bio::Homology::InterologWalk – a
Perl module to build putative
protein-protein interaction net-
works through interolog mapping.
BMC Bioinformatics 12:289.
doi:10.1186/1471-2105-12-289

Galperin, M. Y., and Fernandez-Suarez,
X. M. (2012). The 2012 nucleic
acids research database issue and
the online molecular biology data-
base collection. Nucleic Acids Res. 40,
D1–D8.

Geisler-Lee, J., O’Toole, N., Ammar, R.,
Provart, N. J., Millar, A. H., and
Geisler, M. (2007). A predicted inter-
actome for Arabidopsis. Plant Phys-
iol. 145, 317–329.

Gu, H., Zhu, P., Jiao, Y., Meng,
Y., and Chen, M. (2011). PRIN:
a predicted rice interactome net-
work. BMC Bioinformatics 12:161.
doi:10.1186/1471-2105-12-161

Higgins, J. D., Armstrong, S. J., Franklin,
F. C., and Jones, G. H. (2004). The
Arabidopsis MutS homolog AtMSH4
functions at an early step in recom-
bination: evidence for two classes of
recombination in Arabidopsis. Genes
Dev. 18, 2557–2570.

Higgins, J. D., Vignard, J., Mercier, R.,
Pugh, A. G., Franklin, F. C., and
Jones, G. H. (2008). AtMSH5 part-
ners AtMSH4 in the class I mei-
otic crossover pathway in Arabidop-
sis thaliana, but is not required for
synapsis. Plant J. 55, 28–39.

Holliday, R. (1964). The induction
of mitotic recombination by mit-
omycin C in Ustilago and Saccha-
romyces. Genetics 50, 323–335.

Hultén, M. A. (2010).“Meiosis,”in Ency-
clopedia of Life Sciences. Chichester:
John Wiley & Sons, Ltd.

Iqbal, M., Freitas, A. A., Johnson,
C. G., and Vergassola, M. (2008).

Message-passing algorithms for the
prediction of protein domain inter-
actions from protein–protein inter-
action data. Bioinformatics 24,
2064–2070.

Itzhaki, Z., Akiva, E., Altuvia, Y.,
and Margalit, H. (2006). Evolution-
ary conservation of domain-domain
interactions. Genome Biol. 7, R125.

Kerrien, S., Orchard, S., Montecchi-
Palazzi, L., Aranda, B., Quinn, A.
F., Vinod, N., et al. (2007). Broad-
ening the horizon – level 2.5 of
the HUPO-PSI format for molec-
ular interactions. BMC Biol. 5:44.
doi:10.1186/1741-7007-5-44

Krzywinski, M., Schein, J., Birol, I., Con-
nors, J., Gascoyne, R., Horsman, D.,
et al. (2009). Circos: an information
aesthetic for comparative genomics.
Genome Res. 19, 1639–1645.

Kuzniar, A., Van Ham, R. C., Pon-
gor, S., and Leunissen, J. A. (2008).
The quest for orthologs: finding the
corresponding gene across genomes.
Trends Genet. 24, 539–551.

Lagercrantz, U., Putterill, J., Coupland,
G., and Lydiate, D. (1996). Com-
parative mapping in Arabidopsis and
Brassica, fine scale genome collinear-
ity and congruence of genes con-
trolling flowering time. Plant J. 9,
13–20.

Lamesch, P., Berardini, T. Z., Li, D.,
Swarbreck, D., Wilks, C., Sasidha-
ran, R., et al. (2012). The Arabidop-
sis Information Resource (TAIR):
improved gene annotation and new
tools. Nucleic Acids Res. 40, D1202–
D1210.

Lee, K., Thorneycroft, D., Achuthan,
P., Hermjakob, H., and Ideker,
T. (2010). Mapping plant inter-
actomes using literature curated
and predicted protein-protein inter-
action data sets. Plant Cell 22,
997–1005.

Lin, M., Hu, B., Chen, L., Sun, P., Fan, Y.,
Wu, P., et al. (2009). Computational
identification of potential molecu-
lar interactions in Arabidopsis. Plant
Physiol. 151, 34–46.

Frontiers in Plant Science | Plant Genetics and Genomics January 2013 | Volume 3 | Article 297 | 14

http://www.meiosys.org/dissemination/
http://dx.doi.org/10.1186/1471-2105-5-18
http://dx.doi.org/10.1371/journal.pone.0026162
http://dx.doi.org/10.1186/1471-2105-4-2
http://dx.doi.org/10.1186/1471-2105-4-2
http://dx.doi.org/10.1186/1471-2105-10-454
http://dx.doi.org/10.1371/journal.pgen.1002507
http://dx.doi.org/10.1371/journal.pone.0004619
http://dx.doi.org/10.1186/1471-2105-12-289
http://dx.doi.org/10.1186/1471-2105-12-161
http://dx.doi.org/10.1186/1741-7007-5-44
http://www.frontiersin.org/Plant_Genetics_and_Genomics
http://www.frontiersin.org/Plant_Genetics_and_Genomics/archive


Yang et al. Inferring the Brassica rapa interactome

Lin, M., Shen, X., and Chen, X. (2010).
PAIR: the predicted Arabidopsis
interactome resource. Nucleic Acids
Res. 39, D1134–D1140.

Lyons, E., and Freeling, M. (2008).
How to usefully compare homol-
ogous plant genes and chromo-
somes as DNA sequences. Plant J. 53,
661–673.

Lysenko, A., Hindle, M. M., Taubert,
J., Saqi, M., and Rawlings, C. J.
(2009). Data integration for plant
genomics – exemplars from the
integration of Arabidopsis thaliana
databases. Brief. Bioinformatics 10,
676–693.

Ma, H. (2006). A molecular portrait of
Arabidopsis meiosis. The Arabidopsis
Book 4, 1–39.

McCarthy, F. M., Wang, N., Magee, G.
B., Nanduri, B., Lawrence, M. L.,
Camon, E. B., et al. (2006). AgBase:
a functional genomics resource for
agriculture. BMC Genomics 7:229.
doi:10.1186/1471-2164-7-229

Morsy, M., Gouthu, S., Orchard, S.,
Thorneycroft, D., Harper, J. F., Mit-
tler, R., et al. (2008). Charting
plant interactomes: possibilities and
challenges. Trends Plant Sci. 13,
183–191.

Nishant, K. T., Plys, A. J., and Alani,
E. (2008). A mutation in the puta-
tive MLH3 endonuclease domain
confers a defect in both mismatch
repair and meiosis in Saccharomyces
cerevisiae. Genetics 179, 747–755.

Obayashi, T., and Kinoshita, K. (2010).
Coexpression landscape in ATTED-
II: usage of gene list and gene net-
work for various types of pathways.
J. Plant Res. 123, 311–319.

Osman, K., Higgins, J. D., Sanchez-
Moran, E., Armstrong, S. J., and
Franklin, F. C. (2011). Pathways
to meiotic recombination in Ara-
bidopsis thaliana. New Phytol. 190,
523–544.

Osman, K., Roitinger, E., Yang, J.,
Armstrong, S. J., Mechtler, K., and

Franklin, F. C. H. (in press). “Analy-
sis of meiotic protein complexes
from Arabidopsis and Brassica using
affinity-based proteomics,” in Plant
Meiosis: Methods and Protocols, eds
W. P. Pawlowski, M. Grelon and S. J.
Armstrong (New York: Springer).

Ostlund, G., Schmitt, T., Forslund, K.,
Kostler, T., Messina, D. N., Roopra,
S., et al. (2010). InParanoid 7: new
algorithms and tools for eukaryotic
orthology analysis. Nucleic Acids Res.
38, D196–D203.

Pennisi, E. (2012). Evolution. Gene
duplication’s role in evolution gets
richer, more complex. Science 338,
316–317.

Richardson, T. J., and Urbanke, R. L.
(2001). The capacity of low-density
parity-check codes under message-
passing decoding. IEEE Trans. Inf.
Theory 47, 599–618.

Schuster-Bockler, B., and Bateman, A.
(2007). Reuse of structural domain-
domain interactions in protein net-
works. BMC Bioinformatics 8:259.
doi:10.1186/1471-2105-8-259

Smoot, M. E., Ono, K., Ruscheinski,
J., Wang, P.-L., and Ideker, T.
(2011). Cytoscape 2.8: new features
for data integration and network
visualization. Bioinformatics 27,
431–432.

Snowden, T., Acharya, S., Butz, C.,
Berardini, M., and Fishel, R. (2004).
hMSH4-hMSH5 recognizes Holli-
day Junctions and forms a meiosis-
specific sliding clamp that embraces
homologous chromosomes. Mol.
Cell 15, 437–451.

Stark, C., Breitkreutz, B. J., Reguly,
T., Boucher, L., Breitkreutz, A., and
Tyers, M. (2006). BioGRID: a general
repository for interaction datasets.
Nucleic Acids Res. 34, D535–D539.

Stein, A., Ceol, A., and Aloy, P. (2011).
3did: identification and classifica-
tion of domain-based interactions of
known three-dimensional structure.
Nucleic Acids Res. 39, D718–D723.

Tang, H., Bowers, J. E., Wang, X.,
Ming, R., Alam, M., and Paterson,
A. H. (2008). Synteny and collinear-
ity in plant genomes. Science 320,
486–488.

Tang, H., and Lyons, E. (2012).
Unleashing the genome of Bras-
sica rapa. Front. Plant Sci. 3:172.
doi:10.3389/fpls.2012.00172

Trick, M., Cheung, F., Drou, N., Fraser,
F., Lobenhofer, E. K., Hurban, P.,
et al. (2009). A newly-developed
community microarray resource for
transcriptome profiling in Bras-
sica species enables the confirma-
tion of Brassica-specific expressed
sequences. BMC Plant Biol. 9:50.
doi:10.1186/1471-2229-9-50

Vignard, J., Siwiec, T., Chelysheva,
L., Vrielynck, N., Gonord, F.,
Armstrong, S. J., et al. (2007).
The interplay of RecA-related pro-
teins and the MND1-HOP2 com-
plex during meiosis in Arabidopsis
thaliana. PLoS Genet. 3, 1894–1906.
doi:10.1371/journal.pgen.0030176

Wang, X., Wang, H., Wang, J., Sun, R.,
Wu, J., Liu, S., et al. (2011). The
genome of the mesopolyploid crop
species Brassica rapa. Nat. Genet. 43,
1035–1039.

Xenarios, I., Salwinski, L., Duan, X. J.,
Higney, P., Kim, S. M., and Eisen-
berg, D. (2002). DIP, the database
of interacting proteins: a research
tool for studying cellular networks
of protein interactions. Nucleic Acids
Res. 30, 303–305.

Xu, F., Li, G., Zhao, C., Li, Y., Li, P.,
Cui, J., et al. (2010). Global protein
interactome exploration through
mining genome-scale data in Ara-
bidopsis thaliana. BMC Genomics
11(Suppl 2):S2. doi:10.1186/1471-
2164-11-S2-S2

Yang, H., Lu, P., Wang, Y., and Ma,
H. (2010). The transcriptome land-
scape of Arabidopsis male meiocytes
from high-throughput sequencing:
the complexity and evolution of

the meiotic process. Plant J. 65,
503–516.

Yedidia, J. S., Freeman, W. T., and Weiss,
Y. (2005). Constructing free-energy
approximations and generalized
belief propagation algorithms. IEEE
Trans. Inf. Theory 51, 2282–2312.

Yellaboina, S., Tasneem, A., Zaykin, D.
V., Raghavachari, B., and Jothi, R.
(2011). DOMINE: a comprehen-
sive collection of known and pre-
dicted domain-domain interactions.
Nucleic Acids Res. 39, D730–D735.

Zhang, Z., Luo, Z. W., Kishino, H.,
and Kearsey, M. J. (2005). Diver-
gence pattern of duplicate genes in
protein-protein interactions follows
the power law. Mol. Biol. Evol. 22,
501–505.

Conflict of Interest Statement: The
authors declare that the research was
conducted in the absence of any com-
mercial or financial relationships that
could be construed as a potential con-
flict of interest.

Received: 30 August 2012; accepted: 11
December 2012; published online: 04 Jan-
uary 2013.
Citation: Yang J, Osman K, Iqbal M,
Stekel DJ, Luo Z, Armstrong SJ and
Franklin FCH (2013) Inferring the Bras-
sica rapa interactome using protein–
protein interaction data from Arabidop-
sis thaliana. Front. Plant Sci. 3:297. doi:
10.3389/fpls.2012.00297
This article was submitted to Frontiers in
Plant Genetics and Genomics, a specialty
of Frontiers in Plant Science.
Copyright © 2013 Yang , Osman, Iqbal,
Stekel, Luo, Armstrong and Franklin.
This is an open-access article distributed
under the terms of the Creative Com-
mons Attribution License, which per-
mits use, distribution and reproduction
in other forums, provided the original
authors and source are credited and sub-
ject to any copyright notices concerning
any third-party graphics etc.

www.frontiersin.org January 2013 | Volume 3 | Article 297 | 15

http://dx.doi.org/10.1186/1471-2164-7-229
http://dx.doi.org/10.1186/1471-2105-8-259
http://dx.doi.org/10.3389/fpls.2012.00172
http://dx.doi.org/10.1186/1471-2229-9-50
http://dx.doi.org/10.1371/journal.pgen.0030176
http://dx.doi.org/10.1186/1471-2164-11-S2-S2
http://dx.doi.org/10.1186/1471-2164-11-S2-S2
http://dx.doi.org/10.3389/fpls.2012.00297
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://www.frontiersin.org
http://www.frontiersin.org/Plant_Genetics_and_Genomics/archive

	Inferring the Brassica rapa interactome using protein–protein interaction data from Arabidopsis thaliana
	Introduction
	Materials and methods
	Accessing PPI DBs
	PPI data compilation
	Linking the two species
	B. rapa protein domain assignments
	DOMINE: The interacting domain database
	The MP algorithm and training sets

	Results and discussion
	Novel interacting domains
	The predicted interactome
	Interactome coverage
	Gene duplication and the "bridging" DB
	The meiosis network

	Conclusion
	Acknowledgments
	References


