
“fpls-03-00302” — 2013/1/5 — 15:18 — page 1 — #1

MINI REVIEW ARTICLE
published: 08 January 2013

doi: 10.3389/fpls.2012.00302

Quantitation, networking, and function of protein
phosphorylation in plant cell
Lin Zhu* and Ning Li

Division of Life Science, The Hong Kong University of Science and Technology, Hong Kong, China

Edited by:

Waltraud X Schulze, Max Planck
Institute for Plant Physiology,
Germany

Reviewed by:

Stefanie Wienkoop, University of
Vienna, Austria
Borjana Arsova, Heinrich-Heine
University, Germany

*Correspondence:

Lin Zhu, Division of Life Science, The
Hong Kong University of Science and
Technology, Clear Water Bay, Hong
Kong, China.
e-mail: linz@ust.hk; boningli@ust.hk

Protein phosphorylation is one of the most important post-translational modifications
(PTMs) as it participates in regulating various cellular processes and biological functions.
It is therefore crucial to identify phosphorylated proteins to construct a phosphor-relay
network, and eventually to understand the underlying molecular regulatory mechanism in
response to both internal and external stimuli. The changes in phosphorylation status at
these novel phosphosites can be accurately measured using a 15N-stable isotopic labeling
in Arabidopsis (SILIA) quantitative proteomic approach in a high-throughput manner. One
of the unique characteristics of the SILIA quantitative phosphoproteomic approach is the
preservation of native PTM status on protein during the entire peptide preparation proce-
dure. Evolved from SILIA is another quantitative PTM proteomic approach, AQUIP (absolute
quantitation of isoforms of post-translationally modified proteins), which was developed by
combining the advantages of targeted proteomics with SILIA. Bioinformatics-based phos-
phorylation site prediction coupled with an MS-based in vitro kinase assay is an additional
way to extend the capability of phosphosite identification from the total cellular protein.
The combined use of SILIA and AQUIP provides a novel strategy for molecular systems
biological study and for investigation of in vivo biological functions of these phosphoprotein
isoforms and combinatorial codes of PTMs.
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INTRODUCTION
As one of hundreds of known post-translational modifications
(PTM), protein phosphorylation participates in almost every reg-
ulatory event known to us in cellular process and biological
function (Krishna and Wold, 1993; Hunter, 2000). It is there-
fore regarded as one of the most important regulatory PTM
events. Understanding of the regulation of protein phosphory-
lation in response to environmental cues/stimuli provides novel
insights into how phosphor-relay-mediated signals are transduced
and regulated within a plant cell. Mass spectrometry-based phos-
phoproteomics has emerged as a powerful and high-throughput
approach in profiling phosphoproteins participating in cellular
processes and signaling regulation (Schmelzle and White, 2006;
Schulze, 2010). Recently, various quantitative proteomics strate-
gies have been developed to gain insight into the phosphoprotein
dynamics, including label-free, chemical or stable-isotope label-
ing and corresponding statistical assessment (Schulze and Usadel,
2010). In vivo metabolic incorporation of stable isotopes, par-
ticularly the heavy nitrogen (15N), is firstly described in 1999
(Oda et al., 1999) and has emerged as one of the favorite strate-
gies given the autotrophic nature of plants (Dunkley et al., 2004;
Gevaert et al., 2008; Gouw et al., 2010; Guo and Li, 2011; Arsova
et al., 2012). Examples are the stable isotope labeling by/with
amino acids in cell culture (SILAC; Ong et al., 2002) and the sta-
ble isotope labeling in planta (SILIP; Schaff et al., 2008). Based
on these protocols, treated and untreated plants are differentially
labeled with 14N- or 15N-coded salt, respectively, with reciprocal

repeats. Consequently, proteins from each group of plants are dif-
ferentially labeled and are mixed at ratios of 1:1–1.5 (14N:15N)
depending on the actual incorporation rate before a mixture of
peptides are processed (Guo and Li, 2011). This early protein mix-
ing step is supposed to exclude the variation resulting from peptide
preparation, separation, and MS analysis processes (Gevaert et al.,
2008). The absolute quantification of proteins (AQUA; Gerber
et al., 2003) was introduced in 2003 by Steven Gygi’s group. Heavy
isotope-labeled peptides are used by AQUA method as the internal
standard, added preferentially as early as possible in the analytical
process. Multiplexed absolute quantification was achieved by con-
structing a recombinant gene that concatenates different tryptic
peptides to be quantified (Beynon et al., 2005; Pratt et al., 2006).

As there are already a number of excellent reviews covering the
developments and perspectives in quantitative proteomics (Aeber-
sold and Mann, 2003; Ong and Mann, 2005; Bantscheff et al., 2007;
Schulze and Usadel, 2010) as well as plant proteomics (Gerber
et al., 2003; Chen and Harmon, 2006; Thelen and Peck, 2007; Kota
and Goshe, 2011; Arsova et al., 2012), this review will focus on the
application of 15N stable isotope-based quantitative and differen-
tial PTM proteomics in identification of important PTM protein
components during cellular processes and on the investigation of
their in vivo functions in plant. The 15N-stable isotope labeling
in Arabidopsis (SILIA)-based quantitative proteomic protocol is
first applied onto Arabidopsis grown on a solid-medium (Guo and
Li, 2011). Consequently, the successfully identified phosphosites
are further investigated by bioinformatics-prediction and in vitro
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kinase assays in combination with mutant kinase extracts and
quantitative methods such as the isobaric tags for relative and
absolute quantitation (iTRAQ; Ross et al., 2004) so that these
phosphopeptides can be first validated and a subgroup of highly
interesting phosphorylation sites are selected for the following
in vivo quantitation using the absolute quantitation of isoforms
of post-translationally modified proteins (AQUIP) approach (Li
et al., 2012). AQUIP was developed from the targeted and quanti-
tative proteomics by combining the advantages of AQUA (Gerber
et al., 2003) and the protein standard absolute quantification strat-
egy (PSAQ; Brun et al., 2007; Lebert et al., 2011) with SILIA.
Finally, at the end of the integrated in vitro and in vivo quantitative
PTM proteomics, the biological function studies are performed
on the group of highly selected phosphosites and phosphopro-
teins to unravel their molecular, cellular, and biological roles in
plants.

SILIA-BASED QUANTITATIVE PHOSPHOPROTEOMICS
Previous metabolic labeling experiments were mostly performed
in aqueous solutions in the form of cell suspension cultures
(SILAC; Engelsberger et al., 2006; Benschop et al., 2007) or
seedlings suspended in liquid media (Dunkley et al., 2004; Huttlin
et al., 2007; Nelson et al., 2007). The labeling was further per-
formed on plants either grown in hydroponic solutions (HILEP,
the hydroponic isotope labeling of entire plants; Bindschedler
et al., 2008; Hebeler et al., 2008) or in soil (SILIP; Schaff et al.,
2008). In the case of SILIA, a general metabolic-labeling strat-
egy was designed for agar-based plant growth, which is frequently
used in molecular genetic screens and/or physiological studies.
SILIA-medium was designed to allow the 15N as the only nitrogen
source for Arabidopsis growth and to maximize the incorpora-
tion rate (Guo and Li, 2011). Another major improvement in
SILIA-based quantitative PTM proteomics is the use of urea-based
protein denaturing buffer (UEB), which provides a fully denatur-
ing condition to inhibit protease-mediated protein degradation
during protein extraction/separation processes and, especially, to
prevent non-specific phosphorylation/dephosphorylation events
from occurring in protein extracts. A detailed workflow of the
SILIA-based quantitative proteomics has been described in an
earlier publication (Guo and Li, 2011). As data generated by
quantitative proteomics methods (e.g., iTRAQ and SILIA) usu-
ally show relative changes (i.e., fold change) in phosphorylation
among different conditions, statistical methods are needed to con-
firm that there is a significant difference between the degrees
of phosphorylation of two conditions (de la Fuente van Ben-
tem et al., 2008). Both forward and reciprocal experiments are
usually repeated two to four times to obtain a set of satisfactory
quantitative phosphoprotein-profiling data.

IN VITRO KINASE ASSAY TO VALIDATE THE MS-IDENTIFIED
AND BIOINFORMATICS-PREDICTED PHOSPHOSITES
Non-biased phosphoprotein profiling performed by SILIA pro-
vides valuable quantitative information about protein phosphory-
lation changes in response to external or internal stimuli in plants.
As MS-identification of phosphopeptides is routinely evaluated
with a false discovery rate (FDR), in vitro phosphorylation valida-
tion is usually required to be performed on a group of randomly

selected phosphopeptides before they are chosen as candidates
for further in vivo quantitation and a long-term functional study.
Secondly, although substantial advancements have been made in
MS technology and bioinformatics software during the discovery
of phosphosites, the number of MS-identified phosphopeptides is
still far below the theoretically predicted number (de la Fuente van
Bentem et al., 2008; Heazlewood et al., 2008; Durek et al., 2010).
Thus, prediction of putative phosphosites from inducible phos-
phorylation sites using bioinformatics is expected to increase the
probability of identifying additional phosphosites.

The amino acid sequence around a phosphosite serves as a
structural feature for kinase’s substrate recognition (Jorgensen
and Linding, 2008; Mok et al., 2010). Because the amino acid
sequence surrounding the phosphosite may be highly conserved
among various substrates, a short stretch (9–21 amino acid-long)
oligopeptide deduced from the primary sequence of an identified
phosphosite, is employed to BLAST against the non-redundant
plant protein sequence database (Arabidopsis in this case; Li et al.,
2009). The alignment leads to the identification of phosphory-
lation motif. Synthetic peptides are then made according to the
predicted phosphosites and fused to a hexa-His tag at N-terminus
to facilitate substrate peptide purification following kinase assay.
Huber and colleagues have demonstrated a case, in which a highly
conserved phosphorylation site was established among ACC syn-
thase (a key enzyme in ethylene biosynthesis) isomers using in
vitro kinase assay and the calmodulin-dependent protein kinase
(CDPK) was found to be responsible for the phosphorylation of
this site (Hernandez et al., 2004).

To place the newly identified phosphosites in the context of a
cellular process or a specific signal regulation, a general approach
has been developed using quantitative proteomics in combina-
tion with kinase extracts of both the treated and mutant plants
(Figure 1; Li et al., 2009, 2012; Zhu et al., 2012). The in vitro kinase
assay is then performed using the synthetic peptides mixed with
plant kinase extracts in the presence of phosphatase inhibitors.
The chemical labeling quantitative proteomic protocol, such as
iTRAQ, is then applied to investigate the differentially regulated
phosphorylation events. A routine iTRAQ-based in vitro phospho-
site quantitation requires at least two sets of forward and reciprocal
experiments. Results on MS-derived and bioinformatics-derived
synthetic peptides can provide information on the differential reg-
ulation of phosphosites in response to the internal and external
stimuli.

KINASE/PHOSPHATASE AND PHOSPHOSITE-CONTAINING
PEPTIDE INTERACTOMICS
The highly conserved amino acid sequence or phosphosite motif
is useful when one wants to isolate the phosphosite-containing
peptide-binding proteins. To achieve that, synthetic peptides
that have been validated by in vitro kinase assay will be used
in combination with the 15N-stable isotope labeled plants. By
this approach, the validated phosphopeptides together with their
corresponding non-phosphorylated peptide cognates will be syn-
thesized chemically and conjugated with biotin according to the
method described previously (Christofk et al., 2011). Each set of
biotinylated peptides will be immobilized on beads and packed
into a chromatography column. Light nitrogen-labeled proteins
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FIGURE 1 | Workflow of in vitro assay for signal-regulated

phosphorylation. Upper left panel shows two alignments of conserved
sequences of phosphorylation motif generated with CLUSTAL W, which was
reported in a previous study (Li et al., 2009). In this case, 9–21 amino
acid-long oligopeptide sequences deduced from the primary sequence of an
aluminum-induced protein covering the entire phosphorylation motif was
employed to search against the non-redundant protein sequence database
(organism: Arabidopsis thaliana, taxid: 3702). Candidates with a homology of
more than 55.5% are considered to contain the phosphorylation motif. The
most conserved candidates are aligned to obtain the motif sequence. The

phosphorylation site Ser(S) is marked with a black asterisk and TAIR IDs of the
genes are shown on the left. To validate such a prediction, peptides including
those amino acid sequences flanking the predicted phosphosite motif are
synthesized and used as substrates for in vitro kinase assay. The control or
treated means the plant without or with particular treatment of interest,
respectively. The quantitation is performed at MS2 spectra by directly
comparing the reporter ion intensity. Plant extracts from the control or the
treated plants are used separately. Peptides assayed are reciprocally labeled
with iTRAQ reagents. Three sets of reciprocal labelings are required before a
statistical analysis is performed.
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will be passed through a column immobilized with the phospho-
rylated peptides, whereas the heavy nitrogen-labeled proteins will
be passed through a column immobilized with its correspond-
ing non-phosphopeptide. As a result, 15N-coded putative kinases
and phosphosites-binding proteins are presumably enriched on
the column with non-phosphorylated synthetic peptide contain-
ing a phosphosite or motif sequence. The two protein passages
will be mixed together at 1:1 ratio (w/w) and resolved on SDS-
PAGE gel, which will then be tryptic digested and subject to MS
analysis as described before (Li et al., 2009; Guo and Li, 2011).
Both phosphosite-containing peptides (non-phosphorylated and
phosphorylated)-binding proteins will be identified differentially
due to a difference in between the heavy and light isotopolog
envelopes of their peptide ions.

IN VIVO QUANTITATION OF PTM OCCUPANCY
Once phosphosites are identified from SILIA-based phospho-
proteomics and confirmed with in vitro kinase assays, an in
planta validation and measurement of these phosphosites and
signal-specific phosphorylation level will be performed using a
transgenic approach. A transgene encoding the target protein will
be transferred into plant to measure the alteration of a particular
phosphorylation in response to various treatments, cell types, or
disease models (Havlis and Shevchenko, 2004; Steen et al., 2008).
The term occupancy (Raqu or Risf ) defines the ratio of the amount
of a protein PTM isomer (or PTM peptide) over the total amount
of the corresponding protein (or the corresponding PTM site pep-
tide; Li et al., 2012). A signal-induced alteration in occupancy on
a phosphosite usually measures the change in phosphorylation
level elicited by both internal and external signals. It is therefore
that Raqu or Risf are used to describe signal-specific phospho-
rylation change. To determine Raqu (or Risf ) of a phosphosite,
14N-coded peptide standards are established (Figure 2) against
the 15N-coded recombinant protein expressed in the transgenic
plant. One is the synthetic phosphopeptide that contains targeted
phosphosite, whereas the other is its unmodified cognate. A series
of synthetic peptide samples with a wide range of concentrations
are then made, in the meantime, an aliquot of known amount of
highly purified recombinant protein expressed in transgenic plant
is resolved on SDS-PAGE and undergo in-gel tryptic digestion.
Once the peptides are produced from the 15N-coded recombinant
protein, 14N-coded standard phosphopeptides (both phosphory-
lated and non-phosphorylated) of various amounts are added into
aliquots of the recombinant protein-derived peptides and analyzed
using MS. The resulting data is used to establish two individual
standard curves to calculate the molar amount of phosphopep-
tide Paqu and its non-phosphorylated cognate NPaqu. The Raqu is
determined using Eq. 1:

Raqu = Paqu/(Paqu + NPaqu). (1)

Because it is believed that the fold increase from a partial to a full
phosphorylation status may lead to different cellular effects (Steen
et al., 2008; Wu et al., 2011), a number of MS-based methods
have been invented for quantitation of phosphorylated isoform.
Using stable isotope-labeled synthetic phosphopeptides and arti-
ficial concatemer of standard peptides (Gerber et al., 2003; Mayya

et al., 2006; Wu et al., 2011) and QconCAT (Beynon et al., 2005;
Anderson and Hunter, 2006; Pratt et al., 2006; Rivers et al., 2007)
approaches are frequently used for quantitative analysis of protein
phosphorylation. Since peptide digestion may be incomplete or
proteins of interest requires isolation (Brun et al., 2007), protein
standard absolute quantification approach, which uses the full-
length stable isotope-labeled protein as standard, becomes popular
in quantitation of non-PTM proteins (Brun et al., 2007; Lebert
et al., 2011). To address the difficulty in measuring abundance of a
phosphorylated isoform, AQUIP (Figure 2; Li et al., 2012) strategy,
which combines these advantageous features with a recombinant
HisTag fusion protein (His8-BCCP-His8), was invented to achieve
absolute quantitation for the phosphorylation level of a particular
phosphosite in vivo. In short, in AQUIP: (1) both 14N synthetic
peptide standards and purified 15N-coded protein of interest are
used to determine the total amount of the target protein (Tisf );
(2) a pair of synthetic peptides of phosphosites are used to cal-
culate the phosphosite occupancy (Raqu or Risf ), and (3) the
absolute amount of phosphorylated isoform Pisf is calculated via
an equation: Pisf = Tisf ·Raqu, where Tisf stands for the molar
amount of the whole recombinant protein isolated from plant cell
lysate.

To determine the absolute amount of the recombinant pro-
tein in the cell lysate, the plant is first labeled via SILIA. The
15N-coded total cellular protein is extracted and resolved on SDS-
PAGE. The gel slice that contains the targeted protein is excised
out to perform the in-gel trypsin digestion and then divided into
seven equal fractions. Two gradients of 14N-peptide standards of
known concentrations are mixed with the target protein sample
to establish two standard curves between the peptide concentra-
tion and the ion intensity of the whole isotopic envelope. These
standard curves established above are used to calculate the molar
amount of the 15N-coded target peptide from recombinant fusion
protein sample. Because the digestion efficiency and recovery rate
of each peptide varies during peptide preparation, peptide yield
(km) of each peptide needs to be determined. To obtain km, a
highly purified target protein with known amount is obtained via
tandem affinity purification (Li et al., 2012). The purified targeted
recombinant protein is divided into two fractions with high or
low molar amount and mixed with equal amount of standard
peptides mixtures. The two mixtures of 15N-coded target proteins
and 14N-coded peptide standards are then subjected to protease
digestion separately and subjected to MS analysis to build standard
curves. These MS results are used to determine the peptide yield
km. Finally, Tisf of the targeted protein could be obtained follow
Eq. 2:

Tisf = 1

m

∑ (
T1

k1
+ T2

k2
· · · + Tm

km

)
, (2)

where k represents peptide yield and m represents number of pep-
tides used for quantitation. The absolute molar amount of the
PTM isoform is determined as the following Eq. 3:

Pisf = Tisf · Raqu. (3)

This method has been applied in Arabidopsis to measure phospho-
rylation event on transcriptional factor ERF110 in both air-treated
and ethylene-treated transgenic plants, and confirmed an ethylene
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FIGURE 2 | Workflow of determination of occupancy (Raqu or Risf) using

AQUIP. A known quantity of 15N-coded recombinant proteins, including both
the target phosphorylated isoform and all of its cognates of different types of
PTMs, are highly purified from 15N-labeled transgenic plant (either the control
or the treated plants) and divided into six aliquots and resolved on SDS-PAGE
gel, followed by in-gel trypsin digestion. The 14N-coded synthetic
phosphopeptide and its non-phosphorylated cognate are mixed together with
a known concentration and spiked into 6 aliquots of 15N-coded peptide
samples. After the oxidization of methionine residues on the peptides and
LC-MS/MS analysis, two standard curves are built using a method between
the ion intensity ratios of peptide P and NP standards and the molar ratios of

peptide standards. The molar amount of phosphorylated peptide (Paqu ) and
its non-phosphorylated cognate (NPaqu ), which are derived from the highly
purified and 15N-coded protein isoforms, is determined according to these
two standard curves separately. The percentage of target-phosphorylated
isoform among all isoforms in the total cellular proteins is defined as the
site-specific phosphorylation occupancy Risf , which is equivalent to Raqu
when the ratio of P and NP peptide amount is in concern (Li et al., 2012).
Error values indicate standard deviations. The Risf obtained from either the
control or the treated plants is used to calculate the relative abundance of the
phosphorylation event and subject to statistical assessment, as shown at the
bottom of the figure. ***Means significant difference.
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down-regulating phosphorylation event on ERF110 Ser62 in the
ein2-5 mutant background (Li et al., 2012). Its application could
be extend to different treatments and plant species, and not limited
to quantitation of phosphorylated isoforms. The absolute amount
of PTM isoforms could also serve as biomarkers that correlate with
phenotypic changes, which could be applied to the clinical aspects
(Schrohl et al., 2003; Barnidge et al., 2004).

IN VIVO VALIDATION OF BIOLOGICAL FUNCTION OF A
PHOSPHOSITE OR A PHOSPHOPROTEIN
To study the biological function of a phosphoprotein identi-
fied from quantitative PTM proteomics, loss of function lines of
these phosphoproteins can be obtained by both T-DNA insertion
(Krysan et al., 1999) and RNA interference (Klink and Wolniak,
2000) to study the function of these candidate genes in vivo.
Alternatively, the candidate phosphoprotein gene can be expressed
ectopically to monitor the gain-of-function effect of these genes.
To further confirm the biological function of phosphosites,
phosphorylation- and dephosphorylation-mimetic mutants are
introduced to plants. A successful example is that phosphoryla-
tion of Ser (S) can be functionally substituted by Asp (D) in a rat
liver kinase, resulting in an identical substrate dependency. In con-
trast, Ala (A) mutant showed exactly the same kinetic property of
its de-phosphorylation form (Kurland et al., 1992). These molec-
ular genetic methods have been successfully applied in a wide
number of organisms, which include, for example, determination
of the phosphorylation-dependent kinase activity of eukaryotic
elongation factor 2 kinase (eEF-2K; Tavares et al., 2012), alteration
of conformation of human oncogene stathmin by phosphoryla-
tion (Curmi et al., 1994) as well as the phosphorylation-dependent
accumulation/degradation of both ACC synthase (Liu and Zhang,
2004) and signaling component EIN3 (Yoo et al., 2008) in Ara-
bidopsis. The commonly used amino acid substitution that are
mimetic of the dephosphorylation status at phosphosite are amino

acid S (or T) mutated to A (or I) and Y to F, respectively. In con-
trast, the phosphosite (S) mimicking the phosphorylated status
is usually mutated to D or E. The mutant genes of site-directed
point-mutations are then transformed into a plant to verify its
biological function in vivo using the wild-type gene as a control.
Phenotypes of all three transgenic plants expressing the mutants
and wild-type gene reveal the possible role of the phosphosites in
plant. By this strategy, the Ser62 phosphosite of ERF110 has been
found to play a role in the organ development in Arabidopsis (Li
et al., 2012; Zhu et al., 2012).

CONCLUSION
In conclusion, we have summarized an integrated quantitative
and functional phosphoproteomics approach, which starts from a
large-scale identification of phosphopeptides, to bioinformatics-
prediction, to in vitro validation of phosphosites, protein and
phosphopeptide interactomics, to in planta quantitation of phos-
phosites and finally to the investigation of biological functions of
these phosphosites in vivo. Knowledge generated via such a strat-
egy might ultimately be integrated to interpret the combinatorial
codes of different PTMs (including phosphorylation) events and
those PTM changes in response to developmental cues and envi-
ronmental stimuli. During application of this quantitative PTM
proteomics approach to a special biological problem, one may have
to pay special attention to the amount of labor involved, the cost
for synthesis of peptides and computational skills used in analysis
of these large set of MS data.
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