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Lignin is a ubiquitous polymer present in cell walls of all vascular plants, where it
rigidifies and strengthens the cell wall structure through covalent cross-linkages to cell wall
polysaccharides. The presence of lignin makes the cell wall recalcitrant to conversion into
fermentable sugars for bioenergy uses.Therefore, reducing lignin content and modifying its
linkages have become major targets for bioenergy feedstock development through either
biotechnology or traditional plant breeding. In addition, lignin synthesis has long been
implicated as an important plant defense mechanism against pathogens, because lignin
synthesis is often induced at the site of pathogen attack. This article explores the impact
of lignin modifications on the susceptibility of a range of plant species to their associated
pathogens, and the implications for development of feedstocks for the second-generation
biofuels industry. Surprisingly, there are some instances where plants modified in lignin
synthesis may display increased resistance to associated pathogens, which is explored in
this article.
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INTRODUCTION
In the U.S. and around the world, there are increasing efforts to
develop and utilize alternatives to fossil fuels to meet our energy
needs, thereby reducing carbon dioxide emissions that potentially
impact global warming. Currently, corn grain and sugarcane juice
are being converted into ethanol for blending in gasoline. Research
efforts have been directed toward developing means to convert
plant biomass from a range of sources into liquid fuels for the
transportation sector. Cellulosic biofuels rely on chemically and
biochemically breaking down cell wall polysaccharides (cellulose
and hemicellulose) into their sugar monomers, and converting the
sugar into fuels. A third component of cell walls is the phenolic
polymer lignin, which structurally fortifies the cell walls making
them rigid and resistant to microbial degradation. Lignin content
has been shown to negatively impact cellulosic bioenergy conver-
sion via saccharification and fermentation to ethanol (Chen and
Dixon, 2007; Dien et al., 2009), which has made reducing lignin
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and altering lignin composition a major target to improve plants
for cellulosic bioenergy. Conversely, increasing the lignin content
of herbaceous feedstocks may benefit conversion of biomass to
syngas and bio-oil biofuel via pyrolysis. In either case, efforts
to manipulate lignin content and composition have primarily
focused on the 10 steps of the monolignol pathway (Figure 1),
in which lignin monomers are synthesized from the amino acid
phenylalanine, then oxidatively polymerized into hydroxyphenol-
(H-), guiacyl- (G-), or sinapyl- (S-) lignin. Lignin serves the crit-
ical function of reinforcing vascular elements for water transport
under negative pressure; in severely lignin deficient plants, vas-
cular collapse has been observed (Piquemal et al., 1998; Jones
et al., 2001; Ruel et al., 2009). Thus, there is a lower limit for
lignin manipulation. In addition to its roles in fortifying cell walls,
lignin deposition has long been implicated as an important defense
mechanism against pests and pathogens (Vance et al., 1980). A
critical question for bioenergy feedstock development is whether
manipulating lignin content and composition will be detrimen-
tal to plant defenses against pathogens. Herein, we examine this
question and the cause for concern in manipulating lignin, based
on current published literature.

ROLE OF LIGNIN IN PLANT DEFENSE
There is a strong case for the involvement of lignin in plant defense.
Lignin provides a physical barrier against initial ingress (Buend-
gen et al., 1990; Bonello et al., 2003), and in a wide range of plant
species lignin or lignin-like phenolic polymers are induced and
rapidly deposited in cell walls in response to both biotic and abiotic
stresses, which may limit further growth and/or confine invading
pathogens (Siegrist et al., 1994; Lange et al., 1995; Baayen et al.,
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FIGURE 1 | A model for monolignol pathway. In phenylpropanoid
metabolism, there are 10 enzymatic steps (green) leading to hydroxycinnamyl
alcohols which are polymerized into lignin, namely; phenylalanine ammonia
lyase (PAL), cinnamate 4-hydroxylase (C4H), 4-coumarate-CoA ligase (4CL),

hydroxycinnamoyl CoA:shikimate transferase (HCT), p-coumarate
3-hydroxylase (C’3H), caffeoyl CoA O-methyltransferase (CCoAOMT),
cinnamyl CoA reductase (CRR), ferulate 5-hydroxylase (F5H), caffeic acid
O-methyltransferase (COMT), and cinnamyl alcohol dehydrogenase (CAD).

1996; Smit and Dubery, 1997; Bonello et al., 2003; Hudgins et al.,
2004; Wuyts et al., 2006; Menden et al., 2007). “Defense” lignin
may prevent further ingress or diffusion of pathogen-produced
toxins (Carver et al., 1994; Duschnicky et al., 1998). However,
“defense” lignin deposition is often only monitored microscop-
ically as cell wall autofluorescence or via histochemical staining
techniques (Haegi et al., 2008; Eynck et al., 2009). “Defense” lignin
was often shown to have elevated levels of H-subunits as compared
to structural lignin in the cases analyzed (Ride, 1975; Ham-
merschmidt et al., 1985; Doster and Bostock, 1988; Robertsen
and Svalheim, 1990; Lange et al., 1995). The phenylpropanoid
pathway leads to the synthesis of numerous other phenolic com-
pounds besides monolignols, including phenolic phytoalexins,
stilbenes, coumarins, and flavonoids (Lo and Nicholson, 1998;
Yu et al., 2000, 2005; Dixon et al., 2002). A number of these com-
pounds have also been implicated in plant defense (Weiergang
et al., 1996; Dicko et al., 2005; Lozovaya et al., 2007). For exam-
ple, the defense signaling hormone salicylic acid (SA) might also
be derived from the phenylpropanoid pathway in some plants
(Ruuhola and Julkunen-Tiitto, 2003; Pan et al., 2006). Moreover,
abiotic or biotic stresses including pathogens have been shown to
induce the expression of genes encoding monolignol biosynthetic
enzymes in many plant species (Kliebenstein et al., 2002; Truman
et al., 2006; Olsen et al., 2008; Zhao et al., 2009). Likewise, the pro-
tein levels and enzymatic activities corresponding to these genes
were also shown to be elevated under these stresses in a number of
plant species (Mitchell et al., 1999). Together these observations
indicate that lignin deposition is part of a generalized resis-
tance response to biotic stresses (Nicholson and Hammerschimdt,
1992). Thus, it remains to be determined whether bioenergy

crops that are impaired or altered in their ability to synthesize
lignin will also be impaired in their ability to induce these defense
responses upon pathogen attack. Recent research has suggested
that impairing lignin biosynthesis does not lessen resistance
to some pathogens (Delgado et al., 2002; Funnell and Peder-
sen, 2006; Peltier et al., 2009; Quentin et al., 2009; Funnell-
Harris et al., 2010). Because very little has been published on
the effects of lignin modification on plant–pathogen interac-
tions in bioenergy feedstocks with the exception of maize (Zea
mays) and sorghum (Sorghum bicolor), we have also included
a review of the literature on effects of impairing steps in
the monolignol pathway to pathogen responses in other plant
species.

However, several pathogens have been isolated and identified
that pose potential threats to some of the perennial grass species
being considered as herbaceous bioenergy feedstocks including
switchgrass (Panicum virgatum), napiergrass (Pennisetum pur-
pureum), sugarcane/energycane (complex hybrid Saccharum spp.),
and miscanthus (Miscanthus × giganteus). Pathogens may pose
a greater threat to perennial grasses as compared to annual row
crops such as maize and sorghum, because production relies on
establishment and harvest across multiple years before replant-
ing, and the continual presence of the plants in the field provides
refuge for the pathogens. Another factor that could impact plant–
pathogen interactions is the level of genetic diversity within the
field setting. Switchgrass varieties are maintained as an outcross-
ing population (Martínez-Reyna and Vogel, 2002; Nageswara-Rao
et al., 2012), hence maintain level genetic diversity. In con-
trast, the clonally propagated miscanthus is genetically identical
(Lewandowski et al., 2000). Fungal leaf rusts caused by Puccinia

Frontiers in Plant Science | Plant Biotechnology April 2013 | Volume 4 | Article 70 | 2

http://www.frontiersin.org/Plant_Biotechnology/
http://www.frontiersin.org/Plant_Biotechnology/archive


“fpls-04-00070” — 2013/4/4 — 14:07 — page 3 — #3

Sattler and Funnell-Harris Lignin modification and pathogens

spp. have been identified in sugarcane (Dixon et al., 2010) and
switchgrass (Gustafson et al., 2003; Wadl et al., 2011). Fungal leaf
blights caused by Leptosphaerulina chartarum (Ahonsi et al., 2013)
and Leptosphaeria sp. (O’Neill and Farr, 1996) have been iden-
tified in Miscanthus × giganteus or related Miscanthus species.
Rhizome rot is a significant threat to miscanthus establishment,
which is caused by three pathogenic fungal species (Fusarium ave-
naceum, F. oxysporum, and Mucor hiemalis; Beccari et al., 2010;
Covarelli et al., 2012). A fungal smut has been identified on
napiergrass caused by Ustilago kamerunensis (Farrell et al., 2001).
Anthracnose, a foliar blight caused by Colletotrichum navitas
has also been identified in switchgrass (Crouch et al., 2009).
Overall, these studies indicated that similar to row crops, fun-
gal pathogens pose a serious threat to these bioenergy crops.
In addition, viruses also pose a threat to bioenergy feedstocks,
which have been documented in switchgrass and miscant-
hus (Chatani et al., 1991; Turina et al., 1998; Lamptey et al.,
2003).

PHENYLALANINE AMMONIA LYASE
Phenylalanine ammonia lyase (PAL) is the first committed step
in monolignol biosynthesis and the phenylpropanoid pathway.
Altering the expression of this central gene has been shown to
impact plant–pathogen interactions in model systems. In tobacco
(Nicotiana tabacum), antisense suppression of this gene led to
increased susceptibility to the fungal pathogen Cercospora nico-
tianae, the causal agent of frogeye disease (Maher et al., 1994;
Shadle et al., 2003). Tobacco plants over-expressing this gene
had reduced susceptibility to Cercospora nicotianae, but resis-
tance to tobacco mosaic virus (TMV) was unchanged (Shadle
et al., 2003). Over-expression of PAL in tobacco resulted in sig-
nificantly increased levels of the defense signaling compound
SA and the defense related compound chlorogenic acid upon
induction (Howles et al., 1996; Felton et al., 1999). Further-
more, over-expressing the bacterial salicylate hydroxylase gene
(NahG), which degrades SA, in concert with PAL over-expression,
increased susceptibility to TMV although resistance to Cercospora
nicotianae was unaffected (Shadle et al., 2003). These results
indicated that TMV resistance required SA but not chlorogenic
acid, while increased resistance to Cercospora nicotianae only
required elevated levels of chlorogenic acid and not SA (Sha-
dle et al., 2003). Conversely, PAL over-expression in tobacco
resulted in increased susceptibility to the insect Heliothis virescens,
and a PAL-suppressed line had increased resistance, which was
attributed to the antagonistic relationship between SA signal-
ing and jasmonic acid (JA) signaling (Felton et al., 1999). The
Arabidopsis genome contains four PAL genes. T-DNA insertion
mutants were isolated for all four genes, and these mutants
were crossed to create double, triple, and quadruple pal mutants
(Huang et al., 2010). The pal1/2/3/4 quadruple mutant showed
increased susceptibility to the bacterial pathogen Pseudomonas
syringae relative to WT, and pal1/2 also had increased suscep-
tibility to this pathogen relative to WT and intermediate to
pal1/2/3/4 (Huang et al., 2010). SA, lignin and anthocyanin related
pigment levels were significantly reduced in pal1/2/3/4 plants
(Huang et al., 2010). However, these changes in susceptibility
to pathogens cannot be directly attributed to changes in lignin

content or composition, because PAL is involved in the synthe-
sis of the full range of phenolic compounds, some of which have
been implicated in defense, like chlorogenic acid and flavonoid
compounds.

HYDROXYCINNAMOYL CoA: SHIKIMATE TRANSFERASE
In Arabidopsis (Arabidopsis thaliana) and alfalfa (Medicago sativa),
antisense/RNAi suppression of hydroxycinnamoyl CoA: shikimate
transferase (HCT) one of the initial steps in monolignol biosyn-
thesis, illustrates the potential of genetic/transgenic alterations to
this pathway to constitutively activate defenses (Gallego-Giraldo
et al., 2011a,b). In both plant species, antisense/RNAi suppres-
sion of HCT resulted in significant reductions in lignin content
and stunted plants relative to WT (Shadle et al., 2007; Li et al.,
2010). In alfalfa, these plants showed increased resistance to
the fungal pathogen Colletotrichum trifolli (Gallego-Giraldo et al.,
2011b). In the absence of a pathogen, SA levels were highly ele-
vated relative to WT in both species and several defense related
genes were also highly induced relative to WT in alfalfa (Gallego-
Giraldo et al., 2011a,b). In Arabidopsis, growth was partially
restored in NahG HCT-RNAi and SA induction deficient2-2(sid2-
2) HCT-RNAi; SID2 encodes an isochorismate synthase required
for isochorismate-dependent SA synthesis. These results indicate
that the stunted growth phenotype is due to elevated SA, occur-
ring through an isochorismate-dependent pathway, rather than
resulting from excess phenylalanine intermediates leading to the
synthesis of SA in HCT-RNAi plants. Elevated levels of cold-water
extractable pectin were correlated to elevated SA levels in trans-
genic alfalfa plants, which were RNAi-suppressed for six different
genes (steps) in the monolignol pathway (Gallego-Giraldo et al.,
2011a). Highest levels of SA and cold-water extractable pectin
were observed in HCT-suppressed lines relative to WT or the
other five monolignol biosysthetic gene-suppressed lines (Gallego-
Giraldo et al., 2011a). Pectic oligosaccharides have been implicated
as defense signals in other systems (Darvill and Albersheim, 1984;
Roco et al., 1993), and are the potential trigger for the defense
responses observed in HCT lines. Thus, the effects observed in
the HCT-suppressed lines could potentially result from changes in
cell wall structure, the first line of defense for the plant, rather
than directly resulting from an alteration in phenylpropanoid
metabolism.

CAFFEIC O-METHYLTRANSFERASE
In Arabidopsis and tobacco, antisense/RNAi suppression of caffeic
O-methyltransferase (COMT), the penultimate step in monolig-
nol biosynthesis, was reported to increase resistance to pathogens
or to have no effect on interaction with pathogens. In Arabidop-
sis, comt1 mutants show enhanced resistance to the oomycete
pathogen Hyaloperonospora arabidopsidis, which is the causal
agent of downy mildew (Quentin et al., 2009). There were sig-
nificantly fewer asexual spores on comt1 plants relative to WT,
because sexual sporulation was increased in comt1 plants, resulting
in attenuated mycelium growth (Quentin et al., 2009). Exposing
the pathogen to the phenolic compound 2-O-5-hydroxyferuloyl-
L-malate, which is present in comt1 and absent in WT plants,
promoted sexual reproduction (Quentin et al., 2009). However,
comt1 plants showed increased susceptibility relative to WT to the
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bacterial pathogens Xanthomonas campestris pv. campestris and
Pseudomonas syringae and a less virulent strain (T4) of the fun-
gal pathogen Botrytis cinerea (Quentin et al., 2009). In tobacco,
COMT antisense lines were resistant to Agrobacterium tumefa-
ciens infection, and had reduced tumor area and mass relative to
WT (Maury et al., 2010). Bacterial virulence (vir) gene induction
was reduced in the COMT-suppressed line likely due to the highly
reduced level of the phenolic elicitor of Agrobacterium acetosy-
ringone (Maury et al., 2010). Acetosyringone is probably derived
from Coenzyme A dependent β-oxidation of hydroxycinnamoyl-
CoA intermediates of monolignol biosynthesis (Blount et al., 2002;
Negrel and Javelle, 2010). In Arabidopsis and tobacco, the alter-
ation to phenylpropanoid metabolism by reducing COMT activity
appears to directly result in increased resistance to two of the
pathogens tested, downy mildew and Agrobacterium, respectively.
However, the same Arabidopsis plants showed increased suscep-
tibility to two bacterial pathogens and a less virulent strain of
Botrytis cinerea.

CINNAMYL ALCOHOL DEHYDROGENASE
In flax (Linum usitatissimum L.), RNAi suppression of the cin-
namyl alcohol dehydrogenase (CAD) gene, the last step in mono-
lignol biosynthesis, increased susceptibility to the pathogenic
fungus F. oxysporum. A seedling assay showed the percent of
infected seedlings was twofold higher in two CAD RNAi lines
relative to WT (Wróbel-Kwiatkowska et al., 2007). In Arabidop-
sis, the cad-c and cad-d double mutants, which were shown to
be required for monolignol biosynthesis (Kim et al., 2004; Sibout
et al., 2005), showed increased susceptibility to both a virulent and
an avirulent strain of the bacterial pathogen Pseudomonas syringae
pv. tomato (Pst;(DC3000, virulent; DC3000/avrPphB, avirulent))
relative to WT based on bacterial growth following inoculation
(Tronchet et al., 2010). Together, these results suggest that CAD-
deficiency may increase the susceptibility of plants to a range of
pathogens. This result might have implications for bioenergy feed-
stocks, because CAD suppression is often targeted to reduce lignin
content.

OTHER STEPS IN MONOLIGNOL SYNTHESIS
In Arabidopsis, the ferulic acid 5-hydroxylase 1 (fah1) mutant,
which encodes the ferulic acid 5-hydroxylase (F5H), last hydrox-
ylase in monolignol synthesis, showed increased susceptibility
to the fungal pathogen Sclerotinia sclerotiorum relative to WT
in leaf assays (Huang et al., 2009). In diploid wheat (Triticum
monococcum L.), five genes in monolignol biosynthesis were tran-
siently silenced using particle bombardment of an RNAi vector
containing PAL, caffeoyl-CoA O-methyltransferase (CCoAMT),
F5H, COMT, or CAD genes (Bhuiyan et al., 2009). The bom-
barded leaves were inoculated with the powdery mildew fungal
pathogens Blumeria graminis f. sp. tritici (host-specific) and
Blumeria graminis f. sp. hordei (non-host). The silencing of all
five genes individually and in pairs increased the susceptibility to
both pathogens relative to the control bombarded with the empty
RNAi vector, as determined by penetration efficiency of the fungus
(Bhuiyan et al., 2009). However, it is unclear whether this transient
approach to gene silencing is relevant to the stable approaches

used to impair genes within this pathway for bioenergy feedstock
improvement.

BIOENERGY FEEDSTOCKS
There has been very little published on plant pathogen interactions
in bioenergy feedstocks with modified lignin content and compo-
sition. In hybrid poplar (Populus tremula × Populus alba), it has
been reported that no increased disease incidence were observed
in antisense COMT or CAD lines relative to WT (Halpin et al.,
2007). The one exception where the effects of lignin modification
on plant pathogen interactions has been examined are the brown
midrib (bmr/bm) mutants of sorghum and maize (Zea mays),
which have long been known to have reduced lignin content (Jor-
genson, 1931; Porter et al., 1978). There are at least five Bm loci
identified in maize (Chen et al., 2012) and at least seven Bmr loci in
sorghum (Pedersen et al. unpublished). Three Bmr loci have been
cloned and characterized in sorghum. Bmr2, Bmr6, and Bmr12
all encode enzymes in monolignol biosynthesis: a 4-coumarate
coenzyme A ligase (4CL), a CAD, and a COMT, respectively
(Bout and Vermerris, 2003; Saballos et al., 2009, 2012; Sattler
et al., 2009). In maize, the Bm3 locus encodes a COMT protein
(Vignols et al., 1995) that is orthologous to Bmr12, and the Bm1
locus encodes a CAD protein that is orthologous to Bmr6 (Halpin
et al., 1998; Chen et al., 2012). Lignin deposition and the induc-
tion of phenylpropanoid-related genes during pathogen attack
(described above) led to the assumption that brown midrib plants
are inherently more disease susceptible when challenged. However,
studies examining both grain and stalk fungal pathogens, which
are the most prevalent and economically significant sorghum
pathogens (Chandrashekar and Satyanarayana, 2006), have
in general indicated the contrary.

Fungal infection of bm/bmr grain may not appear to be relevant
to bioenergy, however, fungal infection of grain can impair seed
germination (Raju et al., 1999; Prom et al., 2003), which is critical
for all cropping systems. Under field conditions without inocula-
tion, maize bm3 grain showed significantly increased colonization
by members of the Gibberella fujikuroi fungal species complex as
compared to WT grain (Nicholson et al., 1976). In contrast, stud-
ies using uninoculated field-grown sorghum showed that bmr6
and bmr12 grain had the same level of colonization or signifi-
cantly reduced fungal colonization relative to WT, which included
the sorghum pathogen F. hapsinum, a G. fujikuroi species com-
plex member (Funnell and Pedersen, 2006; Funnell-Harris et al.,
2010). Other Fusarium spp. colonized both bmr6 and bmr12 grain
at similar levels or significantly reduced colonization relative to
WT (Funnell and Pedersen, 2006; Funnell-Harris et al., 2010). In
particular, two species that commonly infected WT grain were
significantly reduced or absent in bmr12 grain, F. proliferatum
and a member of the F. incarnatum-F. equiseti species complex
(O’Donnell et al., 2007), respectively (Funnell-Harris et al., 2010).
Taken together, these results indicated that impairing CAD or
COMT activity in sorghum did not increase susceptibility to these
Fusarium spp., and bmr12 grain restricted or excluded coloniza-
tion of two species. These results contradict the single early report
from maize where bm3 grain, which is also COMT-deficient,
showed increased colonization by the G. fujikuroi species complex
(Nicholson et al., 1976).
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Studies examining the susceptibility of maize and sorghum
bm/bmr mutants to stalk rot pathogens, which impact biomass
quality and can contribute to lodging, also showed no change
in resistance or increased resistance relative to WT, similar to
the grain studies. F. thapsinum was inoculated in the peduncles
of bmr6, bmr12 and WT from six near-isogenic backgrounds
and disease severity was determined by the length of the pur-
ple disease lesion resulting from the fungal infection. Lesion
lengths were significantly shorter than corresponding WT back-
ground for many bmr6 and bmr12 lines, and lesion lengths
were significantly shorter than WT for one or both bmr lines
across four different genetic backgrounds (Funnell and Ped-
ersen, 2006; Funnell-Harris et al., 2010). There were no cases
where the lesion length was significantly greater in a bmr line
relative to the corresponding WT line (Funnell and Peder-
sen, 2006; Funnell-Harris et al., 2010). Peduncle inoculations of
bmr6, bmr12, and wild-type lines with four Fusarium species
and Alternaria alternata consistently resulted in decreased lesion
lengths on one or both bmr mutants relative to WT for the fol-
lowing pathogens; F. thapsinum, F. verticillioides and Alternaria
alternata (Funnell-Harris et al., 2010). Overall, these results con-
sistently indicated that bmr6 and bmr12 were not more susceptible
to these pathogens than WT, and in some cases the two bmr
mutants appeared to be more resistant to specific pathogens
relative to WT. However, fungal viability was assessed within
the lesions and outside the lesions, and fungal growth was
detected within and outside borders of lesions from bmr12 inocu-
lated peduncles (Funnell-Harris et al., 2010). This result suggests
that fungal growth is greater in healthy-appearing tissues out-
side the necrotic, discolored tissue defined as the “lesion” in
bmr12 plants, although these lesions were similar in size or
significantly shorter than WT in bmr12 peduncles. Neverthe-
less, CAD or COMT deficiency in sorghum does not appear to
significantly increase susceptibility of plants to these stalk rot
pathogens.

A study using inoculations of another fungal stock pathogen
Macrophomina phaseolina, which causes charcoal rot, also demon-
strated brown midrib mutants were not more susceptible to
this pathogen. bmr mutants from sorghum (bmr2, bmr6, bmr7,
bmr12, bmr26, and bmr28; three loci, bmr28 is allelic to bmr6,
and bmr7 and bmr26 are allelic to bmr12; Saballos et al., 2008)
and maize (bm1, bm2, bm3, and bm4; four loci) were inoc-
ulated with Macrophomina phaseolina and lesion lengths were
compared to corresponding WT lines (Tesso and Ejeta, 2011).
Lesion lengths were not significantly different between bm/bmr
mutants and the corresponding WT backgrounds for both maize
and sorghum (Tesso and Ejeta, 2011). Stalk strength as deter-
mined using rind penetration resistance was significantly reduced
in maize bm mutants relative to WT (Tesso and Ejeta, 2011).
Interestingly, reduced mechanical stalk strength did not appear
to increase susceptibility (Tesso and Ejeta, 2011). However, all
studies relied on artificial inoculation to ensure a consistent dis-
ease response. If decreased rind penetration resistance (stalk
strength) increases the ability of the fungi to initially enter
and penetrate the stalk, then results from these studies may
be misleading. All the bm/bmr mutants examined resulted in
similar susceptibility to the charcoal rot pathogen, even though

at least three different steps in monolignol biosynthesis were
impaired by the corresponding bmr mutation; 4CL (bmr2),
COMT (bm3/bmr12), and CAD (bm1/bmr6). The general trend
from these studies indicate that maize and sorghum brown midrib
mutants are not more susceptible to stalk rot pathogens, and
in some cases show increased generalized resistance to specific
pathogens.

There are several explanations for the instances of increased
generalized resistance observed in the brown midrib mutants.
Although the ability of these bmr plants to synthesize struc-
tural lignins is decreased and/or altered, there is no evidence bmr
plants are impaired in their ability to synthesis “defense” lignin
in response to pathogen attack, and the response might even be
enhanced. Another explanation is that blocking a step in the lignin
biosynthetic pathway would cause accumulation of lignin precur-
sors and other phenolic compounds, because additional substrates
would be available for their synthesis. Indeed it has been shown
that some of these precursors inhibit the growth of pathogenic
fungi or inhibit production of virulence factors (Dowd et al., 1997;
Hua et al., 1999; McKeehen et al., 1999; Beekrum et al., 2003).
For example, accumulation of ferulic acid, p-coumaric acid, and
sinapic acid has been correlated with resistance to Fusarium spp.
(McKeehen et al., 1999; Siranidou et al., 2002). We have observed
increased soluble phenolic compounds in bmr6 and bmr12 plants
relative to WT (Palmer et al., 2008). Alternatively, perturbing the
synthesis of lignin, a component of the cell wall which is the
first line of defense against pathogens, could trigger generalized
cell wall based defense responses similar to HCT-RNAi lines in
Arabidopsis and alfalfa (Gallego-Giraldo et al., 2011a). A review
focused on the broader role of the cell wall in plant defense was
previously published (Underwood, 2012), which documents the
significance of the plant cell wall in responses to a wide range of
pathogens.

PROSPECTIVE
These studies from a variety of plants indicate that reducing lignin
content and altering its composition will not inevitably increase
the susceptibility of bioenergy feedstocks to pathogens. There were
not any clear trends that indicate that impairing a specific step
in monolignol biosynthesis would affect plant susceptibility. In
fact, studies from sorghum and maize indicate that impairing
CAD or COMT activity in these lignin-modified plants showed
more resistance to specific fungal pathogens, albeit these plants
are not as resistant to the pathogen as resistant plant germplasm
used in breeding efforts. In bioenergy feedstock species, mod-
ifications to monolignol biosynthesis will need to be evaluated
on a case by case basis to determine the impact of pathogen
susceptibility.
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and Szopa, J. (2007). Lignin defi-
ciency in transgenic flax resulted
in plants with improved mechan-
ical properties. J. Biotechnol. 128,
919–934.

Wuyts, N., Lognay, G., Swennen, R.,
and De Waele, D. (2006). Nema-
tode infection and reproduction in
transgenic and mutant Arabidopsis
and tobacco with an altered phenyl-
propanoid metabolism. J. Exp. Bot.
57, 2825–2835.

Yu, C. K. Y., Springob, K., Schmidt, J.
R., Nicholson, R. L., Chu, I. K., Yip,
W. K., et al. (2005). A stilbene syn-
thase gene (SbSTS1) is involved in
host and nonhost defense responses
in Sorghum. Plant Physiol. 138,
393–401.

Yu, O., Jung, W., Shi, J., Croes, R. A.,
Fader, G. M., Mcgonigle, B., et al.
(2000). Production of the isoflavones
genistein and daidzein in non-legume
dicot and monocot tissues. Plant
Physiol. 124, 781–793.

Zhao, J., Buchwaldt, L., Rimmer, S. R.,
Sharpe, A., Mcgregor, L., Bekkoui,
D., et al. (2009). Patterns of dif-
ferential gene expression in Brassica
napus cultivars infected with Sclero-
tinia sclerotiorum. Mol. Plant Pathol.
10, 635–649.

Conflict of Interest Statement: The
authors declare that the research was
conducted in the absence of any com-
mercial or financial relationships that
could be construed as a potential con-
flict of interest.

Received: 10 January 2013; accepted: 14
March 2013; published online: 05 April
2013.
Citation: Sattler SE and Funnell-Harris
DL (2013) Modifying lignin to improve
bioenergy feedstocks: strengthening the
barrier against pathogens? Front. Plant
Sci. 4:70. doi: 10.3389/fpls.2013.00070
This article was submitted to Frontiers
in Plant Biotechnology, a specialty of
Frontiers in Plant Science.
Copyright © 2013 Sattler and Funnell-
Harris. This is an open-access article dis-
tributed under the terms of the Creative
Commons Attribution License, which
permits use, distribution and reproduc-
tion in other forums, provided the origi-
nal authors and source are credited and
subject to any copyright notices concern-
ing any third-party graphics etc.

Frontiers in Plant Science | Plant Biotechnology April 2013 | Volume 4 | Article 70 | 8

http://dx.doi.org/10.3389/fpls.2013.00070
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://www.frontiersin.org/Plant_Biotechnology/
http://www.frontiersin.org/Plant_Biotechnology/archive

	Modifying lignin to improve bioenergy feedstocks: strengthening the barrier against pathogens?
	Introduction
	Role of lignin in plant defense
	Phenylalanine ammonia lyase
	Hydroxycinnamoyl CoA: shikimate transferase
	Caffeic O-methyltransferase
	Cinnamyl alcohol dehydrogenase
	Other steps in monolignol synthesis
	Bioenergy feedstocks
	Prospective
	Acknowledgments
	References


