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Understanding how hormones and genes interact to coordinate plant growth is a major
challenge in developmental biology. The activities of auxin, ethylene, and cytokinin depend
on cellular context and exhibit either synergistic or antagonistic interactions. Here we use
experimentation and network construction to elucidate the role of the interaction of the
POLARIS peptide (PLS) and the auxin efflux carrier PIN proteins in the crosstalk of three
hormones (auxin, ethylene, and cytokinin) in Arabidopsis root development. In ethylene
hypersignaling mutants such as polaris (pls), we show experimentally that expression of
both PIN1 and PIN2 significantly increases. This relationship is analyzed in the context of
the crosstalk between auxin, ethylene, and cytokinin: in pls, endogenous auxin, ethylene
and cytokinin concentration decreases, approximately remains unchanged and increases,
respectively. Experimental data are integrated into a hormonal crosstalk network through
combination with information in literature. Network construction reveals that the regulation
of both PIN1 and PIN2 is predominantly via ethylene signaling. In addition, it is deduced
that the relationship between cytokinin and PIN1 and PIN2 levels implies a regulatory role
of cytokinin in addition to its regulation to auxin, ethylene, and PLS levels. We discuss how
the network of hormones and genes coordinates plant growth by simultaneously regulating

the activities of auxin, ethylene, and cytokinin signaling pathways.
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INTRODUCTION

Hormone signaling systems coordinate plant growth and devel-
opment through a range of complex interactions. The activities
of auxin, ethylene, and cytokinin depend on cellular context
and exhibit either synergistic or antagonistic interactions. Addi-
tionally, auxin is directionally transported through plant tissues,
providing positional and vectorial information during develop-
ment (Vanneste and Friml, 2009). Hormones and the associated
regulatory and target genes form a network in which relevant genes
regulate hormone activities and hormones regulate gene expres-
sion (Chandler, 2009; Depuydt and Hardtke, 2011; Vanstraelen
and Benkov, 2012). In addition, hormones also interact with
other signals such as glucose to control root growth (Kushwah
etal.,2011). An important question for understanding these com-
plex interactions is: what are the mechanisms that regulate the
fluxes of plant hormones and levels of the proteins encoded by the
regulatory and target genes?

Patterning in Arabidopsis root development is coordinated via
a localized auxin concentration maximum in the root tip (Saba-
tini etal., 1999), requiring the regulated expression of specific
genes. This auxin gradient has been hypothesized to be sink-
driven (Friml etal., 2002) and computational modeling suggests
that auxin efflux carrier activity may be sufficient to generate
the gradient in the absence of auxin biosynthesis in the root
(Grieneisen etal., 2007; Wabnik etal., 2010). However, other
experimental studies show that local auxin biosynthesis modulates

gradient-directed planar polarity in Arabidopsis, and alocal source
of auxin biosynthesis contributes to auxin gradient homeosta-
sis (Ikeda etal., 2009). Thus genetic studies show that auxin
biosynthesis (Ikeda etal., 2009; Normanly, 2010; Zhao, 2010), the
AUXI1/LAX influx carriers (Swarup etal., 2005, 2008; Jones etal.,
2008; Krupinski and Jonsson, 2010), and the PIN auxin efflux
carriers (Petrdsek etal., 2006; Grieneisen etal., 2007; Krupinski
and Jonsson, 2010; Mironova etal., 2010) all play important roles
in the formation of auxin gradients. Since auxin concentration
is regulated by these and diverse interacting hormones, it can-
not change independently of these various components in space
and time.

Therefore, a quantitative understanding of the effects of any
perturbation experiment on auxin gradients and root develop-
ment (e.g., genetic perturbations or exogenously applied hor-
mones) must be analyzed in the context of hormonal interactions.
For example, ethylene promotes auxin flux in the root, in a pro-
cess dependent on the POLARIS (PLS) peptide (Ruzicka etal,
2007; Swarup etal., 2007; Liu etal., 2010). Furthermore, PIN lev-
els are positively regulated by ethylene and auxin in Arabidopsis
roots (Ruzicka etal., 2007). Interestingly, cytokinin can nega-
tively regulate PIN levels (Ruzicka etal., 2009), while repressing
auxin biosynthesis and promoting ethylene responses (Nordstrom
etal., 2004; Chandler, 2009; Liu etal., 2010). Cytokinin also
has the capacity to modulate auxin transport, by transcriptional
regulation of the PIN genes (Ruzicka etal., 2009).
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We previously developed a hormonal interaction network
for a single Arabidopsis cell by iteratively combining modeling
with experimental analysis (Liu etal., 2010). We described how
such a network regulates auxin concentration in the Arabidop-
sis root, by controling the relative contribution of auxin influx,
biosynthesis and efflux; and by integrating auxin, ethylene, and
cytokinin signaling. Here we integrate PIN-mediated auxin flux
with interacting hormone signaling modules. Specifically, we
build on the hormonal crosstalk model (Liu et al., 2010) and con-
struct a network to describe interaction of PLS and PIN proteins
and hormonal crosstalk in Arabidopsis root development, using
experimental data in the literature and our measurements.

RESULTS

RELATIONSHIP BETWEEN AUXIN, ETHYLENE, CYTOKININ, AND PLS
Our previous experimental measurements have shown the fol-
lowing response of auxin, ethylene, cytokinin to PLS expres-
sion. In the polaris (pls) mutant, auxin concentration decreases,
cytokinin concentration increases and ethylene concentration
remains approximately unchanged (Casson etal., 2002; Chilley
etal., 2006; Liu etal., 2010). In the PLS overexpressing transgenic
PLOSox, auxin concentration increases, and ethylene concentra-
tion remains approximately unchanged. In the pls etr] double
mutant, auxin concentration is approximately recovered to the
same level as that in wild-type seedlings.

In addition, the exogenous application of indole acetic acid
(IAA) to wild-type seedlings increases both endogenous auxin
concentration and PLS expression, while exogenous applica-
tion of cytokinin to wild-type seedlings decreases both endoge-
nous auxin concentration and PLS expression. Moreover, when
1-aminocyclopropane-1-carboxylic acid (ACC) is exogenously
applied to wild-type seedlings, auxin concentration increases, but
PLS expression decreases. However, in pls, although endogenous
auxin concentration is lower than that in wild-type, the exogenous
application of ACC further decreases auxin concentration (Chilley
etal., 2006; Liu etal., 2010).

Therefore, PLS has a role in the crosstalk between auxin,
ethylene, and cytokinin. By iteratively combining modeling with
experimental analysis (Liu etal., 2010), we developed a hormonal
crosstalk network. We described how such a network regulates
auxin concentration in the Arabidopsis root, by controling the rel-
ative contribution of auxin influx, biosynthesis and efflux; and by
integrating auxin, ethylene, and cytokinin signaling.

EXPERIMENTAL MEASUREMENTS OF THE RELATIONSHIP BETWEEN
PINs AND PLS
Here we experimentally determined PIN1 and PIN2 protein levels
in the seedling root of wild-type, pls mutant, PLSox, etrImutant,
and pls etr] double mutant (Figure 1). Immunolocalization stud-
ies revealed that both PIN1 and PIN2protein levels increase in the
pls mutant, and decrease in PLSox. In the ethylene-insensitive etr1
mutant, PIN1 and PIN2 levels are lower than in wild-type. In addi-
tion, the double mutant pls etr] exhibits reduced PIN1 and PIN2
levels compared to pls and slightly lower PIN1 and PIN2 levels
compared to wild-type.

These experimental data show that PLS and PIN1/PIN2 form an
interaction network, which regulates hormonal crosstalk between

auxin, ethylene, and cytokinin. Previously, we were able to model
interactions between auxin, ethylene, and cytokinin (Liu etal,
2010). Here we describe an expanded network that integrates the
interactions between these hormones and PIN auxin transporters,
based on the newly identified relationship between PLS and PINs
(Figures 1A,B) and previous experimental data on ethylene effects
on auxin transport (Ruzicka etal., 2007; Swarup etal., 2007) and
PLS effects on ethylene responses (Chilley etal., 2006). All the
analysis in this work is applicable to both PIN1 and PIN2, and we
use the term PIN generically. We do not consider other forms of
PINSs, as our experiments and modeling focus on the auxin fluxes
through the plasma membrane in this work.

NETWORK FOR INTERACTION OF PIN AND PLS AND HORMONAL
CROSSTALK

Experimentally measured data (Figure 1A) are applicable for tis-
sues rather than for a single cell. PIN1 and PIN2 levels in Figure 1B
are the overall levels of the whole tissues. However, the interaction
of PIN and PLS is at the cellular level. In order to use experimental
data to analyze the interaction of PIN and PLS at a cellular level,
the data for tissues have to be linked to the interactions in each cell
(Figure 2). To do this, the following assumptions are made. First,
all measured data are at steady states. Second, all fluxes or con-
centrations are relative to the respective counterparts in wild-type.
If the auxin flux from shoot to root is increased or reduced, the
influx in a single cell is considered to be correspondingly increased
or reduced. This is because, at a steady state, the sum of total auxin
influx from all neighboring cells and auxin biosynthesis rate in the
cell must be equal to the total auxin efflux from the cell (Figure 2).
Therefore, for all connecting cells in a tissue, the auxin flux from
shoot to root affect the influx of all cells. A third assumption is
that, when the level of PIN is compared, we assume the location
of PIN does not change. For example, in the pls mutant, both
PIN1 and PIN2protein levels increase (Figure 1). We consider this
occurs at the original location of PIN1 and PIN2.

At a cellular level, PIN and PLS interact and a hormonal
crosstalk network forms (Figure 2). Auxin fluxes and biosynthesis
rates are regulated by all components in the network. At a tissue
level, multiple cells interact and auxin gradients emerge (Figure 2).
The current analysis concentrates on the study of the regulatory
network for hormonal crosstalk: namely how PIN and PLS inter-
acts at a cellular level and how hormonal crosstalk occurs. The
spatial distribution of auxin in the root is due to spatial setting
of PIN in multiple interacting cells, as modeled by Grieneisen
etal. (2007).

In order to analyze the interaction of PIN and PLS and crosstalk
with other hormonal signaling systems, we integrate the newly
identified relationship between PLS and PIN (Figure 1) with
the experimental data in the literature. When these data are
incorporated into the network (Liu etal., 2010), two regulatory
relationships emerge: first, that ethylene signaling promotes PIN
levels; and second, that a decrease in PIN levels occurs following
exogenous application of cytokinin (Ruzicka et al., 2009). Network
construction for the interactions between hormonal pathways and
PIN protein levels is described as follows.

First, an increase in PIN level (Figure 1) and the observed
simultaneous decrease in auxin concentration in the pls mutant
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FIGURE 1| (A) PIN1 and PIN2 immunolocalization in wild-type, pls, PLSox, etr1, and etr pls double mutants of Arabidopsis, showing differences in PIN protein
levels. (B) Quantification of PIN1 and PIN2 levels in wild-type, pls, PLSox, etr1 and etr1 pls double mutants in Arabidopsis. The red colored bars represent the
standard errors of the mean (n = 10).
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FIGURE 2 | Schematic description of the relationship between
auxin spatial gradients and interaction of PIN and PLS as well
as hormonal crosstalk at a cellular level. In a single cell, PIN and
PLS interact and hormonal crosstalk occurs. At a steady state, the

sum of total auxin influx from all neighboring cells and auxin
biosynthesis rate in the cell must be equal to the total efflux
from the cell. Moreover, when multiple cells interact, auxin
gradients emerge.

(Chilley etal., 2006; Liu et al., 2010) imply that ethylene signaling
also regulates PIN levels. This regulatory relationship is derived
as follows. Experimentally, it has been shown that exogenous
application of TAA and ACC can each increase PIN transcrip-
tion and protein levels at the plasma membrane (Paciorek etal.,
2005; Vanneste and Friml, 2009). However, exogenous application
of cytokinin reduces PIN levels (Ruzicka etal.,, 2009). More-
over, exogenous application of IAA or ACC increases endogenous
auxin concentration, as shown by experimental data (Stepanova
etal,, 2007; Ruzicka etal., 2009) and as analyzed by modeling
analysis (Liu etal., 2010). Furthermore, exogenous application
of cytokinin decreases endogenous auxin concentration (Eklof
etal., 1997; Nordstrom etal., 2004). In contrast, a recent report
shows that exogenous application of cytokinin promotes auxin
biosynthesis in young, developing tissues (Jones etal., 2010).
We construct networks for both effects of cytokinin, based on
biological knowledge and our own experimental observations.
Figure 3 shows the case that cytokinin decreases endogenous
auxin concentration. For the case in which cytokinin pro-
motes auxin biosynthesis, the network is exactly the same as in
Figure 3 except for the positive regulation of cytokinin to auxin
biosynthesis.

As exogenous application of ACC increases both PIN levels
and endogenous auxin concentration (Ruzicka etal., 2007), and
as exogenous application of cytokinin decreases both PIN lev-
els (Ruzicka etal., 2009) and endogenous auxin concentration
(Nordstrom etal., 2004), one possibility is that exogenous ACC
and cytokinin exert their effects on PINs by affecting endogenous

auxin concentration. However, in pls, an increase in PIN levels
(Figures 1A,B) corresponds to a decrease in auxin concentra-
tion (Figure 4C in Chilley etal., 2006). This indicates that auxin
is not the only regulator of PIN levels, as otherwise PIN levels
should decrease in pls. Therefore, ethylene signaling also regulates
auxin efflux and this is realized by its regulation of PIN levels (Liu
etal,, 2010). The decrease in auxin concentration (Figure 4C in
Chilley etal., 2006) and the increase in ethylene signaling in pls
have opposite effects on PIN levels: the reduced auxin concen-
tration that decreases PLS expression in turn reduces PIN levels,
while the increase in ethylene signaling increases PIN levels (Chil-
ley etal., 2006; Liu etal., 2010). The net effect is an increase in
PIN levels. Therefore, when PLS expression changes, effects of
ethylene signaling on PINs are more dominant than the effects
of auxin. Experimental work (Chilley etal., 2006) and modeling
(Liu etal., 2010) show that, in pls, endogenous ethylene concen-
tration (evolution) is the same as in wild-type. Therefore, PLS
regulates ethylene signaling rather than its synthesis, possibly due
to interaction between PLS protein and ETHYLENE RESISTANT
1 (ETR1) (Chilley etal., 2006; Liu etal., 2010). In addition, the
relationship between PIN levels and pls, etrl, and pls etr] double
mutants supports the (at least genetic, if not physical) interaction
between PLS and ETR1: In plsand etr1, PIN protein levels increase
and decrease, respectively. Moreover, the double mutant pls etr]
exhibits reduced PIN levels compared to pls, but increased PIN
levels compared to etr] (Figure 1).

Therefore, the positive regulation of PIN expression by ethy-
lene signaling is included in the network (Figure 3). The inclusion
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FIGURE 3| Network for the interaction of PIN and PLS and hormonal
crosstalk in the situation in which cytokinin decreases endogenous
auxin concentration (Eklof etal., 1997; Nordstrom etal., 2004). The
network includes four modules: an auxin signaling module; an ethylene
signaling module; a cytokinin signaling module; and a PIN function module. In
a previous study (Liu etal., 2010), the first three modules were described in
detail. In this work, we integrate the PIN function module with the three
hormone signaling modules. The three thick black dashed lines represent the
regulatory relationships directly supported by experimental evidence: auxin
positively regulates PIN (e.g., PIN1) levels and transcriptional effects
associated with auxin regulation were identified; PIN internalization is
inhibited by auxin; auxin efflux carrier activity (PIN1 and PIN2) positively
regulates auxin transport. The two thick red dashed lines represent the
regulatory relationships derived by the combined analysis of experimental
evidence and the hormonal crosstalk network described previously (Liu etal.,
2010). The reaction rates are: v1: total auxin influx from all neighboring
(Figure 2 and text for details); v2: auxin biosynthesis rate in the cell; v3: total
auxin efflux from the cell; v4: rate for conversion of the inactive form of the
auxin receptor to its active form; vb: rate for conversion of the active form of

the auxin receptor to its inactive form; v6: transcription rate of the POLARIS
(PLS) gene; v7: decay rate of PLS mRNA, v8: translation rate of the PLS
protein; v9: decay rate of PLS protein; v10: rate for conversion of the inactive
form of the ethylene receptor to its active form by PLS protein (PLSp); v11:
rate for conversion of the active form of ethylene receptor to its inactive form;
v12: ethylene biosynthesis rate; v13: rate for removal of ethylene; v14: rate
for conversion of the inactive form of the CONSTITUTIVE TRIPLE RESPONSE
1 (CTR1) protein to its active form; v15: rate for conversion of the active form
of CTR1 protein to its inactive form; v16: rate for activation of the ethylene
signaling response; v17: rate for removal of the unknown ethylene signaling
component, X; v18: rate for cytokinin biosynthesis; v19: rate for removal of
cytokinin; v20: transcription rate of the PIN gene; v21: rare for the decay of
PIN mRNA,; v22: translation rate of PIN protein; v23: rate for decay of PIN
protein in cytosol; v24: rate for transport of PIN protein from cytosol to
plasma membrane; v25: rate for internalization of PIN protein. When
exogenous hormones are applied: v26: rate for uptake of IAA when
exogenous IAA is applied; v27: rate for uptake of ACC when exogenous ACC
is applied; v28: rate for uptake of cytokinin when exogenous cytokinin is
applied.

of this regulation is consistent with the experimental observa-
tions following exogenous application of IAA and ACC. When
IAA is exogenously applied, both PLS expression and ethylene
responses increase (Casson etal., 2002; Stepanova etal., 2007; Liu
etal., 2010). Increasing PLS expression leads to decreased ethy-
lene signaling, while increasing ethylene concentration increases
ethylene responses. Therefore, application of exogenous IAA has
antagonistic effects on ethylene signaling that regulates PIN levels.
In addition, the increase of auxin concentration due to exoge-
nous IAA application increases PIN levels. The overall effects of
exogenous application of IAA lead to an increase in PIN levels.
When ACC is exogenously applied, both endogenous ethylene and
auxin concentrations increase, and PLS expression levels decrease

(Chilley etal., 2006; Liu etal., 2010). Increase in ethylene con-
centration and decrease in PLS expression synergistically enhance
ethylene responses. Therefore, when ACC is exogenously applied,
auxin, ethylene and PLS all synergistically enhance PIN levels.
Therefore, exogenous application of ACC leads to an increase in
PIN levels.

The relationship between cytokinin and PIN levels implies an
additional regulatory role of cytokinin in addition to its regula-
tion to auxin, ethylene and PLS levels. This regulatory relationship
is derived as follows. When cytokinin is exogenously applied,
both endogenous cytokinin and ethylene concentrations increase,
but PLS expression decreases (Liu etal., 2010). However, there
are two opposite experimental observations for cytokinin effects:

www.frontiersin.org

April 2013 | Volume 4 | Article 75 | 5


http://www.frontiersin.org/
http://www.frontiersin.org/Plant_Cell_Biology/archive

Liu etal.

Hormonal crosstalk in Arabidopsis

endogenous auxin either decreases (Eklof etal., 1997; Nordstrom
etal., 2004) or increases (Jones et al., 2010).

Both decreased PLS protein and increased ethylene concen-
tration synergistically enhance ethylene signaling (Casson etal.,
2002; Liu etal., 2010). Following our analysis above, this increases
PIN levels. When cytokinin positively regulates auxin biosynthesis
(Jones etal., 2010), exogenous application of cytokinin increases
endogenous auxin concentration and this positively regulates PIN
levels. Therefore, when cytokinin is exogenously applied, changes
in auxin, ethylene, and PLS expression all lead to the increase in
PIN levels. However, it has been shown experimentally that exoge-
nous application of cytokinin results in a reduction of PIN levels
(Ruzicka etal.,2009). This implies that cytokinin has an additional
role in regulating PIN levels, in addition to its regulation of auxin,
ethylene, and PLS levels.

When cytokinin negatively regulates auxin biosynthesis, exoge-
nous application of cytokinin decreases endogenous auxin con-
centration (Eklof et al., 1997; Nordstrom et al., 2004). The decrease
in auxin concentration reduces PIN levels. However, the decrease
in PLS expression and the increase in ethylene simultaneously
enhance PIN levels. In the pls mutant, auxin concentration is low
and ethylene concentration remains approximately unchanged
(Liu etal., 2010). As analyzed above, due to the strong interaction
between PLS protein and ETR1, PIN levels increase (Figures 1A,B)
even though the auxin concentration has been reduced to a large
extent (Petrdsek et al., 2006; Figure 4Cin Chilley et al., 2006). Based
on experimental data (Chilley etal., 2006), we estimate that in pls
roots, auxin concentration is 0.14 .M, compared with 0.23 M
in wild-type (Liu etal., 2010). Following exogenous application of
cytokinin, an additional factor, i.e., an increase in ethylene con-
centration, also enhances ethylene signaling responses. Therefore,
PIN levels should increase. However, experimental work shows
that exogenous application of cytokinin results in the reduction
of PIN levels (Ruzicka etal., 2009). Therefore, an explanation of
the experimental results requires an additional regulatory role
for cytokinin in controling PIN levels, and this is included in
Figure 3.

In addition, PIN endocytic internalization is inhibited by auxin
(Paciorek etal., 2005). Therefore, we have included in the net-
work the inhibition by auxin of the cycling between PINpm (PIN
at plasma membrane) to PINpi (PIN in cytosol). Therefore, by
integrating our experimental data (Figure 1) with the experimen-
tal data in the literature, a hormonal crosstalk network of auxin,
cytokinin and ethylene is revealed (Figure 3).

HORMONAL CROSSTALK NETWORK AND ROOT GROWTH

As described in Figures 2 and 3, the concentrations of all three
hormones (auxin, ethylene, and cytokinin) in root growth are
mutually regulated by a hormonal crosstalk network. Therefore,
they cannot change independently. Any genes that affect either
the transport or biosynthesis of one of the three hormones have
roles in the concentrations of all three hormones, as we demon-
strated for the interaction of PIN and PLS. Auxin distribution is
a versatile mechanism mediating a broad range of developmental
responses (Petrasek and Friml, 2009). Both ethylene and cytokinin
have roles in cell division (Ortega-Martinez et al., 2007; Dello Ioio
etal., 2007). Therefore, an improved understanding of the roles

of hormones and genes in root growth requires the analysis of
hormonal crosstalk in space and time. For example, in pls, root
elongation rate is slower than in wild-type (Casson etal., 2002).
Due to the action of the hormonal crosstalk network (Figure 3)
and as evidenced by experimental measurements, auxin concen-
tration decreases, cytokinin concentration increases and ethylene
concentration remains approximately unchanged (Casson etal.,
2002; Chilley etal., 2006; Liu et al., 2010). As auxin concentration
regulates elongation (Liu etal., 2010) and cytokinin concentra-
tion regulates the rates of cell division (Dello Ioio etal., 2007), the
reduction of root elongation rate in plsis due to the changes in both
auxin and cytokinin concentrations, as ethylene concentration
remains approximately unchanged in pls.

DISCUSSION

Transport-mediated, differential auxin distribution is a versatile
mechanism mediating a broad range of developmental responses
(Petrdsek and Friml, 2009). The PIN-based auxin transport net-
work can integrate various endogenous and environmental signals
that modulate polarity or subcellular trafficking of PIN pro-
teins, which are considered to be major regulatory mechanisms
for PIN activity (Kleine-Vehn and Friml, 2008; Grunewald and
Friml, 2010).

Nonetheless, experimental analyses have shown also that PIN
levels in Arabidopsis vary in response to a range of hormones.
Auxin positively regulates levels of several PIN proteins in differ-
ent developmental contexts (Blilou etal., 2005; Laskowski etal.,
2006; Chapman and Estelle, 2009; Vanneste and Friml, 2009) by a
signaling pathway regulating transcription (Woodward and Bartel,
2005). Ethylene also upregulates PINs (e.g., PIN2) to remove auxin
from the more distal region of the root tip (Ruzicka etal., 2007).
Moreover, cytokinin negatively regulates PIN levels (Ruzicka et al.,
2009). It is also evident that ethylene activates the biosynthesis of
auxin locally in the root tip (Stepanova etal., 2007; Swarup etal.,
2007), and that both auxin and cytokinin can synergistically acti-
vate the biosynthesis of ethylene (Chilley etal., 2006; Stepanova
etal., 2007).

However, ethylene can also be synthesized without exoge-
nous auxin and cytokinin application, such as in its role in root
hair production (Tanimoto etal., 1995). When PIN levels change
following a change in the concentration/response of a given hor-
mone, it does not necessarily mean that the given hormone
predominantly regulates PIN levels. This is because changing the
concentration/response of a given hormone may also change the
concentrations/responses of other hormones. As shown in this
work, PIN levels are simultaneously regulated by auxin, ethylene,
and cytokinin via the action of PLS. Therefore, PINs and hormones
form an entangled network, and any perturbation in the network
will cause changes in other components. As a result, auxin concen-
tration is regulated by these and diverse interacting hormones via
a hormonal crosstalk network, as demonstrated in the Figure 3.

This work demonstrates that integration of experimental mea-
surements with existing knowledge in the literature is able to
reveal how PIN1, PIN2, and three hormones (auxin, ethylene, and
cytokinin) form an entangled network via the action of PLS. Our
methodology involves two major steps. First, the PIN levels are
measured (Figure 1A) and quantified (Figure 1B). Quantification
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of images shows the trends of the PIN levels (Figure 1B). Second,
integrating experimental trends into existing knowledge reveals
the crosstalk of PIN1, PIN2, auxin, ethylene, and cytokinin via
the action of PLS. As all components in Figure 3 form an entan-
gled network, changing one component leads to changes in the
others. Therefore, we propose that, in order to reveal the key regu-
latory points in the network, novel modeling methodology should
be developed to dissect the regulation of the hormonal crosstalk
network in the future.

The Arabidopsis genome contains eight PIN genes (Grunewald
and Friml, 2010; Peer etal.,, 2011). Different PINs may have
different locations and they may play different roles in auxin
biology (Grunewald and Friml, 2010; Peer etal., 2011). For exam-
ple, PINT and PIN2 exhibit primarily polar localizations on the
plasma membrane while PIN3, PIN4, and PIN7 exhibit both
polar and apolar plasma membrane localizations (Peer etal.,
2011). In addition, hormones may regulate PIN levels differ-
entially. For example, cytokinin can negatively regulate levels
of PIN1, PIN2 and PIN3, but it positively regulates PIN7 lev-
els (Ruzicka etal., 2007). In the current paper we construct
the interaction network of PIN1, PIN2, auxin, ethylene, and
cytokinin via the action of PLS. Following the methodology devel-
oped in this work, the interaction networks between other PINs,
hormones and other genes could be constructed by measuring
data similar to those described in Figures 1A,B. Moreover, as
described in Figure 2, populating the hormonal crosstalk net-
work in a spatial setting should be able to further model how
auxin gradients are dependent on hormonal crosstalk in root
development.

In addition, other phytohormones such as gibberellin and
brassinosteroids are also important signals in the regulation of
root development (Depuydt and Hardtke, 2011; Garay-Arroyo
etal.,2012; Vanstraelen and Benkov, 2012). Although the effects of
gibberellin and brassinosteroids on root development have been
subjected to mathematical modeling studies (Middleton etal.,
2012; van Esse etal., 2012), the networks describing their crosstalk
with other hormones have not been constructed. The princi-
ple developed in this work can be used to further integrate the
hormonal crosstalk for other phytohormones and genes in the
future.

MATERIALS AND METHODS

PLANT MATERIALS

Wild-type (Col-0, C24) ecotypes and the pls and pls efr] mutants
of Arabidopsis thaliana have been described previously (Topping
and Lindsey, 1997; Casson etal., 2002; Chilley etal., 2006). pls
DR5::GFP seedlings were generated by crossing (Liu etal., 2010).
For in vitro growth studies, seeds were stratified, surface-sterilized
and plated on growth medium (half-strength Murashige and
Skoog medium (Sigma, Poole, UK), 1% sucrose, and 2.5% phy-
tagel (Sigma) at 22 & 2°C as described (Casson et al., 2009). For
silver application experiments, seeds were germinated aseptically
on growth medium or growth medium containing 10 M silver
nitrate.

MICROSCOPY AND IMAGE ANALYSIS

Confocal images (for GFP imaging) were taken with a Bio-Rad
Radiance 2000 microscope (Bio-Rad, Hemel Hempstead, UK)
after counterstaining tissues with 10 mg/ml propidium iodide as
described (Casson etal., 2009).

For comparisons of PIN protein signal intensities, at least
three independent experiments were carried out. For each experi-
ment at least 10 roots were evaluated with five random regions
selected for signal intensity quantification for each. All fluo-
rescence signals were evaluated on a Zeiss LSM 5 Exciter or
Leica TCS SP2 confocal laser scanning microscopes. The same
microscope settings were used for each independent experi-
ment, and pixel intensities were taken into account when the
images between controls and samples were compared. The aver-
age fluorescence intensity was measured with Image] (National
Institutes of Health, http://rsb.info.nih.gov/ij). Statistics were eval-
uated with Excel (Microsoft). Results were visualized as average
intensities with error bars representing standard deviation of the
mean.
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