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Plant growth-promoting rhizobacteria (PGPR) are increasingly appreciated for their con-
tributions to primary productivity through promotion of growth and triggering of induced
systemic resistance in plants. Here we focus on the beneficial effects of one particular
species of PGPR (Pseudomonas fluorescens) on plants through induced plant defense.
This model organism has provided much understanding of the underlying molecular
mechanisms of PGPR-induced plant defense. However, this knowledge can only be
appreciated at full value once we know to what extent these mechanisms also occur
under more realistic, species-diverse conditions as are occurring in the plant rhizosphere.
To provide the necessary ecological context, we review the literature to compare the effect
of P. fluorescens on induced plant defense when it is present as a single species or
in combination with other soil dwelling species. Specifically, we discuss combinations
with other plant mutualists (bacterial or fungal), plant pathogens (bacterial or fungal),
bacterivores (nematode or protozoa), and decomposers. Synergistic interactions between
P. fluorescens and other plant mutualists are much more commonly reported than
antagonistic interactions. Recent developments have enabled screenings of P. fluorescens
genomes for defense traits and this could help with selection of strains with likely
positive interactions on biocontrol. However, studies that examine the effects of multiple
herbivores, pathogens, or herbivores and pathogens together on the effectiveness of PGPR
to induce plant defenses are underrepresented and we are not aware of any study that has
examined interactions between P. fluorescens and bacterivores or decomposers. As co-
occurring soil organisms can enhance but also reduce the effectiveness of PGPR, a better
understanding of the biotic factors modulating P. fluorescens–plant interactions will improve
the effectiveness of introducing P. fluorescens to enhance plant production and defense.
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INTRODUCTION
Plant growth-promoting rhizobacteria (PGPR) are a diverse group
of microorganisms that are increasingly appreciated for their con-
tributions to primary productivity through promotion of growth
and triggering of induced systemic resistance (ISR) in plants. By
triggering plant defense, PGPR can make an important contri-
bution to biocontrol of pests and pathogens of plants. However,
the effectiveness of PGPR-triggered plant defense depends on a
variety of genetic and biotic/abiotic environmental factors. PGPR
naturally occur within a complex community of soil organisms
inhabiting the rhizosphere. Hence, in order to understand the
role of PGPR in influencing a plant’s defense against pests and
pathogens, it is important to understand how biotic interactions
with these rhizosphere organisms will affect the ability of PGPR to
enhance plant defense. The aim of this review is to examine how
the impact of PGPR on plant defense is modulated by the presence
of other organisms in the rhizosphere. Other reviews have focused
on particular interactions, e.g., between PGPR and aboveground
insects (Pieterse and Dicke, 2007; Pineda et al., 2010) or type of

defense, e.g., volatiles (Dicke and Baldwin, 2010). Those reviews
have taken a plant centric approach (but see Whipps, 2001). In this
paper, we will review how biotic interactions between PGPR and
other rhizosphere- or plant-associated organisms affect the ability
of PGPR to enhance plant defenses. We use Pseudomonas fluo-
rescens, a very common and well-studied PGPR, as a model species.
To test the dependence of PGPR–plant interactions on direct and
indirect biotic interactions with other rhizosphere biota, we com-
pare studies in which effects of P. fluorescens on plant defense are
examined for a single P. fluorescens isolate with studies in which
these effects are examined for a P. fluorescens isolate in combi-
nation with other isolates and/or species. We will discuss these
interactions in increasing order of complexity, starting with sin-
gle introductions of P. fluorescens with introductions of multiple
P. fluorescens isolates, then with other PGPR, with other plant
growth-promoting fungi, bacterivores, and finally with decom-
posing organisms. The basic interaction in all these studies is
formed by a plant, P. fluorescens and a herbivore or pathogen. The
latter is necessary to judge whether plant defense was changed. In
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addition, studies without herbivore or pathogens but that measure
plant defense genes are included. Before we review these interac-
tions we provide a brief introduction to PGPR and P. fluorescens
in particular. Moreover, as we argue that the effect of PGPR on
induced plant defense cannot be considered in isolation from the
effects of other organisms that are also present in the soil such as
nematodes, fungi, earthworms, or protozoa on the PGPR or on
the plant, we also provide a brief overview of interactions between
bacteria and other soil dwelling organisms in the rhizosphere.

INTERACTIONS BETWEEN BACTERIA AND OTHER SOIL
ORGANISMS IN THE RHIZOSPHERE
Live roots and root exudates provide a diverse range of resources
to soil organisms. As a result, the zone around plant roots, the rhi-
zosphere, is a highly diverse habitat. It consists of root herbivores,
such as nematodes and insect larvae, their natural enemies, and
a wide variety of soil microbes, including symbiotic, pathogenic,
and saprophytic fungi and protozoa. The vast majority of soil
organisms in the rhizosphere are bacteria (including PGPR), with
densities as high as 109 cells per gram of soil. The abundance
and composition of these soil bacteria depends on abiotic condi-
tions such as soil pH, temperature, and moisture (Bardgett, 2005).
However, in the rhizosphere of plants, the density and activity of
bacteria is fuelled largely by root-derived carbon. Bacteria compete
with each other and other soil microorganisms for these carbon
resources.

In the rhizosphere, bacteria can have direct beneficial or
harmful effects on the plant. However, there are also important
indirect feedback interactions between plant roots, soil bacteria,
and other microorganisms (Berendsen et al., 2012). For exam-
ple, root-released exudates promote bacterial growth (Bais et al.,
2001). These bacteria are consumed by protozoa and bacterivorous
nematodes, and these consumers generally cause strong top-down
control of bacteria. Via bacterial grazing, these bacterivores liber-
ate nutrients, which in turn, stimulate plant growth (Bonkowski,
2004). The quality and quantity of root-derived carbon sources
vary temporally, between plant species and between individual
plants that belong to the same plant species. This variation can be
attributed, at least partly, to interactions between plants and other
organisms. Foliar herbivory, but also interactions between roots
and soil organisms such as root herbivores or mycorrhizal fungi
(Jones et al., 2004; Bais et al., 2006), often causes an increase in
the rate of carbon and nitrogen exudation from roots which then
leads to enhanced microbial activity in the rhizosphere (Holland
et al., 1996; Bardgett and Wardle, 2010). Hence, bacterial growth
and activity will depend on the direct and indirect interactions
of the plant with other (soil) organisms. Apart from consump-
tion, movement of larger soil fauna also affects the dispersal of
soil microorganisms such as bacteria. Thus, plant roots, bacteria,
and other microbes interact in complex food webs and in order
to understand the interactions between plants and bacteria it is
important to consider them in a multitrophic context.

PGPR AND PLANT DEFENSE
Rhizobacteria with growth-promoting capacity occur in a number
of bacterial phyla (Actinobacteria, Bacteroidetes, Cyanobacteria,

Firmicutes, Proteobacteria) with as best known members Pseu-
domonas spp. and Bacillus spp. (Compant et al., 2005). Studies on
model organisms like Pseudomonas fluorescens have provided con-
siderable understanding of the underlying molecular mechanisms
of PGPR-induced plant defense. The type of defense triggered by
microorganisms differs among pathogenic and non-pathogenic
microbes (van Loon, 2007; Pieterse et al., 2012). Biotrophic
pathogens generally induce systemic acquired resistance (SAR).
SAR is dependent on salicylic acid (SA) signaling and results in
enhanced expression of pathogenesis-related (PR) proteins (Dur-
rant and Dong, 2004). By contrast, PGPR trigger ISR. ISR is
generally independent of the SA signaling pathway and is not asso-
ciated with major alterations in the expression of defense-related
genes, but with priming of defenses (Verhagen et al., 2004). PGPR-
primed plants do not have elevated expression of defense genes.
Instead, they show more rapid or stronger activation of defenses
once they are attacked by pathogens and herbivores, a response
that is often dependent on a functional JA pathway (van der Ent
et al., 2009). ISR is a systemic response, expressed in both roots
and shoots, that can affect a wide range of organisms, including
above- and belowground pathogens, herbivores, and their natural
enemies (Pineda et al., 2010, 2012), a spectrum that only partly
overlaps with that of SAR (van Oosten et al., 2008).

The effect of PGPR on plant growth promotion and on plant
defense against attackers depends on many factors, including the
plant species or genotype, the pathogen species, and the abiotic
conditions, such as nutrient availability. In some cases varia-
tion in these factors can even lead to opposite effects of PGPR
on plant traits. For instance, P. fluorescens addition stimulated
nitrogen mineralization in one crop species and decreased it
in another (Brimecombe et al., 1999). Similar variation in the
effects of PGPR among plant species has been observed for their
effects on plant defense against pathogens and herbivores. For
instance, Tétard-Jones et al. (2007) showed that supplementing
the rhizobacterial community with a Pseudomonas aeruginosa
strain influenced the fitness of the cereal aphid (Sitobion ave-
nae) on barley (Hordeum vulgare) either positively or negatively
(increased or decreased population size) depending on plant and
aphid genotype. In a later study (Tétard-Jones et al., 2012) they
identified genomic regions (QTLs) underlying the differential
plant-mediated responses to the rhizobacterium. This linking of
differential responses to genomic regions is exceptional; often
studies can only indicate that factors such as genotype may be
relevant for the effectiveness of PGPR-triggered plant defense
responses, without further mechanistic explanation. Many stud-
ies focusing on PGPR and induced defense have been carried
out under relatively sterile conditions in laboratories or green-
houses. Studies on induced defense of P. fluorescens under field
conditions are relatively rare. In this review we do include ref-
erences to biocontrol studies but want to stress that biocontrol
can be the result of many mechanisms of which ISR is only
one. Studies testing whether effects of particular PGPR strains
on plant defense observed under sterile greenhouse conditions
can be observed in the field as well have yielded mixed results
(e.g., Guo et al., 2004; Akila et al., 2011). When differences are
observed, these could be due to the several biotic and abiotic
factors which differ between greenhouse and the field. When
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spatial variation in the disease suppressive effects of PGPR are
observed in field trials on multiple locations, abiotic factors such
as fertility, temperature, and moisture are usually discussed as
explanation for the variable results (Guo et al., 2004; Ji et al.,
2006; Maeder et al., 2011). Remarkably, surprisingly little atten-
tion has been paid so far to the role of biotic factors such as
local plant mutualists, predators, decomposers, other pathogens,
or herbivores which might interfere with the PGPR effects on plant
defense.

Pseudomonas COMBINED WITH OTHER Pseudomonas
STRAINS OR WITH OTHER PLANT MUTUALISTS
Most plant species can have myriad mutualistic interactions, which
provide benefits such as increasing nutrients, producing hor-
mones, increasing tolerance to abiotic stresses (water, temperature,
heavy metals), or biotic stresses (pests and pathogens). These
benefits can be provided by both bacteria and fungi; depend-
ing on the mutualist species, the association can be on the root
or leaf surface or inside the plants (endophytes). P. fluorescens is
mostly known as a root colonizer. Many studies have examined the
effects of adding several mutualistic organisms simultaneously to
soils on plant defense (e.g., Jaderlund et al., 2008; Saravanaku-
mar et al., 2009; Senthilraja et al., 2010). A general conclusion
that can be drawn from these studies is that multiple microbial
introductions typically are more effective than single introduc-
tions for biocontrol (Whipps, 2001).The combinations of species
that have been added range from multiple Pseudomonas isolates
(Saravanakumar et al., 2009; Seenivasan et al., 2012) to adding
other mutualistic bacteria (Domenech et al., 2006) or mutualis-
tic fungi (Jaderlund et al., 2008). The addition of multiple agents
enhances the chance that at least one is well adapted to the local
environment where the organisms are introduced. Disease sup-
pression by the plant can also be improved when the introduced
mutualists differ in their effects on induced defense responses
(Domenech et al., 2006). Moreover, interactions between mutual-
ists may lead to different gene expression and secondary metabolite
production in the bacterium and this can result in synergistic
effects of mutualists on the plant (Combes-Meynet et al., 2011;
Garbeva et al., 2011). The studies by Garbeva et al. (2011) and
Combes-Meynet et al. (2011) illustrate both the potential of bac-
teria species interactions to alter gene expression in P. fluorescens,
and the potential effects that such changes in gene expression
can have on the interactions with the plant. Even without altered
gene expression in the bacteria, the plant may respond synergis-
tically to the microbial-associated molecular patterns (MAMPs)
of multiple plant mutualists (Desaki et al., 2012). MAMPs are
molecules from pathogenic and mutualistic microbes which trig-
ger plant immune response (van Wees et al., 2008). PGPR may
vary their phenotype in order to avoid stimulation of the plants’
immune system (Zamioudis and Pieterse, 2012). It is unknown
how effective such phase variation is when other PGPR are also
colonizing the plant, each species with their specific MAMPs, but
triggering pathways that at some point converge (van Wees et al.,
2008; Zamioudis and Pieterse, 2012). Currently not enough is
known about the MAMPs of P. fluorescens and other mutual-
ists to speculate about synergistic effects between more different
MAMPs.

Pseudomonas COMBINED WITH OTHER P. fluorescens STRAINS
A number of studies have applied multiple strains of P. fluorescens
to achieve better biocontrol of plant pests and pathogens, with the
aim to find combinations of strains with complementary effects on
plant defense. A recent study by Loper et al. (2012) on the genomes
of 10 P. fluorescens strains shows that these strains vary consider-
able in their defense traits. This offers ample room for selection of
complementary strains and different lifestyles. Agusti et al. (2011)
selected two P. fluorescens strains which differed in secondary
metabolite production and found that dual inoculations lead to
better control of Phytophthora cactorum in strawberry, as well as
to a reduction of the within-experiment variability, compared to
single introductions. Several studies have reported that a combina-
tion of introductions of P. fluorescens isolates Pf1, TDK1, and PY15
is very effective in controlling pests and diseases. Introduction of
the combination of the three P. fluorescens isolates, for example, is
very effective in reducing populations of the root-feeding nema-
tode Meloidogyne graminicola (Seenivasan et al., 2012) as well as in
controlling sheath rot Sarocladium oryzae in rice (Saravanakumar
et al., 2009). The explanation for the effectiveness of this partic-
ular combination is that these three isolates do not compete for
space and together colonize the root surface more effectively than
single isolates. This is important for the direct nematicidal effects
of the isolates. However, plants inoculated with P. fluorescens mix-
tures also had higher activities of peroxidase and chitinase enzymes
than single inoculations (Saravanakumar et al., 2009; Seenivasan
et al., 2012), suggesting that higher activation of defense-related
enzymes may play a role in addition to a more efficient occupation
of the root surface.

Pseudomonas COMBINED WITH OTHER SPECIES OF PGPR
The most commonly investigated combination of P. fluorescens
and other PGPR is with Bacillus spp., but also combined intro-
ductions with Burkholderia spp., Rhizobium spp., and Serratia
spp. are frequently studied. For Bacillus spp., as far as we are
aware, no antagonistic effects on control of bacteria, fungi, and
viruses have been reported. García-Gutiérrez et al. (2012) tested
suppression of both fungal and bacterial pathogens by P. fluo-
rescens in combination with Bacillus; combinations were equally
effective as single introductions of P. fluorescens. The improved
control of Fusarium disease by a combination of P. fluorescens
and Bacillus was associated with the induction of the defense-
related enzymes peroxidase and polyphenol oxidase (Akila et al.,
2011; Sundaramoorthy et al., 2012). Most studies on the effects
of combined introductions of Pseudomonas and other PGPR
have reported effects on improved biological control. Combes-
Meynet et al. (2011) hypothesized that during evolution PGPR
have developed mechanisms to affect and respond to each other
and that it is likely that the secondary metabolites from P. flu-
orescens will affect other PGPR. The authors tested the effect of
2,4-diacetylphloroglucinol (2,4-DAPG), a secondary metabolite
from P. fluorescens, on Azospirillum gene expression and found
that genes involved in several traits related to root colonization
and growth promotion were upregulated. Co-inoculation of P.
fluorescens and Azospirillum stimulated root growth in spring
wheat (Combes-Meynet et al., 2011). Garbeva et al. (2011) studied
changes in gene expression in P. fluorescens when exposed to three
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other rhizobacteria: Bacillus sp., Brevundimonas sp., or Pedobacter
sp. Interestingly, P. fluorescens had specific responses to the differ-
ent competitors; two species increased antimicrobial metabolite
production by P. fluorescens, but Bacillus did not (Garbeva et al.,
2011). There are also studies where inoculation with P. fluorescens
alone was more effective than inoculations in which Pseudomonas
was combined with other PGPR (Anwar-ul-Haq et al., 2011; Stock-
well et al., 2011). P. fluorescens A506 proved incompatible with
two other biological control agents Pantoea vagans and Pantoea
agglomerans since proteases from P. fluorescens A506 degrade the
antibiotics from the Pantoea spp. that play an important role in
the control fire blight in pear (Stockwell et al., 2011).

Pseudomonas COMBINED WITH FUNGI
Fungi are introduced together with P. fluorescens with three main
aims: improved nutrition or plant growth (mycorrhizal fungi),
improved disease control (e.g., Trichoderma spp.) or improved
insect pest control (Beauveria spp.). So far, there are only a
few papers that have examined the effectiveness of combined
introductions of Pseudomonas with the entomopathogenic fungus
Beauveria. Entomopathogenic fungi can be found as plant endo-
phyte and may have plant growth-promoting properties (Vega
et al., 2009). The majority of papers report increased control of
pests or diseases when the entomopathogenic fungus Beauveria is
applied in combination with P. fluorescens. Senthilraja et al. (2010)
used combinations of P. fluorescens and Beauveria bassiana and
found the three-strain combination of two P. fluorescens strains
with one Beauveria bassiana to be more effective than single or
two-strain inoculations for controlling both a leafminer and collar
rot. The explanation is that P. fluorescens affects plant metabolism,
and this, in turn, makes the insects more vulnerable to Beauve-
ria. Similarly, Karthiba et al. (2010) combined P. fluorescens with
Beauveria bassiana, and found simultaneous control of pests and
pathogens on rice.

Pseudomonas fluorescens is known to control pathogens includ-
ing fungi, and thus we may anticipate that combined effects of
P. fluorescens and mutualistic fungi on plant resistance will be
less than additive because mutualistic fungi will suffer from P.
fluorescens. On the other hand, Pseudomonas fluorescens is identi-
fied as one of the mycorrhiza helper bacteria for both ecto- and
arbuscular mycorrhiza (Frey-Klett et al., 2007). Mycorrhiza helper
bacteria are bacteria associated with mycorrhiza that promote
the symbiosis between fungus and plant by stimulating fungal
growth or protecting the fungus against other fungal competi-
tors. There are many examples where P. fluorescens combined with
mutualistic fungi was more successful than single inoculations of
either bacteria or fungi (Tayal et al., 2011; Walker et al., 2012),
and antagonistic interactions have rarely been reported (but see
Sukhada et al., 2011). Inoculation of the mycorrhizal fungus Glo-
mus intraradices has a positive effect on P. fluorescens survival on
maize; it is unclear whether this is a plant-mediated or direct effect
(Walker et al., 2012). Sukhada et al. (2011) found both under con-
trolled conditions and in the field that the tripartite inoculation
of P. fluorescens with the arbuscular mycorrhizal fungi G. mosseae
and with T. harzianum was not as good in reducing Phytophthora
disease incidence as the dual inoculations. It is unknown whether
the predominantly positive results of mutualistic fungi with P.

fluorescens indicates that natural selection has favored traits that
result in interactions between mutualistic fungi and P. fluorescens
that are neutral or positive for the plant or whether this reflects the
research bias towards studies using candidates with good prospects
for positive interactions in their effects on biocontrol. Another
major group of mutualistic fungi are the Class I endophytes Neo-
typhodium spp. and Acremonium spp. but little is known about
their effects on belowground processes, except for a stimulation
of root exudation (Omacini et al., 2012). Recently, Wicklow and
Poling (2009) showed that there are negative effects of antibiotics
from Acremonium zeae on P. fluorescens, but apart from that, we are
not aware of any study examining the effects of plant – endophyte –
P. fluorescens interactions on plant defense.

INTERACTIONS BETWEEN Pseudomonas AND
BACTERIVORES AND DECOMPOSERS
Pseudomonas fluorescens may also interact with two other groups of
rhizosphere organisms that have less close relations with the plant:
organisms which feed on bacteria (bacterivores) and organisms
which break down organic material (decomposers).

Pseudomonas fluorescens AND BACTERIVORES
Pseudomonas fluorescens are grazed by predatory bacteria, pro-
tozoa, and bacterivorous nematodes (Elsherif and Grossmann,
1996). For bacterivores there is a clear potential direct effect on
P. fluorescens abundance via grazing. However, whether grazing
will affect plant defense is dependent on the selectivity of graz-
ing and whether induction of plant defense is density-dependent.
A threshold density of P. fluorescens is known for effective sup-
pression of take-all decline (Raaijmakers and Weller, 1998) but it
is unclear if the same applies to other pests and diseases. Selec-
tive grazing can change bacterial competition (Pedersen et al.,
2009) and bacterivores avoiding P. fluorescens due to the sec-
ondary metabolite production by P. fluorescens can improve the
competitive advantage of P. fluorescens over other bacteria (Jous-
set et al., 2008; Jousset, 2012). Pseudomonas can produce hydrogen
cyanide and this repels bacterivorous nematodes. Also 2,4-DAPG,
an antibiotic compound produced by P. fluorescens, acts as nemati-
cide (Neidig et al., 2011). However, even when P. fluorescens is
grazed upon by predators, a reduction in ISR response is not self-
evident, because the reduction in abundance by predation may be
accompanied by other changes in the PGPR that enhance ISR. For
instance, grazing by amoebae was found to upregulate 2,4-DAPG
synthesis in P. fluorescens (Jousset and Bonkowski, 2010). This
compound is also known to be directly involved in ISR in plants
(Weller et al., 2012). Bacterivorous nematodes can also stimulate
PGPR effects on plant growth (Jiang et al., 2012). Addition of bac-
terivorous nematodes together with Burkholderia or Pseudomonas
to plants growing in natural soil increased microbial biomass
(Jiang et al., 2012), indicating a stimulation of bacterial abundance
by grazing. Both nematode addition and Burkholderia addition
increased the number of root tips, but their combined effect was
significantly higher than their single effects (Jiang et al., 2012).
There is an urgent need for experiments, that include bacterivores,
P. fluorescens, plants, and pathogens in which the expression of
plant defense or defense genes are measured. We are not aware of
any of such studies.
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Pseudomonas fluorescens AND DECOMPOSERS
For decomposers more and more evidence is accumulating that
they can affect induced defense responses of plants. For instance,
Collembola induce auxin-responsive genes and defense genes in
shoots of Arabidopsis (Endlweber et al., 2011), although in this
case Collembola may act as herbivores instead of decomposers.
Earthworms reduced the damage by plant parasitic nematodes
in rice, without directly affecting nematode abundance (Blouin
et al., 2005). The exact mechanism is unknown, but earthworms
did modulate expression of three stress-related genes and they also
improved the photosynthetic capacity of the plant (Blouin et al.,
2005). The presence of earthworms in the soil can also cause an
increase or decrease in defensive glucosinolates in Brassicaceous
plants (Wurst et al., 2006; Lohmann et al., 2009; González Megías
and Müller, 2010). These results clearly show that decomposers
can affect plant defense and therefore, decomposers may interact
with P. fluorescens-mediated ISR. Indirect effects of decomposers
on P. fluorescens–plant outcomes may occur via changes in nutrient
availability and substrate quality, and several studies have indicated
that soil nutritional conditions are crucial for ISR (e.g., Hoitink
and Boehm, 1999). It is also possible that decomposers affect plant
growth and root exudation, and that this in turn affects P. fluo-
rescens abundance and ultimately plant defense. However, we are
not aware of any study describing effects of decomposers on P. fluo-
rescens–plant interactions. For other PGPR it has been shown that
earthworm casts increased PGPR abundances (Wu et al., 2012).
Jana et al. (2010) investigated the effects of earthworms on Ara-
bidopsis thaliana in nutrient poor and rich soil. Since earthworms
affected several plant parameters independent of soil nutrient con-
ditions, the authors suggested that earthworms stimulate nutrient
mineralization but also stimulate phytohormone-producing bac-
teria (Jana et al., 2010). In another study, earthworms increased
the abundance of fluorescent pseudomonads in the rhizosphere
of three plant species (Elmer, 2009), and therefore these results
suggest that this may be a general phenomenon. The mechanism
of stimulation is unknown, but Troxler et al. (2012) observed
that earthworms provide survival hotspots for P. fluorescens
in soil.

SYNTHESIS, APPLICATION, AND OUTLOOK
The effect of other soil dwelling organisms on the impact of P.
fluorescence on plant defense responses will depend on whether
there is a threshold density and whether the effects are (linear or
non-linear) density-dependent. If other PGPR organisms target
the same ISR mechanism then one could easily imagine additive
interactions if there is a linear relationship between density at
introduction and the effect on the plant. If the relation between
density and plant response is non-linear there is room for syn-
ergistic reactions. There are several mechanisms by which the
presence of other organisms can influence interactions between
P. fluorescens, host plants, and herbivores or pathogens (Figure 1).
The other species can act directly via affecting abundance or effec-
tiveness of P. fluorescens and indirectly via plant-mediated effects.
The direct effects can be separated into quantitative and qualita-
tive effects: the quantitative effects are those that determine the
number of P. fluorescens cells in the rhizosphere. The qualitative
effects determine the effectiveness of P. fluorescens in triggering

plant defense, e.g., by changing 2,4-DAPG production. The num-
ber of P. fluorescens cells can be decreased due to predation by
bacterivores, such as predatory bacteria, nematodes, and proto-
zoa (Figure 1; Pedersen et al., 2009). Pseudomonas fluorescens is
a suitable food source for bacterivores (Elsherif and Grossmann,
1996), but P. fluorescens can produce defense compounds to avoid
predation. The overall effect of grazing on P. fluorescens popula-
tion dynamics will depend on the defense levels of P. fluorescens,
the availability of alternative food sources and the selectivity of
the grazers. We do not foresee an immediate application of com-
bining P. fluorescens inoculation with bacterivores to increase root
colonization.

Competition for nutrients or space with other PGPR or rhi-
zobacteria is another factor that will negatively affect P. fluorescens
numbers (Figure 1; Prieto et al., 2011). Other PGPR could
also produce secondary metabolites which inhibit P. fluorescens
(Figure 1; Gu, 2009). Many efforts have been made to isolate and
screen P. fluorescens strains and to select successful combinations
of multiple P. fluorescens strains or other PGPR. Recent develop-
ments have now enabled screenings of P. fluorescens genomes for
defense traits and this could help with selection of compatible
and potential synergistic strains. Synergistic interactions between
P. fluorescens and other plant mutualists are much more com-
mon than antagonistic interactions, but this may be due to a
bias in experimental studies to use species with prospects of pos-
itive interactive effects on biocontrol. Only the most promising
strains are selected and these are first tested for compatibility,
i.e., absence of in vitro inhibition (e.g., Sundaramoorthy et al.,
2012) or competition during root colonization (Prieto et al., 2011).
This approach probably provides a biased view of the effects
of interactions between mutualist species on plant defense. For
inoculation approaches this screening approach is very efficient,
but for understanding interactions between introduced P. fluo-
rescens with the resident biocontrol agents knowledge of a broader
range of species interactions is necessary. Application of single
P. fluorescens requires knowledge on potential interactions with
resident P. fluorescens and other organisms. At least 22 geno-
types of 2,4-DAPG-producing P. fluorescens have been detected
thus far; multiple isolates are found together in soils (Weller et al.,
2007) and thus interactions between resident and inoculated P.
fluorescens are likely to occur. Also other PGPR are widespread
and they can interact with introduced P. fluorescens. Those groups
that negatively affect P. fluorescens abundance (bacterivores and
other PGPR) may also trigger secondary metabolite production
in P. fluorescens (qualitative effect). Those secondary metabolites
such as 2,4-DAPG serve as defense compounds against preda-
tors but are also involved in ISR in plants (Weller et al., 2012).
Upregulation of such inducing compounds probably lowers the
threshold density necessary to induce ISR in plants. Garbeva et al.
(2011) showed how some PGPR increased secondary metabolites
production in P. fluorescens while other PGPR did not change
secondary metabolite production. This variation in interactions
allows for selection of compatible PGPR combinations, but pre-
diction of field effects due to interactions with resident species
will remain problematic. For most field situations there is no
knowledge of the resident P. fluorescens and other PGPR. The
fast developments in molecular techniques continuously improve
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FIGURE 1 | Simplified scheme of direct and indirect (plant-mediated)

effects of rhizosphere- and plant-associated organisms on interactions

between Pseudomonas fluorescens and host plant defenses. Arrows:
enhancing (positive) effects, lines ending with small vertical bars: suppressive
(negative) effects. For simplicity, reciprocal effects (effects of P. fluorescens
on other organisms) have not been included. Circled numbers refer to articles

describing the interactions: (1) Jin et al. (2010), (2) Gu (2009); Prieto et al.
(2011), (3) Elsherif and Grossmann (1996); Pedersen et al. (2009), (4) Walker
et al. (2012), (5) Combes-Meynet et al. (2011); Garbeva et al. (2011), (6) Elmer
(2009); Troxler et al. (2012), (7) Jousset et al. (2011), (8) Dicke et al. (2009);
Zhang et al. (2013), (9) Elbadry et al. (2006), (10) Jones et al. (2004), and
(11) Wurst (2010).

the resolution at which microbial community composition can
be assessed. Even when composition of the local bacterial com-
munity is known, this knowledge would be of little use when for
most species nothing is known about their potential interaction
with introduced P. fluorescens. Metagenomics and transcrip-
tomics will offer insight in activity and function of the micro-
biome, especially the recruitment and activation of beneficials
(Berendsen et al., 2012).

Both decomposers (Elmer, 2009; Troxler et al., 2012) and myc-
orrhizal fungi (Walker et al., 2012) can have positive effects on the
number of P. fluorescens cells in the rhizosphere. However, there
is only a single report for stimulation of P. fluorescens survival by
mycorrhizal fungi and hence the generality of this phenomenon
remains unclear. The exact mechanism of P. fluorescens stimula-
tion by decomposers and mycorrhiza is still unknown. However,
regardless of the mechanism, the positive effect of decomposers
and possibly mycorrhizal fungi on P. fluorescens abundance and
dispersal could be exploited by adapting management practices
to, e.g., stimulate earthworms by organic amendments. Tillage

and fertilization could be adapted to favor arbuscular mycor-
rhizal fungi. Apart from promoting PGPR, it is clear that there are
many other reasons why decomposers or arbuscular mycorrhizal
fungi are stimulated in agricultural soils, although such manage-
ment practises are often not yet adopted in intensive agricultural
systems.

Indirect effects via plant feedback comprise a multitude of
interactions. Decomposers and beneficial fungi may increase
nutrient availability and increase shoot and root growth (Laakso
and Setälä, 1999; Jones et al., 2004). The increased growth may
change plant defense and root exudation patterns and this, in
turn, can affect P. fluorescens populations (Jin et al., 2010). With the
recently increased awareness of the indirect effects of decomposers
on plant defense (e.g., Wurst, 2010), the interaction between P. flu-
orescens, plants, and plant–decomposer is a research area waiting
to be explored.

Although there certainly is interest in the control of mul-
tiple pests or pathogens simultaneously (Karthiba et al., 2010;
Senthilraja et al., 2010), most experiments thus far have tested
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the effect of P. fluorescens on control of pathogens separately.
Experiments, where the effect of one pathogen on the interac-
tion with another pathogen and P. fluorescens has been studied,
are scarce. Pathogens, mutualists, and pests with intimate relation-
ships with the plant such as aphids or cyst nematodes might be able
to synergize or antagonize the ISR-triggered responses through
interference with defense signaling or activation/repression of
downstream defenses. The pathogen Pythium ultimum can change
2,4-DAPG production by P. fluorescens (Jousset et al., 2011), but
it is currently unknown how that would affect a second attacker.
For insects, interspecific asymmetrical competition is frequently
found (Kaplan and Denno, 2007). Therefore, control of one insect
pest could result in an increase in abundance of another. Some
plant–nematode combinations are sensitive to P. fluorescens, but
not all (Timper et al., 2009). Thus, similar to insects, controlling
one nematode pest might affect the abundance of other nema-
tode species for example by changing competition for root space
(Brinkman et al., 2004). A single plant which is attacked by mul-
tiple herbivores, pathogens or herbivores and pathogens would
have to deal with a number of possible conflicting signals. A second
attacker could activate or repress downstream defenses induced by
a previous attacker (Dicke et al., 2009; Zhang et al., 2013). In this

respect the order by which a plant is attacked is crucial for plant
defense induction. Priority effects are receiving increasingly more
attention recently, also in the context of plant–soil interactions,
but mostly from the plant perspective. However, there is very little
empirical work on the interactions between P. fluorescens, a host
plant, and multiple attackers. In fact, empirical studies that exam-
ine how interactions between herbivores, pathogens, mutualists,
decomposers, or bacterivores affect plant–P. fluorescens interac-
tions in a full-factorial design are non-existing and can only be
addressed by individual-based models of plant-based multitrophic
species interactions, such as in Meyer et al. (2009). We conclude
that other rhizosphere inhabitants can greatly influence P. flu-
orescens and its interactions with the plant. However, there is
still a dearth of information about the effects of other species
on interactions between P. fluorescens and plant defense. Insight
into these interactions will contribute to improved performance
of biocontrol agents in the field.
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