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Although proteins and lipids have been assumed to be distributed homogeneously in the
plasma membrane (PM), recent studies suggest that the PM is in fact non-uniform structure
that includes a number of lateral domains enriched in specific components (i.e., sterols,
sphingolipids, and some kind of proteins). These domains are called as microdomains
and considered to be the platform of biochemical reaction center for various physiological
processes. Microdomain is able to be extracted as detergent-resistant membrane (DRM)
fractions, and DRM fractions isolated from some plant species have been used for
proteome and other biochemical characterizations to understand microdomain functions.
Profiling of sterol-dependent proteins using a putative microdomain-disrupting agent sug-
gests specific lipid—protein interactions in the microdomain. Furthermore, DRM proteomes
dynamically respond to biotic and abiotic stresses in some plant species. Taken together,
these results suggest that DRM proteomic studies provide us important information to
understand physiological functions of microdomains that are critical to prosecute plant’s
life cycle successfully in the aspect of development and stress responses.
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INTRODUCTION

The plasma membrane (PM) is a typical cellular membrane with
selective permeability and surrounds all organelles and cellu-
lar substances. Therefore, the PM is thought to be the most
important cellular membrane due to relationships to various
important cellular processes including cell division, differenti-
ation, and biotic/abiotic stress adaptation. The PM contains a
variety of proteins associated with transport, signaling, cytoskele-
ton construction, metabolism, and stress protection in the form
of transmembrane, peripheral, and lipid modified types.

Lateral distribution of these membrane proteins has been
described by diffusion of each lipid and protein molecule which is
proposed as fluid mosaic model (Singer and Nicolson, 1972). In
addition to this hypothesis, Simons and Ikonen (1997) proposed
functional microdomain of the PM. In PM microdomain hypoth-
esis, it is considered that microdomain is organized with highly
hydrophobic lipids such as sterols and sphingolipids, and specific
proteins with defined functions (Brown and London, 1998, 2000;
London and Brown, 2000). In animal cells, one of microdomain
function is considered to be a scaffold in association with signal-
ing complex, membrane trafficking, and transport (Simons and
Ikonen, 1997; Simons and Toomre, 2000; Lingwood and Simons,
2010). Experimentally, microdomain can be obtained as non-
ionic detergent-resistant membrane (DRM) fraction due to their
own hydrophobic properties (Schroeder etal., 1994; Simons and
Tkonen, 1997; Brown and London, 1998).

Peskan etal. (2000) reported for the first time isolation of DRM
fractions from plant materials using tobacco leaves. After this
report, the isolation of DRM fractions have been reported with

other plant species such as tobacco, Arabidopsis thaliana, leek,
Medicago truncatula, Solanum tuberosum, rice, oat, and rye (Mon-
grand etal., 2004; Borner etal., 2005; Morel etal., 2006; Laloi
etal.,, 2007; Lefebvre et al., 2007; Kriigel et al., 2008; Fujiwara et al.,
2009; Minami etal., 2009; Takahashi etal., 2012). Some physio-
logical studies showed possibilities that microdomain is involved
in pollen tube tip growth, intracellular virus movement, and
clathrin-independent endocytotic pathway (Liu etal., 2009; Raf-
faele etal., 2009; Lietal.,2012). In addition to these functions, PM
microdomain may have roles in cell wall polysaccharide synthesis
in hybrid aspen (Bessueille etal., 2009).

There have been attempts to identify microdomain-associated
proteins for elucidation of novel microdomain-dependent regu-
latory mechanisms on cellular physiological processes in plant.
Most of these studies were 2D or 1D electrophoresis gel-based
proteomics or nano-LC-MS/MS-based shotgun proteomics using
microdomain-enriched DRM fraction. In addition to DRM frac-
tion, methyl-p-cyclodextrin (mpCD), which is known as a sterol
chelator and, hence, a sterol-dependent microdomain disrupter,
was used to characterize how protein was associated with the
primary microdomain lipid, sterol (Kierszniowska etal., 2009).
Comprehensive analyses of DRM proteomes may contribute to
demonstrate the importance of lateral segregation of proteins
in plant PM microdomains. Ultimately, these results may lead
to new findings of plant cellular homeostasis system such as
signaling machinery, transport regulation, and novel response
system against perception of biotic stress such as fungal infec-
tion and abiotic stress such as drought, salt, light, nutrition, and
temperature.
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DETERGENT-RESISTANT MEMBRANE FRACTION AS A
BIOCHEMICAL SAMPLE FOR OBTAINING INFORMATION
ASSOCIATED WITH PLASMA MEMBRANE MICRODOMAIN
To analyze biochemical properties, the extraction of DRM frac-
tions from the PM is considered to be the only way to prepare
microdomain samples (Figure 1). DRM fractions were isolated
from a number of plant species and tissues as described above,
and the preparation protocols of DRM fractions are in general
quite similar regardless of plant species. First, a highly pure
PM fraction is prepared using a two-phase partition system and
then treated with 1% (w/v) Triton X-100 detergent at low tem-
perature (on ice or 4°C) for 30 min. Next, treated membrane
fraction is subjected to sucrose density gradient centrifugation.
After centrifugation, white band appeared at the interface of
sucrose layers recovered and collected by centrifugation. Pre-
cipitated membrane fraction is suspended in a proper buffer as
DRM fraction. Because unknown artificial effects might be caused

Plant sample PM fraction

Homogenization
in an osmotic medium
containing protease
inhibitors and
polyvinylpyrrolidone

Ultracentrifugation
(231,000 g, 4°C, 1 h)

Microsome fraction

|
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for 30 min at 4°C

|
Sucrose gradient
centrifugation
(141,000 g, 4°C, 20 h)

<] brRM

|
Two-phase partitionin a

polyethylene glycol/dextran
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|
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interface of 30/35%
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|
Ultracentrifugation
(231,000 g, 4°C, 1 h)

< pm

DRM fractions

| Repeat three times

Ultracentrifugation
(231,000 g, 4°C, 1 h)

FIGURE 1 | Schematic representation of DRM extraction in plants.
Overview of the DRM extraction procedure. DRM fractions are obtained
from purified PM fractions by the 1% (w/v) Triton X-100 treatment and
subsequent sucrose density gradient centrifugation.

due to detergent treatment at low temperature, some researchers
concerned that intact microdomains that function in vivo are
not extracted by the widely adapted preparation protocols (Tan-
ner etal.,, 2011). Nevertheless, DRM fraction is a useful tool
for estimating microdomain functions associated with specific
components. Many microdomain-related phenomena have been
elucidated in DRM and non-DRM fractions, and experiments
with DRM fraction is apparently one of the most effective ways
to determine specific functions in relation to microdomains in
PM (Lingwood and Simons, 2007).

Proteomics approaches of DRM proteins is well-conducted
in various organisms and, further, quantification of DRM and
non-DRM proteins is also reported in some plant species using
isotope labeling, 2D difference gel electrophoresis (2D-DIGE),
and label-free quantification software (Kierszniowska etal., 2009;
Minami etal., 2009; Takahashi etal., 2012). However, there are
still difficulties in quantitative determination of a large number
of proteins correctively using proteomic approached. This is in
part because solubilization of membrane proteins including those
localized in the PM as well as DRM may not be consistent in a
series of experiments due to hydrophobic characteristics of the
proteins and assignment of peptide fragments to the appropriate
protein may not be accurate in some species for which we have
not yet completed genome sequencing. It is necessary to combine
another approaches (such as immunochemical and biochemical
approaches) to obtain the amount of proteins in the membrane
accurately.

FUNCTION OF THE PM MICRODOMAIN

Detergent-resistant membrane proteomes have been determined
in some plant species (Mongrand etal., 2004; Shahollari etal.,
2004; Borner etal., 2005; Morel etal., 2006; Lefebvre etal., 2007;
Fujiwara etal., 2009; Minami etal., 2009; Stanislas etal., 2009;
Takahashi etal., 2012). Comparisons of DRM proteomes from
these plant species indicated that DRM protein functions are
very similar among plant species: DRM fractions contain many
transporters, proteins associated with membrane vesicle traffick-
ing processes and cytoskeleton such as H*-ATPases, aquaporins,
clathrins, actins, and tubulins. Further, microscopic observations
and biochemical analyses of DRM fractions or intact plant cells
implied that microdomains play some functional roles in the phys-
iological aspects. Table 1 summarizes proteins that were found in
common in some plant species on papers published so far. Local-
ization or function of some of these proteins in distinct regions
in the PM was further confirmed by additional approaches either
morphologically or biochemically.

Asan example of functional involvement in developmental pro-
cess, Liu etal. (2009) reported the involvement of microdomain
in pollen tube tip growth. Using sterol-enriched microdomains
in pollen tube using one of microdomain-staining lipophilic
styryl dyes, di-4-ANEPPDHQ, they clearly revealed localization
of NADPH oxidase in microdomain. From the results, they
suggested that one of predicted microdomain properties (i.e., clus-
tering of specific, hydrophobic lipids and proteins) is required
for NADPH oxidase activity and polarization of sterol-enriched
microdomain regulates NADPH oxidase-dependent reactive oxy-
gen species signaling. Ultimately, polar growth of pollen tube tip
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may be modulated by the localization of proteins in microdomain.
In addition to plant pollen tip, polarization of microdomain
in hyphal tip of Candida albicans was also observed (Martin
and Konopka, 2004). These data together suggest that charac-
teristics of microdomain are common in the function on cell
polarization among various species not only plants but also
microorganisms.

A recent study also suggested that microdomain is related to
intracellular membrane trafficking. Arabidopsis Flotl is a DRM-
associated protein that was identified in DRM proteome (Borner
etal.,2005). Lietal. (2012) observed that Flotl showed patch-like
localization on PM using electron microscopic technique. They
further showed that Flot 1 is participated in endocytic vesicle for-
mation but gold-conjugated antibody of Flot 1 does not co-localize
with clathrin light chain. It means that Flotl plays some roles in
a microdomain-associated but clathrin-independent endocytosis
pathway. Considering that RNA interference of Flotl results in
the defect of seedling development, microdomain-Flotl mediated
vesicle trafficking has important implications for seedling devel-
opment such as root hair elongation regulated by vesicle trafficking
(Ovecka etal., 2010).

According to protein clustering in microdomain, proteomic
and subsequent enzymatic characterizations of DRM fraction
from hybrid aspen cells strongly suggested the involvement of
DRM in cell wall polysaccharide synthesis (Bessueille et al., 2009).
DRM from hybrid aspen was enriched in glucan synthases such
as callose and cellulose synthase, and, surprisingly, 73% of total
glucan synthase activities of PM were detected in DRM. They
concluded that microdomain is functional platform for cell wall
component synthesis and controls cell morphogenesis.

Detailed analysis of M. truncatula DRM showed considerable
differences in DRM fraction and the total PM fraction (Lefebvre
etal., 2007). This study showed that free sterols, sphingolipids,
and steryl glycosides are highly enriched in DRM fractions. These
results are consistent with previous studies with tobacco and A.
thaliana (Mongrand et al., 2004; Borner et al., 2005). In addition to
lipids, global survey of DRM proteins were performed and revealed
that signaling-, transport-, redox-, cytoskeleton-, trafficking-, and
cell wall-related proteins were enriched in DRM, most of which
were also found in early works of plant DRM protein identifica-
tion (Mongrand et al., 2004; Shahollari etal., 2004; Borner etal.,
2005; Morel etal., 2006). Proteome profiling of M. truncatula
DRM further indicated the possible presence of microdomain-
dependent redox regulation system and microdomain platform for
signaling.

As described above, sterols are one of the primary compo-
nents of microdomain-enriched DRM fractions in both animal
and plant cells. Kierszniowska etal. (2009) applied mpBCD to
isolated Arabidopsis DRM fractions to analyze sterol-dependent
enrichment of DRM proteins. mpCD is a sterol-removing cyclic
oligosaccharide and mpCD treatment disrupts the organization
of membrane microdomain. Proteomic analysis of the mpCD-
treated and untreated DRM fractions revealed that cell wall-related
and glycosylphosphatidylinositol anchored proteins (a class of
lipid-modified proteins) were changed by sterol depletion. Thus,
these results strongly suggest that sterol is an important fac-
tor for segregation of specific proteins into DRM fraction and

PM is “phase-separated” to form specific domains (i.e., sterol-
enriched microdomains, Xu et al., 2001). As shown in these studies,
proteome analysis has been used for estimating microdomain
functions in plant cells for the past decades and, therefore,
greatly contributed to elucidation of microdomain-associated
physiological functions in plant cells.

DRM PROTEOME ON BIOTIC STRESS RESPONSE

Plant proteomic studies for elucidating microdomain function
have been carried out intensively in the research area of plant—
pathogen interactions. The possibility of lipid microdomain-
pathogen interactions was first reported by Bhat etal. (2005).
The authors suggest that fungal pathogen (Blumeria graminis f.sp.
hordei) recognizes barley mildew resistance locus o (Mlo) that seems
to re-localize as microdomain-like structure at pathogen invasion
site. In addition to pathogen infection, plant immune responses
against biotic stress may be supported by functional microdomain.
Fujiwara etal. (2009) successfully identified 192 proteins from
DRM proteome analysis in rice suspension cultured cells that were
pre-transformed with constitutively active OsRac. OsRacl is one
of the Rac/Rop GTPase family proteins and regulates rice immu-
nity as a key regulator (Kawasaki etal., 1999; Ono etal., 2001;
Wong etal., 2004; Lieberherr etal., 2005; Kim etal., 2012). Shift
of OsRacl to DRM fractions was found after elicitor treatment.
At the same time, DRM proteome suggests that microdomain
exists as platform for rice innate immunity. Actually, receptor-like
kinases (RLK), disease resistance proteins and band7 family pro-
teins, members of disease-related proteins, were detected in rice
DRM fractions as well as some other plant species (Borner etal.,
2005; Morel et al., 2006; Fujiwara et al., 2009; Minami et al., 2009).
Interactions between OsRacl and those proteins may occur during
initial immunity process against biotic stimuli.

Mongrand etal. (2004) also suggest from proteomics of DRM
that microdomain isolated as DRM fractions has important func-
tions in plant defense responses because tobacco DRM proteome
contains a variety of defense-related proteins such as remorin, Ntr-
bohD, and Ntrac5. Some physiological studies further indicated
that DRM-enriched proteins are associated with plant—pathogen
interactions. Remorin is the most characterized and a represen-
tative DRM protein and Raffaele etal. (2009) reported interesting
results that remorin is associated with intercellular virus move-
ment. Solanaceae remorin was fractionated into DRM fraction,
which is also reported in tobacco DRM proteomics (Mongrand
etal., 2004; Morel etal., 2006; Stanislas et al., 2009) as well as oat
and rye proteomics (Takahashi etal., 2012). Interestingly, the dis-
tribution of remorin on the PM was represented as patch-like
patterns and disappeared when mpCD was added to the sam-
ple. These results strongly suggest that DRM fractions partly
reflect intact microdomain. Raffaele et al. (2009) also showed that
remorin is localized in plasmodesmata and its accumulation levels
affect cell-to-cell transfer of Potato virus X (PVX) through plas-
modesmata. Detailed analysis of DRM proteome against elicitor
signaling in tobacco BY-2 cells revealed that the DRM enrichment
of cell trafficking related proteins (dynamins) and a signaling pro-
tein (14-3-3 protein) altered after cryptogein treatment (Stanislas
etal., 2009). These studies clearly indicate that DRM proteomics
has potential to find new factors of elicitor signaling pathway and
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their functions in plants, and DRM proteome has methodolog-
ical significance in approach for findings of novel microdomain
functions on plant pathology.

DRM PROTEOME ON ABIOTIC STRESS RESPONSE

Abiotic stress response and adaptation mechanism in associa-
tion with microdomain is not well characterized. The only study
showing changes of DRM compositions in response to abiotic
stimuli was with Arabidopsis leaves reported by Minami etal.
(2009). They performed Arabidopsis DRM proteomic analysis
to find the possibilities of microdomain functions for adap-
tation to freezing temperature. Plants can increase survival at
severe freezing temperatures by sensing non-freezing low temper-
ature and subsequently reconstituting cellular processes (called
as cold acclimation; Guy, 1990; Sharma etal., 2005). Although
there are a number of papers revealing considerable changes of
PM compositions during cold acclimation (Uemura and Yoshida,
1984; Lynch and Steponkus, 1987; Webb etal., 1994; Kawa-
mura and Uemura, 2003; Uemura etal., 2006), analysis of DRM
compositions during cold acclimation was conducted in very
few studies. Using a combination of 1D sodium dodecyl sul-
fate polyacrylamide gel electrophoresis (SDS-PAGE), 2D-DIGE
and Liquid chromatography-tandem mass spectrometry (LC-
MS/MS) and Matrix-assisted laser desorption/ionisation-time of
flight mass spectrometry (MALDI-TOF/MS) analysis, Minami
etal. (2009) demonstrated that proteomic profiles of DRM frac-
tions altered significantly during cold acclimation. The cold
acclimation-responsive proteins include synaptotagmin protein
homolog, tubulin and P-type ATPase. Each protein is considered
to have important roles in cold acclimation process from previous
studies. For example, synaptotagmin homolog SYT1 was identi-
fied in DRM and increased after cold acclimation. SYT1 is related
to calcium-dependent PM resealing (or repairing) process when
PM destruction occurs due to freeze-induced mechanical stress
imposed by extracellular ice formation (Yamazaki etal., 2008).
In addition to SYTI1, other membrane fusion-related proteins
such as syntaxin were identified in oat and rye DRM (Takahashi
etal., 2012). Disassembly of microtubule consisting of tubulins is
suggested to be important for inducing cold acclimation process
(Abdrakhamanova etal., 2003). Enhancement of ATPase activ-
ity in PM during cold acclimation is one of the well-known
reactions in some plant species (Ishikawa and Yoshida, 1985;
Martz etal., 2006).

How interactions between these proteins and microdomain
properties affect cold acclimation processes, however, is still
to be elucidated. We need to conduct additional physiological
and microscopic experiments to understand responsiveness of
microdomain and/or DRM proteins to cold acclimation. We have

evidence from proteomic studies that there are several interest-
ing abiotic stress-related proteins in DRM fractions such as RLKs,
aquaporins, heat shock proteins, actins, and clathrins in various
plants (Mongrand etal., 2004; Borner etal., 2005; Morel etal,,
2006; Takahashi etal., 2012). To elucidate their contribution to
abiotic stress sensing, signaling, and response, comprehensive
proteomic analyses such as protein—protein interactions and post-
translational modifications of the proteins would be necessary and
expected.

FUTURE PERSPECTIVE

Proteomic analyses of DRM fractions have been conducted
and provided information for suggestive but important func-
tions of PM microdomain in plants. Several physiological
studies using both intact cells and isolated membrane frac-
tions supported implications derived from proteomic analyses
with DRM and added further interesting information on the
roles of membrane microdomains. However, evidence of func-
tional roles of microdomains in the PM is in a large part
lacking. Now we are entering in next phase for elucidating
microdomain characteristics and functions in plants. We need
to consider morphology and dynamics of microdomains, phys-
ical and chemical state of PM proteins in microdomains from
the perspective of post-translational modifications and molec-
ular ultrastructure, and ultimately functional significance of
microdomains in various events in plant’s life. Development
of microscopic and biochemical techniques, such as single-
molecule tracking and artificial membrane system, will help
us to understand physiological roles of microdomain in plant
cells.

Plants are immobile and, thus, perception and response to envi-
ronmental stimuli are quite important for plant’s life. The PM is
thought to be the primary cellular compartment of these reactions
because it surrounds intracellular organelles and the cytoplasm
and transduces extracellular stimuli to the specific components in
the cell. Microdomain is expected to play important roles in these
processes. Thus, proteomic approaches will further provide useful
information for understanding plant physiological responses and
microdomain significance in the future.
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