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Over the last several decades, there have been a large number of studies done on the
all aspects of legumes and bacteria which participate in nitrogen-fixing symbiosis. The
analysis of legume–bacteria interaction is not just a matter of numerical complexity in
terms of variants of gene products that can arise from a single gene. Bacteria regulate
their quorum-sensing genes to enhance their ability to induce conjugation of plasmids and
symbiotic islands, and various protein secretion mechanisms; that can stimulate a collection
of chain reactions including species-specific combinations of plant-secretion isoflavonoids,
complicated calcium signaling pathways and autoregulation of nodulation mechanisms.
Quorum-sensing systems are introduced by the intra- and intercellular organization of gene
products lead to protein–protein interactions or targeting of proteins to specific cellular
structures. In this study, an attempt has been made to review significant contributions
related to nodule formation and development and their impacts on cell proteome for better
understanding of plant–bacterium interaction mechanism at protein level.This review would
not only provide new insights into the plant–bacteria symbiosis response mechanisms but
would also highlights the importance of studying changes in protein abundance inside
and outside of cells in response to symbiosis. Furthermore, the application to agriculture
program of plant–bacteria interaction will be discussed.
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INTRODUCTION
Mutualistic symbiosis includes a wide range of interactions among
a diverse set of organisms. The symbiosis between legumes and
rhizobia is a classic mutualistic relationship and nitrogen fixation
process is one of the most important biological processes on the
earth. The symbiosis culminates in the creation of a highly spe-
cialized plant organ, the root nodule, with plant cells invaded
by bacteria. More than a century ago, Hellriegel and Wilfarth
(1888) identified rhizobia as a source of nitrogen fixation. Rhizo-
bia, Gram-negative soil bacteria, induce the formation of nodules
in many, but not all, leguminous plants (Gualtieri and Bisseling,
2000). The nitrogen fixing nodule is a model for plant devel-
opmental processes and plant–microbe interactions. The nodule
forms an anaerobic niche for nitrogen fixation, protecting the
bacterial nitrogenase from inactivation by O2. In exchange for
carbohydrates provided by the host legume, fixed nitrogen would
be supplied by bacteria to the legume.

Establishment of symbiosis between host plants and symbi-
otic bacteria is a multistage process covering signal perception,

Abbreviations: GEP, the general export pathway; IT, infection thread; Lbs, leghe-
moglobins; LCOs, lipochitooligosaccharides; Nop, nodulation outer protein; NSP,
nodulation signaling pathway; pbm, peribacteroid membrane; RAP, rhizobium-
adhering proteins; RNAi, RNA interference; SNF, symbiotic nitrogen fixation; TAT,
twin-arginine translocation pathway; TF, transcription factors.

transduction, and responses (Broughton et al., 2000). These pro-
cesses depend on the precise spatial and temporal regulation of
nod- and other symbiotic genes (Schlaman et al., 1998). Synchro-
nized expression of symbiotic loci in legumes and their bacterial
partner involves the exchange of a series of molecular signals allow-
ing rhizobia to invade the plant roots. Rhizobia produce various
molecular signals that influence the host plants at various steps
along the symbiotic pathway (Perret et al., 2000). Symbiosis is
initiated when accumulated flavonoids in the rhizosphere of the
host plant prompt the cascade of rhizobial signal transduction
by interacting with transcriptional activators of nodulation genes.
This flavonoid-modulated signal transduction cascade regulates
expression of genes that act during nodule development. Most
nodulation genes including nol, noe, and nod, are involved in the
synthesis of host-specific lipochitooligosaccharides (Nod factors),
which are essential for the initial infection of root hairs (Perret
et al., 2000). Nod factors provoke root curling, creation of nodule
primordia, early nodulin (ENOD) genes expression, and finally
allow the bacteria to enter the root hairs (Broughton et al., 2000;
Geurts and Bisseling, 2002). Thus, flavonoids and Nod factors cor-
respond to the primary sets of signal transduction by the symbiotic
partners.

Further, already differentiated cortical cells have to be reacti-
vated and enter the cell cycle from their arrested state, so that a
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nodule primordium is formed. Release of the bacteria into pri-
mordium cells results in its differentiation into a nodule (Gage,
2004; Oldroyd and Downie, 2004). The infection process as well
as the induction of cortical cell divisions is caused by Nod factors
that are secreted by rhizobia when they colonize the roots of their
host. In legumes, the infection process starts in epidermal root hair
cells (Brewin, 2004). Nod factor-secreting rhizobia induce defor-
mations in most of the root hairs in a region of the root that is
susceptible to the interaction (Heidstra et al., 1994). In this way,
the bacterium becomes entrapped within a three-dimensional cav-
ity of curl and a small colony of rhizobia is formed. Subsequently,
these rhizobia induce local weakening of the cell wall and, by
invagination of the plasma membrane of the root hair, a tube-like
structure is formed. This is the so-called infection thread (IT) that
allows the rhizobia to penetrate the root-hair cell. Each root cor-
tical cell that traversed to make an IT and ultimately the rhizobia
reach the nodule primordium (Brewin, 2004). Cortical roots taken
up in the nodule primordium cells in an endocytosis-like manner
forming organelle-like structures (symbiosomes) that contain one
or more bacteria, which upon differentiation start to fix nitrogen
(Brewin, 2004).

Proteomics is a high-throughput technology that has been used
to investigate a wide range of biological aspects including phylo-
genetic and molecular divergence studies (Bushehri et al., 2008,
2011), plant responses to different stresses (Larrainzar et al., 2007;
Danchenko et al., 2009; Klubicova et al., 2012; Komatsu et al., 2012;
Mohammadi et al., 2012; Salavati et al., 2012b) detailed studies on
the structural components, and biochemical pathways involved
in symbiotic nitrogen fixation (SNF; Broghammer et al., 2012;
Navascués et al., 2012; Rose et al., 2012). Approaches such as
transcriptome, proteome, and metabolome analysis in both sym-
bionts, promise to reveal much more detail about the metabolic
flows in the nitrogen fixing nodule or even to description the
novel unknown aspects (Delmotte et al., 2010; Khatoon et al.,
2012; Salavati et al., 2012a,c). Several proteomic studies focused on
characterization of different aspects and stages of plant–microbe
interactions were published. Natera et al. (2000) identified root
nodule proteins in Melilotus alba during 12 days after inocula-
tion by Sinorhizobium meliloti, including S. meliloti and bacteroid
proteins. Proteins involved in nodule formation and regulated by
auxin were identified in Medicago truncatula infected by S. meliloti
(van Noorden et al., 2007). Other previous studies described pro-
teomes of microbial symbionts. Analysis of hfg mutant S. meliloti,
drastically affected in its ability to colonize and initiate symbiosis,
showed that ABC type transporter system represents most abun-
dant class of differentially expressed proteins (Barra-Bily et al.,
2010). Extracellular proteome of Rhizobium etli strain during dif-
ferent growth stages was described by Meneses et al. (2010). Their
results suggests that secretome of R. etli consists of actively secreted
proteins, which mostly are extracellular enzymes (mostly degrada-
tion enzymes) and proteins that bind nutrients and extracellular
appendages, and proteins that have functions in the cytosol and are
not actively secreted but may be released into the culture medium.
Function of many identified proteins in extracellular proteome is
still unknown.

In addition, the organeller proteins with potential role in the
entry of symbiotic bacteria into plant roots or in the other steps

of symbiotic processes were also studied (Robertson et al., 1978;
Wienkoop and Saalbach, 2003; Hoa et al., 2004; Imaizumi-Anraku
et al., 2005). First study focused on phosphoproteome changes
during symbiosis was performed by Rose et al. (2012).

Also a few reviews concerning proteomic analysis of plant–
microbe interactions in general were published (Rolfe et al., 2003;
Bestel-Corre et al., 2004; Mathesius, 2009; Muneer et al., 2012).
Our review is more focused to SNF. The integration of genomics
and post-genomics events is a strong consensus for functional
study of plant–microbe interactions, in general, and SNF, in
specific. Model legume genomics and the continued effort on
cultivated grain and pasture legumes open unique possibilities
for family-based comparative genomics in the Leguminosae. Pro-
teomic studies in combination with transcriptomics studies such
as quantitative RT-PCR can advance symbiosis analysis to a new
level (Resendis-Antonio et al., 2011; Salavati et al., 2012a). In com-
bination with the on-going genome sequencing and growing EST
collection of the model legumes, proteomics has been recently
become a powerful investigation of the most detailed physiologi-
cal events in plant, animal and microorganisms (Colebatch et al.,
2004; Thibivilliers et al., 2009). In this paper, we focused on the
large-scale identification of proteins and their complexes coupled
to genome- and EST-sequence information, which can be used
to identify proteins and to monitor changes in protein expres-
sion as a function of developmental stages, to review legume
nodule initiation and developmental events at translational
level.

As technical view, sample preparation is an important step in
proteomics researches. This step is principally difficult in studies
with plants. Many plant tissues are often rich in proteases contam-
inants such as polysaccharides, lipids, and phenols (Carpentier
et al., 2005). Furthermore, it is necessary to acquire high-quality
gels showing reproducible protein patterns (Hurkman and Tanaka,
1986). The extraction method must conserve the quality and
quantity of the extracted proteins (Hurkman and Tanaka, 1986;
Westermeier and Naven, 2002). Although a single-step process for
protein extraction would be highly desirable, no unique sample
preparation method can be used to 2-DE analysis (Dunn, 1999).
Therefore, many researchers developed and optimized some effi-
cient methods such as a phenol/SDS-based method (Wang et al.,
2006; Rodrigues et al., 2012) and non-phenol-based methods
(Guerreiro et al., 1997; Natera et al., 2000), to find a simple method
that could be applied regularly to proteomics studies of symbiosis
interactions.

OVERVIEW OF RHIZOBIUM–LEGUME INTERACTIONS
ROOT ATTACHMENT
Among root-derived compounds, some phenolic-based com-
pounds act as chemotactic attractants and, on the other hand,
the secreted and surface proteins are involved in rhizobia attach-
ment to root hairs in the initiation step of the symbiosis (Peters
and Verma, 1990; Deakin and Broughton, 2009). Although being
in the right place at the right time is critical to the instigation
of nodulation, the principal aspects of root attachment, includ-
ing close contiguity to root hairs, clonal events, and root hair
curling, have crucial importance. These steps ensure a supply of
nutrients that enable the bacteria to grow on and around the root,
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determine whether they will be the ones that can successfully initi-
ate infection in many legumes (Downie, 2010). The fundamentals
of communication between the prospective symbiotic partners
were established a few years ago (Downie, 1998; Perret et al., 2000;
Spaink, 2000). Briefly, the bacteria recognize legumes secretions
that passively diffuse across the bacterial membrane (Recourt et al.,
1989) via a transcription factor (TF), which typically encoded by
nodD. Perret et al. (2000) demonstrated that these Nod factors
are primary determinants that decide which legumes will be able
to nodulate. Therefore, it has been accepted that the different
biovars and species of rhizobia generate a diverse range of Nod
factors.

INFECTION INITIATION
Nodule organogenesis begins by an exchange of signals between
plant and bacteria, resulting in the curling and colonization of root
hairs by rhizobia. Plant-derived membranes then form a tubular
structure, called the “infection thread,” which guides bacteria to
the site of meristematic activity in the root cortex and acts as an
effective barrier to confine the bacteria. To analyze the first step of
this series of events at the protein level in a time-course study with
soybean over the first 48 h, Salavati et al. (2012a) combined 2-D gel
electrophoresis coupled with quantitative RT-PCR to analyze iso-
lated proteins at different time points from infected soybean root
hairs at both transcriptional and translational levels. Analysis of 56
proteins revealed the differential expression of plant proteins asso-
ciated with important events, such as metabolism, cell signaling,
and disease/defense response. The formation of infected legume
nodules capable of fixing nitrogen requires the bacteria to activate
two plant programs: one leading to nodule morphogenesis and
the other leading to nodule infection. Proteomic techniques were
demonstrated that Nod factors can induce nodule morphogenesis,
and this appears to occur as a consequence of modifying existing
plant hormonal signaling systems, such as the cytokinin pathway
(Relic et al., 1994; Hirsch et al., 1997). From a plant perspective,
nodule morphogenesis is a critical stage because allowing bacterial
entry gives rise to the potential for non-symbiotic bacteria to try to
enter and take advantage of the plant (Oldroyd and Downie, 2008).
Whereas, bacterial mutants lacking specific nod genes can induce
some plant responses such as formation of arrested infections,
root hair deformation, plant gene induction, calcium spiking, etc.
It seems that producing the correct type of Nod factor by bacteria
is critical for successful establishment of ITs (Ardourel et al., 1994;
Walker and Downie, 2000; Oldroyd and Downie, 2004).

The growing IT must find this pre-infection thread structure
because it allows the IT to join cells, to change from being in the
intercellular space, and to promote changes in the direction of its
growth. In addition to Nod factor specificity, surface and secre-
tory proteins can also play important roles in infection (Spaink,
2000). The bacteria are budded off the end of the ITs before the
plant-derived cell wall surrounds the IT. The endocytotic budding
process results in the releasing of bacteria into the plant cell sur-
rounded by a plant-made membrane (Ardourel et al., 1994). Then,
bacteria differentiate and express nitrogen fixation-required genes
(Fischer, 1994; Mesa et al., 2008). Proteome studies of nodule envi-
ronment have explained that it is an extraordinary case of an inter-
action that includes specific nutrient uptake systems (Day et al.,

2001; Djordjevic, 2004), a specialized electron transport chain
(Ekman et al., 2008; Mastronunzio and Benson, 2010), and spe-
cific modifications by bacteria to their lipopolysaccharide surface
(Lee et al., 2008). Thus, the symbiotic environment forms a unique
type of extracellular biology interaction within the plant cells.

The root hairs provide a brilliant position for microbial
development. To this aim, it seems that rhizobia have various
mechanisms to affix to roots including surface polysaccharides and
secretory/surface proteins (Matthysse and Kijne, 1998; Rodriguez-
Navarro et al., 2007). Many factors such as pH, nitrogen concentra-
tions (Jamet et al., 2007; Cardenas et al., 2008; Chang et al., 2009),
and specific growth conditions (Khatoon et al., 2012) can affect on
this contribution of different components. Santos et al. (2000) and
Vargas Mdel et al. (2003) have revealed that several enzymes such
as catalases and superoxide dismutases help rhizobia to survive
at the oxidative stress. It has been proposed that plant-produced
ROS are involved in cross-linking of glycoproteins in the matrix
of the ITs (Brewin, 2004). Hence, the capability of bacteria to deal
with extracellular oxidative stress, throughout the symbiosis, is
obviously important.

ATTACHMENT AND SECRETED PROTEINS
Secreted proteins are essential for attachment. For example, the
role of rhicadhesin in attachment to root hairs has been described
by Smit et al. (1992) and Laus et al. (2006). Rhizobium-adhering
proteins (RAPs), which are encoded by the prsD and prsE genes
(Russo et al., 2006), are secreted across the inner and outer mem-
branes by means of a Type I secretion system. Different rhizobia
have the potential to secrete proteins into the periplasm via the
general export pathway and the twin-arginine translocation (TAT)
secretion system and also type I, III, IV, and VI secretion systems
that can manipulate the symbiosis (Deakin and Broughton, 2009;
Figure 1; Table 1).

Many proteins of a typical N-terminal transit peptide are
secreted via the general export pathway and many of these are
expressed throughout infection and other steps of symbiosis. Cel-
lulase (CelC2) is one of the particular symbiotic enzymes which is
predicted to be exported through the general export pathway with
a typical transit peptide (Downie, 2010). This cellulase can erode
the non-crystalline cellulose in the cell wall of root hairs and is
thought to allow penetration of rhizobia during the initial stage
of infection in root hair curls (Robledo et al., 2008). Proteomics-
based studies have demonstrated that proteins pertain to the TAT
pathway are secreted in their folded form, some containing cofac-
tors, and have a signal peptide usually containing a distinctive pair
of consecutive twin arginine residues in the motif RRXFF, where
X is any residue and F a hydrophobic residue (Antelmann et al.,
2001; Bendtsen et al., 2005).

TYPE I, III, IV, V, and VI SECRETION PATHWAYS
Proteins secreted via type I, III, IV, V, and VI secretion pathways,
which translocated across the inner and outer membranes with-
out a periplasmic intermediate stage (Hueck, 1998; Koronakis
et al., 2004), are derived from the bacterial flagellar secretion sys-
tem and have evolved into a mechanism that can deliver proteins
from the bacterial cytoplasm into the cytoplasm of eukaryotic cells
(Saier, 2004). Secreted proteins insert into the outer membrane,
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FIGURE 1 | Protein secretion systems secreting proteins to the periplasm

or with periplasmic substrate intermediates in bacteria.

The schematic image of secretion systems in Gram-negative bacteria,
which are involved in protein transport to the periplasm, are shown.

Type I secretion systems translocate proteins from the periplasm,
whereas Type II secretion systems translocate proteins from
the periplasm and are thus dependent on the GEP or TAT
pathways.

where it catalyses the translocation of the N-terminal region into
the extracellular medium (Henderson et al., 2004) and mediates
the translocation of proteins across the bacterial envelope (Bingle
et al., 2008).

A cation selective channel protein, which is present in some
rhizobia and can extend the ability to nodulation, is a calcium-
binding protein called NodO (Economou et al., 1990; Sutton et al.,
1994). NodO was found to insert into liposomes and form cation-
selective channels in lipid bilayers (Miwa et al., 2006), and could
therefore enhance the calcium spiking that is observed in root
hairs upon Nod factor binding. Three possible roles for NodO have
been suggested. The NodO protein may amplify the perceived Nod
factor signal, facilitate Nod factor uptake by the host, or bypass the
host’s Nod factor receptor altogether (Sutton et al., 1994; Walker
and Downie, 2000).

The type III secreted proteins as well as the effector pro-
teins delivered into the plant cell have been called nodulation

outer protein (Nop; Viprey et al., 1998; Marie et al., 2003). By
comparing plant defense responses against bacteria, Bent and
Mackey (2007) showed that the mutilation of symbiotic efficiency
might lead to effector recognition by legumes and subsequently,
increasing at defense response. And some other effectors have
been identified such as NopJ, NopM, NopL, NopP, NopT and
ImpK. Some of which are required for optimal nodulation in
legumes (Bladergroen et al., 2003; Marie et al., 2003). NopL and
NopP are phosphorylated by plant kinases (Bartsev et al., 2003,
2004; Ausmees et al., 2004; Skorpil et al., 2005). This process
could point to a function in modulating host signaling path-
ways. Specifically for NopL, a role in the down-regulation of
host plant defenses is proposed (Bartsev et al., 2004). NopT is a
functional cysteine protease of the YopT family with a predicted
myristoylation site (Dai et al., 2008). Some type III secretory pro-
teins such as NopT have protease activities (Kambara et al., 2009),
and some proteins such as NopJ and NopM have negative effects

Table 1 | Some important characteristics of protein translocation systems in Gram-negative bacteria.

Secretion signal Substrates Reference

GEP N-terminal signal peptide Unfolded proteins Paetzel et al. (2000)

TAT N-terminal signal peptide with conserved

twin-arginine motif

Fully folded proteins Berks et al. (2003)

Type I C-terminal signal peptide Unfolded proteins Wagner et al. (1983)

Type II structural Folded proteins or multimers Pugsley (1993)

Type III N-terminal signal Unfolded proteins Michiels et al. (1990)

Type IV chaperone dependent Folded or unfolded proteins or DNA Berger and Christie (1994)

Type V N-proximal secretion domain Partly unfolded proteins Henderson et al. (1998)
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on the nodulation (Marie et al., 2003). YopJ family-like proteins
acts as acetyl transferases and inactivate MAP kinases and con-
tain protein–protein interacting leucine-rich repeats (Deakin and
Broughton, 2009; Masson-Boivin et al., 2009). XopD and YopM
are targeted to host cell nuclei and were interfere with the reg-
ulation of host proteins during infection (Skrzypek et al., 1998;
Hotson et al., 2003). XopD, a cysteine protease, achieves this
through hydrolysis of small ubiquitin-like modifier-conjugated
proteins (Hotson et al., 2003), while YopM probably acts as a
scaffold for recruiting and stimulating other proteins (McDonald
et al., 2003).

Autotransporter proteins (type V) are secreted via the general
export pathway into the periplasm using an N-terminal transit
peptide and then a C-terminal domain inserts into the outer mem-
brane, where it catalyses the translocation of the N-terminal region
into the extracellular medium (Henderson et al., 2004). Recently,
type VI secretion system has been recognized, mediating the
translocation of proteins across the bacterial envelope (Mougous
et al., 2006; Pukatzki et al., 2006). Proteins translocated by this
system were identified and showed similarity to ribose-binding
proteins from other bacteria (Filloux et al., 2008; Pukatzki et al.,
2009). Some bacterial substrates and their roles were summarized
in Table 2.

NODULINS AND LEGHEMOGLOBIN
Nodulins are organ-specific plant proteins induced during SNF.
Nodulins play both metabolic and structural roles within infected
and uninfected nodule cells. Nodulins are involved in the structure,
development, maintenance, and general metabolism of nodule
(Oaks and Hirel, 1985) and have been characterized from soy-
bean (Lauridsen et al., 1993), pea (van de Wiel et al., 1990), and
alfalfa (Hirsch et al., 1989). Although characterized prior to other
nodulins, the leghemoglobins (Lbs) should be considered as major
nodulins. Soybean contains four major leghemoglobins, Lba, Lbcl,
Lbc2, and Lbc3, differing slightly in amino acid sequence (Lee and
Verma, 1984).

The nodulin-24, a protein which is part of the peribacteroid
membrane (Katinakis and Verma, 1985) and nodulin-23, along
with Lb, are induced in the infected cells. The nodulin-35, the
subunit of the tissue-specific uricase II (a tetrameric enzyme) and
one of the most abundant proteins in soybean nodules (Takane
et al., 1997), is found only in the specialized uninfected cells.
Formation of the effective root nodule requires expression of sym-
biotic genes in the host plant and the micro symbiont (Verma
et al., 1986) whose products are nodulins and bacteroidins, respec-
tively. Nodulin-24 is a nodule-specific and nodule-enhanced
pbm-bound protein (Cheon et al., 1994), which has a transport
function. The genes coding for Lb, nodulin-23 and -24, whose
transcription begin at about the same time, provide a rationale for
the possible existence of 5′ cis sequences capable of binding trans-
activator molecules. During nodule development, some products
elaborated from the microsymbiont infection that may produce
a trans-activator molecule. The presence of short sequences com-
mon to the flanking region of the genes concerned may provide the
structural basis for induction. In view of a potential cis-receptor
site upstream of nodulin genes, it is possible that these genes are
positively regulated by a common transactivator molecule.

In indeterminating nodule-forming legumes, the leading nitro-
gen transport compounds are amides including glutamine and
asparagine, whereas in determinating nodule-forming legumes,
the major nitrogen products are ureides. This process occurs
in plastids of both infected and uninfected nodule cell types
(Streeter, 1991; Vance, 2008). Enzymes concerned may be“nodule-
stimulated” proteins. A group of enzymes for the oxidation of
purines into allantoin and allantoic acid are specifically induced
during symbiosis. Xanthine dehydrogenase is a nodulin present
in infected nodule cells (Montalbini et al., 1997; Todd et al., 2006)
and can catalyze these purine oxidation steps in the infected nod-
ule cell. The product is postulated to be transported to uninfected
cells as uric acid. The oxidation of uric acid to allantoin is mediated
by the oxygen-dependent enzyme uricase II (nodulin-35).

TRANSCRIPTION FACRORS
It is already obvious that TFs play fundamental roles in important
processes in legumes and are involved in the control of mutualis-
tic symbiosis such as SNF between plant root and rhizobia (Samac
and Graham, 2007). More recently, TFs involved in the rhizobial
infection process have been identified. Among them nodulation
signaling pathway 1 (NSP1) and NSP2, GRAS-family proteins,
are putative TFs that transduce the bacterial Nod factor signal and
induce expression of plant nodulin genes and are required for nod-
ule development (Kaló et al., 2005; Smit et al., 2005). In addition,
other TFs crucial to the nodulation process were also identified by
direct screening for nodulation-defective mutants. For example,
NIN is the member of a novel family of putative TFs in higher
plants, which are called the NIN-like family (Libault et al., 2009).
Forward-genetics approaches have subsequently identified three
other TFs (Nishimura et al., 2002; Mitra et al., 2004; Kaló et al.,
2005; Smit et al., 2005) that are essential for nodule development,
one of which is a Kruppel-like TFs of the C2H2 (Zn) family that
was found to be crucial for differentiation of the nitrogen-fixing
zone of nodules (Frugier et al., 2000). RNA interference (RNAi)
method revealed a key role in nodule development for a member
of the CCAAT-binding family of TFs (Combier et al., 2006).

QUORUM-SENSING
The rhizobia are excellent quorum-sensing model systems for such
studies. The symbiotic relationships are the result of a complicated
signaling network between the host and symbiont. Rhizobia popu-
lations regulate gene expression by autoinducers, diffusible signal
molecules, which are interact specially with a receptor protein.
Autoinducers production occurs at specific stages of development
or in response to environmental changes. These diffusible sig-
nals commonly induce gene expression in response to bacterial
cell density in symbiosis and often referred as quorum-sensing
(Bassler, 2002). However, we are not quite familiar with the reg-
ulation of differentiation of bacterial and host–bacterium signal
exchange. It is believed that nodule invasion requires the gath-
ering of bacteria around the hair roots and the cell density of
Rhizobium species should reach a threshold level (Caetano-Anollés
and Gresshoff, 1991). Therefore, quorum-sensing probably plays
a curial function in regulation of symbiosis. In addition, some
rhizobial strains are able to synthesize rhizopines, opine-like com-
pounds reminiscent of those produced by Agrobacterium species,
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Table 2 | Examples of bacterial substrates and their roles.

Bacterial species Substrate Role Secretion pathways

Agrobacterium rhizogenes GALLS Integration of T-DNA into plant genome IV

Agrobacterium tumefaciens VirD2 Nuclear localization and integration of T-DNA IV

Bordetella pertussis AB5 toxin Interacts with α β γ heterotrimeric Gi/o proteins IV

Bordetella spp. SphB1 Proteolytic processing of secreted proteins V

CyaA Leukotoxin, adenylate cyclase I

E. coli AIDA-1 Adherence V

AG43 Biofilm formation V

Tsh Haemoglobinase activity V

EspP Cytotoxic activity V

Vat Vacuolating cytotoxin V

HlyA Haemolysin I

Erwinia spp. PrtB/C Metalloproteases I

DspA/E Suppresses cell wall defense responses III

HrpW Binds to pectate lyase III

Haemophilus spp. HMW1 Adhesin V

HxuA Haem-haemopexin binding protein V

LspA1 Adhesin IV

Helicobacter spp. CagA Leads to dephosphorylation of host cell proteins IV

Peptidoglycan Induces NF-κB activity in gastric epithelial cells IV

Legionella spp. RalF Exchange factor for ADP ribosylation factor IV

LidA Docking of vesicles to the membrane of phagosome IV

DotA Membrane pore in host IV

LepA Alter exocytic pathway in protozoa IV

LepB Alter exocytic pathway in protozoa IV

YlfA Facilitate binding and fusion of Legionella-containing vacuole IV

YlfB Facilitate binding and fusion of Legionella-containing vacuole IV

VipA affects carboxypeptidase trafficking IV

VipD interferes with multivesicular body formation IV

VipF inhibits lysosomal protein trafficking IV

Mesorhizobium spp. Msi059 Deconjugates proteins stabilized by SUMOylation IV

Msi061 Target specific proteins for degradation IV

Pasteurella spp. LktA/C Leukotoxin I

Proteus spp. HpmA Cytolysin V

Pseudomonas syringae AvrPto Inhibits hypersensitive response (HR) III

AvrRpt2 Cysteine protease III

AvrRpm1 Induces RIN4 phosphorylation III

HopPtoM Suppresses salicylic acid-dependent callose deposition III

AvrPphC Blocks AvrPphF-elicited HR III

Rhizobium spp. NopP/L Suppress plant defense reactions III

PlyB Glycanase processing extracellular polysaccharide I

NodO Facilitates nodulation I

. Rzc-1 Bacteriocin activity I

Salmonella spp. SipA/C Enhance actin polymerization and bundling III

SopE/E2 Activate G-binding proteins III

(Continued)
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Table 2 | Continued

Bacterial species Substrate Role Secretion pathways

SopB Phosphatidylinositol phosphatase III

Serratia marcescens ShlA Cytolysin V

SlaA S Layer protein I

LipA Lipase I

PrtA Metalloprotease I

HasA Haem-binding I

Shigella flexneri IcsA Intracellular motility V

SigA Cytopathic activity V

Xanthomonas spp. Hpa1/G Elicits HR III

AvrXv4 Cleaves SUMO from sumoylated proteins III

XopD Cleaves free and protein-bound SUMO III

Yersinia spp. YopH Dephosphorylates Cas III

YopE Activates signaling GTPases III

YopT Cysteine protease III

YopO Exhibits serine/threonine kinase activity III

YopJ Cysteine protease III

YopM Forms a complex with and activates kinases RSK1 and PRK2 III

Type I secretion is completely independent of the general export pathway (GEP) and transports proteins directly from the cytoplasm across both membranes to
the extracellular space. Type II secretion systems translocate proteins from the periplasm and are thus dependent on the GEP or TAT pathways. Type III systems
translocate proteins across both membranes using ATP.Type IV systems is capable of transporting both DNA and proteins.This system is used to introduce theT-DNA
portion of the Ti plasmid into the plant host. Type V secretion or autotransporters, is a simple system which the secreted protein transports itself across the outer
membrane after being transported to the periplasm by the GEP.

which are produced by the bacteroids and can be catabolized by
the free-living associated rhizobia as a nutrient source (Murphy
et al., 1987). These strains could putatively affect the dynamics of
soil rhizobial populations.

In R. leguminosarum and R. etli, quorum-sensing probably is
involved in restricting the number of nodules and in symbio-
some development (Rosemeyer et al., 1998; Daniels et al., 2002;
Wisniewski-Dye and Downie, 2002), and in S. meliloti, quorum-
sensing controls the production of EPS II, an exopolysaccharide
involved in the nodule invasion process (Marketon and González,
2002; Marketon et al., 2003). In different Rhizobium species, genes
related to biosynthesis of exopolysaccharide, nodulation, and
nitrogen fixation are located on one or more megaplasmids known
as symbiotic (Sym) plasmids (Beynon et al., 1980; Banfalvi et al.,
1985). Most of the nitrogen-fixing rhizobia regulate plasmid trans-
fer via quorum-sensing systems, as in A. tumefaciens. While these
systems do not seem to be essential for nodulation, they may play
a role in rhizosphere survival (He et al., 2003). Although many
aspects of the signal transduction are still an ambiguity, quorum-
sensing has been intricate as an essential factor in the symbiotic
process.

CONCLUDING REMARKS AND FUTURE PERSPECTIVE
A considerable branch of the genome is devoted to the synthe-
sis of the various proteins and the regulation of the interaction
with their complex environment. While remarkable progress in
proteomic study of symbiosis has been made in model plants, a

quite advancement in developing proteomic approaches in other
crops has been reached. The biggest obstruction to these proteomic
applications is the scarcity of well-annotated protein databases
and sequences of proteins. Although some techniques such as de
novo sequencing and proteogenomics recompense this paucity,
there is still an urgent need to expand and curate plant protein
databases. Many existing databases, including Soybean, Medicago
and rice proteome database should be expanded and integrated in
the future (Komatsu et al., 2004; Sun et al., 2009). In addition, most
proteomic studies lead to protein identification and functional
predictions yet the majority do not test their results using genetic
approaches. A combination of proteomic analysis with genetics
and other omics approaches would intensify the biological signif-
icance of many studies (Kint et al., 2010; Salavati et al., 2012a).
Furthermore, transcriptomics and analysis of strains carrying
multiple mutations will help in future research. A more systematic
integration of interdependent techniques would provide valuable
information and leads to better prediction and management of
plant responses to symbiotic bacteria.

On the one hand, up to 20% of net photosynthetic production
would be used for production and maintenance of root nodules
(Pate and Givnish, 1986). Therefore, legume can invest in nodules
if a decrease in net photosynthesis is compensated by the nitro-
gen fixation (Bethlenfalvay et al., 1978). On the other hand, there
is no guarantee that all inoculated rhizobia strains will ensure
a net benefit because rhizobial strains have been demonstrated
to vary considerably in the advantages that they provide to the
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legume (Thrall et al., 2007). If legumes could be able to discrim-
inate between slightly and highly effective bacterial strains at the
time of infection, there would be slight host carbohydrate loss to
non-effective strains. Because, the nitrogen fixation begins a few
days after inoculation, pre-infection recognition and exclusion of
non-effective strains is inefficient.

Moreover, practical difficulties, such as high cost of performing
field trails on Nod factor effects on nodulation, low stability of Nod
factors in the soil due to quickly hydrolyzation in the rhizosphere
by plant enzymes (Staehelin et al., 1994) and subsequently low bio-
logical activity of hydrolyzed derivatives (Heidstra et al., 1994) and
mechanism of auto-regulation of nodulation (Caetano-Anollés
and Gresshoff, 1991; Salavati et al., 2012a), lead to encountering

the applied science to a new challenges which include discovering
the bacterial and legume proteins, metabolites and their related
genes effective on the signal production, perception, and trans-
duction between partners. This proteomics strategy may open up
an alternative perspective for improving symbiosis. Identification
of genes and proteins and their related pathways may eventually
lead to the production of new recombinant organisms, which have
higher efficiency and ability to provide symbiosis and nitrogen
fixation.
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