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Insects and nematodes are the most diverse and abundant groups of multicellular animals
feeding on plants on either side of the soil–air interface. Several herbivore-induced
responses are systemic, and hence can influence the preference and performance of
organisms in other plant organs. Recent studies show that plants mediate interactions
between belowground plant parasitic nematodes (PPNs) and aboveground herbivorous
insects. Based on the knowledge of plant responses to pathogens, we review the emerging
insights on plant systemic responses against root-feeding nematodes and shoot-feeding
insects. We discuss the potential mechanisms of plant-mediated indirect interactions
between both groups of organisms and point to gaps in our knowledge. Root-feeding
nematodes can positively or negatively affect shoot herbivorous insects, and vice versa.
The outcomes of the interactions between these spatially separated herbivore communities
appear to be influenced by the feeding strategy of the nematodes and the insects,
as well as by host plant susceptibility to both herbivores. The potential mechanisms
for these interactions include systemic induced plant defense, interference with the
translocation and dynamics of locally induced secondary metabolites, and reallocation of
plant nutritional reserves. During evolution, PPNs as well as herbivorous insects have
acquired effectors that modify plant defense responses and resource allocation patterns
to their advantage. However, it is also known that plants under herbivore attack change
the allocation of their resources, e.g., for compensatory growth responses, which may
affect the performance of other organisms feeding on the plant. Studying the chemical
and molecular basis of these interactions will reveal the molecular mechanisms that are
involved. Moreover, it will lead to a better understanding of the ecological relevance of
aboveground–belowground interactions, as well as support the development of sustainable
pest management technologies.

Keywords: aboveground–belowground interactions, signaling interactions, systemic induced plant defense,

secondary plant compounds, herbivores

INTRODUCTION
Under natural conditions plants are constantly exposed to various
herbivorous organisms feeding on above- and belowground parts.
The influence of root-feeders on shoot defense and the patterns of
aboveground herbivory and vice versa remained unrecognized for
a long time (Kaplan et al., 2008a). Most of the earlier knowledge
on plant–herbivore interactions emanated from studies conducted
on leaf herbivory alone, thereby neglecting plant-mediated inter-
actions between the two herbivore communities (Johnson et al.,
2006). However, during the last decade, studies on the interac-
tions between these two spatially separated communities, below-
and aboveground herbivores, have substantially increased after sci-
entists began to realize that host plants are serving as mediators
of these interactions. The outcomes of such studies witnessed that
these herbivore communities rarely function independently, but
rather interact continuously with each other via their host plants
(Bezemer and van Dam, 2005; Kaplan et al., 2009). Belowground

feeding organisms such as insects, nematodes, root pathogens, and
ectomycorrhizal fungi are known to influence the concentration
of plant defense compounds such as terpenoids, glucosinolates, or
phenolics, both in the roots as well as in aboveground plant tissues
(Manninen et al., 1998; Bezemer et al., 2004; Kaplan et al., 2009;
van Dam, 2009).

Plant parasitic nematodes (PPNs) are so abundant and diverse,
that plants almost always interact with them during their lifetime
(Sohlenius, 1980). Recent studies have shown that due to their
omnipresence, PPN are a key driving force of plant succession
in natural environments (De Deyn et al., 2003). They also pose
a significant threat to global food production, with annual crop
losses due to PPN estimated to be more than a 100 billion US$
(Chitwood, 2003). Similarly, about half of all insect species feed
on plants (Schoonhoven et al., 2005). With only a few exceptions,
PPN are root-feeders, while the majority of insects feed on above-
ground plant parts, which have a higher nutritive quality than
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roots (Hunter, 2001; van Dam, 2009). Therefore, both groups
of herbivores are very suitable to investigate the mechanisms of
plant-mediated above–below ground interactions. Recently, the
first studies were performed that analyzed the interactions of
PPN and insects (Wardle et al., 2004; van Dam et al., 2005; De
Deyn et al., 2007; Wurst and van der Putten, 2007; Kaplan et al.,
2008a, 2009; Olson et al., 2008; Lohmann et al., 2009; Hong et al.,
2010; Vandegehuchte et al., 2010). It seems that the outcome of
the interaction between both groups of plant feeders can either
be negative or positive. However, the knowledge on the occur-
rence of interactions between these spatially separated herbivore
communities remains scattered and poorly documented. There-
fore, in this review we discuss the current knowledge on the
plant defense against PPN and herbivorous insects, present some
examples of the plant-mediated interactions between both groups,
indicate the gaps in knowledge and finally identify future research
directions.

FUNCTIONAL DIVERSITY OF NEMATODES AND INSECTS
It has been suggested that the feeding habit (functional guild)
of herbivorous insects and plant-parasitic nematodes involved
may be one of the factors that determine the outcome of plant-
mediate insect–nematode interactions (Mateille, 1994; van Dam
et al., 2003, 2005; Bezemer and van Dam, 2005; Wurst and van der
Putten, 2007). Therefore, it is important to discuss the diversity
in feeding habits of both groups of herbivores and the specific
process involved in each feeding habit.

NEMATODES
Although the basic body plan of all nematodes is highly similar,
the genetic diversity is enormous and reflects the long evolution-
ary trajectory of the phylum (Blaxter, 1998). Phylogenetic analysis
revealed that within the Nematoda, plant parasitism evolved at
least three times (Blaxter et al., 1998). However, all PPN have
common features that arose by convergent evolution to adapt to
plant parasitism (Hussey, 1989). They all possess a hollow pro-
trusible stylet that is used to puncture cell walls, inject secretions,
and ingest nutrients from the plant cell. The stylet secretions are
synthesized in unicellular pharyngeal glands that are much more
developed in PPN than in free living nematodes. According to their
feeding habit, PPN can be classified into ectoparasites, migratory
endoparasites, and sedentary endoparasites (Sijmons et al., 1994;
Tytgat et al., 2000).

Ectoparasitic nematodes do not enter the host tissues with their
body, but rather puncture plant cells using their stylet and feed on
the content of the cells. Depending on the species, feeding can
prolong for a few hours till several days. The size of the stylet
determines where and how the nematodes in this group feed.
Ectoparasitic nematodes with a short stylet (e.g., Trichodoridae,
Tylenchorhynchus spp.) often feed on root hairs and epidermal
cells, while those with a long stylet (e.g., Longidoridae, Belono-
laimus, Helicotylenchus spp.) feed on cortical or even endodermal
cells. They insert their stylet into the host cell, inject glandular
secretions that dissolve the cell content, and ingest the cytoplasmic
contents. Depending on the species, these actions lead to wound-
ing, extensive necrosis, or even gall formation of the root tissue
(Sijmons et al., 1994).

Migratory endoparasites are equipped with a robust stylet,
which renders them the ability to penetrate and continuously
migrate through the root while feeding on the cytoplasm of corti-
cal cells (Sijmons et al., 1994). With the exception of some shoot
parasites (Anguinidae and Aphelenchoididae), they all belong to
the family of Pratylenchidae (e.g., Pratylenchus spp., Radophulus
spp.). Migration inside the roots is aided by the release of cell wall
degrading enzymes via the stylet (Haegeman et al., 2012). Exten-
sive necrosis and sometimes galling or swelling of the root tissue
are typical symptoms that develop as a result of infection with
such nematodes.

Sedentary endoparasitic nematodes have the most evolved
interactions with their host. After root penetration and migra-
tion, they induce permanent feeding cells inside the vascular
cylinder. The best studied are the cyst nematodes and root-
knot nematodes (Hussey, 1989; Davis and Mitchum, 2005).
Freshly hatched juveniles penetrate the roots close to the root
tip, and migrate intracellularly (cyst nematodes) or intercellularly
(root-knot nematodes) toward the vascular cylinder. Also here,
migration is performed by vigorous stylet thrusting and secre-
tion of a mix of cell wall degrading enzymes (Davis et al., 2008;
Haegeman et al., 2012). After arrival at the vascular cylinder, they
puncture the cell wall of a certain cell and start repeated cycles of
stylet secretion release into the cytoplasm and ingestion of cyto-
plasmic content (Wyss, 2002). The initial feeding cell responds
with an extensive change in gene expression and morphology
(Gheysen and Fenoll, 2002; Caillaud et al., 2008). The cells become
hypertrophic and show a huge proliferation of all organelles. Root-
knot nematodes induce six to seven giant cells, which become
multinucleated by repeated mitosis without cytokinesis. In con-
trast, cyst nematodes induce a syncytium, which is formed by
cell wall dissolution of the initial feeding cell and fusion with the
neighboring cells. In clear contrast to the migratory endoparasitic
and ectoparasitic nematodes that mostly kill the cells on which
they feed, the sedentary endoparasitic nematodes maintain their
feeding cells healthy and metabolically active throughout their life
cycle. Once they started feeding, they even lose their locomotory
muscles, and become completely depended on the hypertrophic
cells for further development. Though the giant cells and the
syncytia are distinct in their development, functionally they are
similar in that they serve as transfer cells of nutrients derived from
the phloem (Offler et al., 2003; Hoth et al., 2005, 2008). While cyst
nematodes species show specificity for certain plant families, root-
knot nematodes such as Meloidogyne incognita for instance have
an extremely wide host range comprising almost all families of
flowering plants (Trudgill and Blok, 2001).

INSECTS
Based on their feeding habits herbivorous insects are classified
into leaf chewing, mining and boring, sap-sucking, gall induc-
ing, and seed predating (Schoonhoven et al., 2005; Gullan and
Cranston, 2010). The majority of leaf chewing insects belong to the
family Lepidoptera, Coleoptera, Orthoptera, and Hymenoptera.
Different developmental stages, such as the caterpillars of lepi-
dopterous (moths and butterflies), the larvae and adults (beetles)
of coleopterous insects and the nymphs and adults of orthopter-
ous insects feed on the leaves of plants. Other plant parts such as
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roots, shoots, stems, flowers, or fruits are also eaten by this group
of insects (Schoonhoven et al., 2005; Gullan and Cranston, 2010).

Larvae of plant mining and boring insects live and feed on
the internal tissues of plants. For instance, leaf mining insects
live and feed between the two epidermal layers of a leaf and ulti-
mately they leave behind a thin layer of dry epidermis (Connor
and Taverner, 1997; Sinclair and Hughes, 2010). The damage
due to this group of insects often appears as tunnels, blisters, or
blotches on the leaf. This leaf mining habit is confined only to
insects belonging to the orders Diptera, Lepidoptera, Coleoptera,
and Hymenoptera (Gullan and Cranston, 2010). Plant boring
insects exhibit a broad range of feeding habits, which can be
categorized based on the plant part they damage. These could
be stalk borers that attack grasses and more succulent plants;
wood borers feeding on twigs, stems, and/or trunks of woody
plants; borers that damage roots and belowground plant stor-
age organs such as tubers, corms, and bulbs; fruit borers that
destroy or reduce the reproductive output of many plants because
the larvae consume the fruit tissues (Schoonhoven et al., 2005;
Gullan and Cranston, 2010).

Typical for the sap-sucking insects are the modified mouth
parts that are fused to form a stylet (Labandeira, 1997). The
stylet is used to penetrate the host tissue, to inject saliva into the
host tissue and to retrieve sap from the plant. Depending on the
species, the stylet may penetrate superficially into a leaf or deep
into the plant tissue, following either intra- or intercellular paths
(Kaloshian and Walling, 2005). Because a different reaction toward
systemic plant responses can be expected, a functional distinction
should be made between cell content and phloem or xylem feeders.
Many Heteroptera and thrips feed on the cell content of epidermal
or parenchymal cells (Heming, 1993; Schoonhoven et al., 2005).
Phloem feeding is performed by most aphids, mealy bugs, soft
scales, psyllids, and leafhoppers, while spittle bugs and cicadas
feed on xylem sap (Gullan and Cranston, 2010). Because only
the stylet penetrates the plant tissue, sap-sucking insects inflict
less mechanical damage than leaf chewing or mining and boring
insects. However, some sap-sucking insect species may transmit
viruses or cause deformation and stunting of shoots (Schoonhoven
et al., 2005).

Gall-induction is another feeding habit of herbivorous insects.
Generally, galls are defined as pathologically developed cells, tis-
sues, or organs of plants that have arisen by hypertrophy (increase
in cell size) and/or hyperplasia (increase in cell number) as a result
of stimulation from foreign organisms (Redfern, 1997; Raman,
2012). The formation of the gall is believed to be beneficial to
the insects, rather than a defensive response of the plant to insect
attack (Stone and Schönrogge, 2003). Most galls serve as sinks
of plant assimilates, thereby, providing high quality food to the
insect (Bagatto et al., 1996; Koyama et al., 2004). Galls also pro-
vide a protective microenvironment to sedentary feeders such as
aphids and psyllids compared to normal plant surfaces. Some
galls are also known for protecting certain insects from their
parasitoids (Gullan and Cranston, 2010). Usually galls are ini-
tiated from young leaves, flower buds, stems, and roots. They
are rarely initiated on mature plant parts. Continued stimulation
of the cells of the plants by the insect determines the devel-
opment and growth of insect-induced galls. The involvements

of oral secretions, anal excreta, and accessory gland secretions
have been emphasized in the initiation and growth of galls. Sali-
vary substances such as amino acids, growth regulators, phenolic
compounds, and phenol oxidases may have a role in the forma-
tion of galls or in overcoming the plant defense (Schoonhoven
et al., 2005; Gullan and Cranston, 2010). The involvement of
plant hormones such as auxins and cytokinins in the forma-
tion of galls is very likely, though it is not clear yet whether
such hormones are produced by the insect or the plant under
attack (Raman, 2012). Genetic entities such as viruses, plasmids,
or transposons, which can be transferred from the insect to the
plant, may also play role in the formation of certain complex galls
(Gullan and Cranston, 2010).

MOLECULAR MECHANISMS OF PLANT IMMUNITY
Plants have several preformed physical (e.g., wax layer, trichomes)
and chemical (toxins) barriers, to ward off pathogens and herbi-
vores. In case these barriers are overcome by the attackers, plants
activate a multilayered innate immune system to suppress the
infection (Jones and Dangl, 2006). Most of our knowledge about
the plant immune system is derived from studies on plant interac-
tions with pathogens (bacteria, viruses, fungi). Now that insights
in the herbivore–plant and nematode–plant interactions begin to
appear, it becomes clear that although there are several speci-
ficities in these interactions, also considerable similarities with
pathogen-induced plant responses exist (Kaloshian and Walling,
2005). Therefore, the knowledge about the molecular mechanisms
involved in plant responses to pathogens cannot only help to
interpret the observations on nematode and herbivore plant inter-
actions, but also provide inspiration for new experiments. Hence,
before discussing the nematode–plant and herbivore–plant inter-
actions, we give a brief overview of the basic mechanisms of plant
immunity against pathogens.

The first layer of plant’s innate immunity consists of a system
that is directed against so called pathogen- or microbe-associated
molecular patterns (PAMPs or MAMPS), which are conserved
molecules characteristic for a big phylogenetic group of pathogenic
and non-pathogenic microbes and are often located at the exter-
nal surface (e.g., fungal chitin or bacterial lipopolysaccharides).
PAMP-triggered immunity (PTI) starts with detection of these
PAMPs by pattern recognition receptors, which are transmem-
brane proteins located at the cell surface. They typically consist
of an extracellular leucine-rich-repeat, a transmembrane domain,
and a cytoplasmic kinase domain (Nurnberger and Kemmerling,
2006; Zipfel, 2008; Monaghan and Zipfel, 2012). Binding of these
immune receptors to PAMPs causes a cellular signal cascade of
ion influxes and mitogen-activated protein (MAP) kinase activa-
tion resulting in production of reactive oxygen species, changes
in gene expression and cell wall reinforcements (Schwessinger
and Zipfel, 2008; Antolin-Llovera et al., 2012; Schwessinger and
Ronald, 2012). In response to the plant defenses, pathogens and
herbivores have in turn evolved several mechanisms to evade or
suppress the plant’s innate immune system (Jones and Dangl,
2006). This is accomplished by secretion of proteins, the so-
called “effectors.” Besides evasion or suppression of the host
defense system, effectors can also be involved in manipulation
of the host developmental program, for example when galls are
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formed (Gheysen and Mitchum, 2011). In the course of evolution,
plants have developed a second layer of immunity that responds
to the presence of these effectors and is called Effector-triggered
immunity (ETI). The immune receptors for ETI, called resistance
(R) proteins, consist of a leucine-rich-repeat domain attached to a
nucleotide binding domain with a coiled–coiled or toll-interleukin
receptor N-terminal domain (van Ooijen et al., 2007). They are
mostly located inside the cytoplasm, but a few also reside on
the plasma membrane with their leucine-rich-repeat facing the
apoplast. ETI results in a very fast defense response at the site of
invasion, which is marked by a rapid calcium and potassium influx,
activation of MAP kinase pathways, formation of reactive oxygen
species, and ultimately a local programmed cell death, also known
as the hypersensitive response (Jones and Dangl, 2006; Spoel and
Dong, 2012). Neighboring cells respond by producing toxic com-
pounds and strengthening of their cell walls. An ETI response is
much stronger than a PTI response and often blocks the pathogen
at the site of invasion.

Originally, it was thought that R proteins interact directly with
a certain effector. Because effectors are very species specific, ETI
would only be effective against closely related strains of pathogens
or herbivores, while PTI is directed against a broader phylogenetic
range of pathogens and herbivores possessing conserved PAMPs.
Although there are some examples of R proteins directly interact-
ing with effectors, recent insights suggest that the majority of the
R proteins monitor modifications caused by the effectors on own
proteins (Jones and Takemoto, 2004; van der Hoorn and Kamoun,
2008). This guarding of self-proteins has the advantage that with
a limited number of R proteins the activity of numerous effec-
tors can be sensed. Indeed, whole genome sequencing of several
plant species demonstrated that the number of different R pro-
teins is much smaller than the number of effectors that they can
encounter after attack by different species of pathogens and her-
bivores (Goff et al., 2002; Meyers et al., 2003). Protein interaction
studies have also shown that effectors tend to be mostly directed
against the same “hubs” in the immune reaction signaling pathway
(Mukhtar et al., 2011), and therefore guarding the modification of
a limited number of these hub self-proteins by the R proteins
is sufficient to provide resistance against a broad spectrum of
invaders.

Induction of PTI and ETI also lead to activation of hormonal
signaling pathways, such as the salicylic acid (SA), jasmonic acid
(JA), and ethylene (ET) pathway. In general, the SA pathway is
induced by biotrophic pathogens, while the JA and ET pathways
are induced by wounding or necrotrophic pathogens (Pieterse and
van Loon, 1999). However, recent experiments with the pathogen
Pseudomonas syringae have demonstrated that all three hormonal
pathways are important for PTI as well as ETI (Tsuda and Kata-
giri, 2010). The authors propose a model whereby plants would
initially activate all three pathways at low levels, and when the
pathogen remains, priority would be given to the most effec-
tive pathway only later (Katagiri and Tsuda, 2010). Crucial in this
model are indications that the three hormonal pathways consist of
several sectorial signaling cascades, whereby some of these sectors
are shared between the different hormonal pathways. Depend-
ing on the kind of pathogen, the plant would strongly activate
those signaling sectors that are the most efficient in suppressing

the intruder. It’s an intriguing idea and would explain why each
pathogen or herbivore species seems to induce a different but par-
tially overlapping transcriptome profiles that strongly depend on
their feeding habit (De Vos et al., 2005; Bidart-Bouzat and Klieben-
stein, 2011). Although it still needs to be investigated whether
this holds true for other pathogens and herbivores as well, this
initial low level activation of all three pathways could have signif-
icant implications for consecutive infections with other pathogen
species.

SYSTEMIC INDUCED RESISTANCE
In addition to the local PTI and ETI responses, a systemic response
occurs. This systemic response, for which the signal is not always
known, can either directly alter the defensive state of the undam-
aged organs, or it can “prime” or prepare distant tissues for
upcoming attacks. Typical for the primed state is a stronger and
faster cellular immune response after a second infection (Con-
rath et al., 2002, 2006). While the exact molecular mechanism of
priming is not completely resolved yet, it probably is based on epi-
genetic modifications that suppress or enhance the transcription of
key regulators of the immune response (Bruce et al., 2007; van den
Burg and Takken, 2009). A well-known example of priming is the
enhanced broad spectrum resistance against pathogens and her-
bivores after infection with beneficial soil microorganisms, such
as plant growth promoting bacteria and mycorrhizal fungi (Van
Wees et al., 2008).

Similar to the local responses, systemic induced defense
responses are mainly controlled by the plant hormones SA, JA,
and ET (Pieterse et al., 2012). Recently, it was discovered that
the JA pathway consists of two antagonistic branches (Verhage
et al., 2011). The first branch, activated by herbivorous insects, is
controlled by the MYC2 transcription factor and – in Arabidopsis
thaliana – is characterized by the strong induction of the marker
gene VSP2. The second branch, called the ERF branch, provides
resistance against necrotrophic pathogens in A. thaliana and is
controlled by the ORA59 transcription factor with PDF1.2 as the
marker gene.

Considerable cross-talk occurs between the different hormonal
pathways (Bostock, 2005; Pieterse et al., 2012). In general, SA is
known to suppress the JA pathway (Spoel et al., 2003). This can
lead to trade-offs in the defense responses when plants are attacked
simultaneously by different pathogens. For instance, prior infec-
tion with the SA-inducing biotrophic pathogen Hyaloperonospora
arabidopsidis suppresses the JA-controlled defense against cater-
pillars of Pieris rapae (Koornneef et al., 2008). However, this
antagonistic interaction between SA and JA seems to be depen-
dent on the concentration of both hormones, whereby a low
concentration of both results in a synergistic effect, while high
concentrations lead to antagonism (Mur et al., 2006). The SA–
JA antagonism seems also to be dependent on the time that has
passed between the induction of both hormonal pathways (Koorn-
neef et al., 2008). Moreover, ET signaling prevents SA-mediated
suppression of the JA pathway (Leon-Reyes et al., 2010).

Systemic induced defense signaling ultimately results in the
activation of a wide range of different defensive traits. These could
be morphological changes (e.g., formation of trichomes), produc-
tion of defensive proteins (e.g., chitinase, proteinase inhibitors)
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or toxins (phytoalexins, alkaloids, glucosinolates), or release of
volatiles that either have a repellent effect or attract predators of
the attacking herbivores (Bezemer and van Dam, 2005; Kaplan
et al., 2008a; Dicke et al., 2009).

PLANT DEFENSE AGAINST NEMATODES
LOCAL DEFENSES AGAINST NEMATODES
Because many PPN species invade the host and remain inside
for several weeks to months, they inevitably expose themselves
to being detected by PAMP immune receptors. The nematode
body is protected on the outside by a cuticle consisting of highly
conserved collagens, which may serve as cues (epitopes) for the
plant’s defense system. However, until now no PAMP receptors
have been identified that are directed against conserved epitopes
of PPN. Most likely, this is due to several strategies developed
by nematodes to evade or suppress PTI (Nobre and Evans, 1998;
Davies and Curtis, 2011). First, once inside the plant root, the
developing nematodes undergo three consecutive molts. The com-
position of the new cuticle changes after each molt, thereby
creating a new challenge to the plant immune system. Second,
the nematode cuticle is covered by a carbohydrate-rich surface
coat that is constantly shed and changes in composition, thereby
creating a moving and variable target for the plant immune sys-
tem. Third, the surface coat contains lectin-like proteins, which
are capable of binding plant carbohydrates (Spiegel et al., 1995).
Although not directly demonstrated, it might well be that, just
like animal parasitic nematodes (Blaxter et al., 1992; Maizels et al.,
2001), PPN cover themselves with host derived carbohydrates and
thereby prevent being recognized by the plant immune system as a
non-self-entity.

Despite the strategies to avoid recognition, nematode invasion
also activates the plant’s immune response. As early as 12 h after
root penetration by the root-knot nematode Meloidogyne incog-
nita, which is still during the root migration phase (Wyss et al.,
1992), peroxidases, cell wall modification enzymes, LOX genes,
and proteinase inhibitors were induced (Gheysen and Fenoll,
2002). Production of reactive oxygen species, callose deposition,
and cell wall thickening were also observed during cyst nematode
root migration (Waetzig et al., 1999). Whether these resemble typ-
ical wounding responses controlled by JA or PTI induced by PAMP
detection remains to be investigated. Because endoparasitic PPN
are armed with a robust stylet and a cocktail of cell wall degrading
enzymes, cell wall thickening is certainly not sufficient to provide
complete resistance against PPN. Nevertheless, root inoculation
experiments with sedentary endoparasitic juveniles clearly show
that only a fraction of them succeeds in penetrating the roots
and reach the vascular cylinder where they can induce a feeding
site (Wyss et al., 1992; Tytgat et al., 2002). Moreover, even a weak
PTI defense might generate a first systemic signal and prime for a
stronger defense at later time points against the same or different
pathogens or herbivores.

Numerous effectors have been identified in different PPN by
RNA profiling, EST (expressed sequence tag) or whole genome
sequencing (Vanholme et al., 2004; Abad et al., 2008; Davis
et al., 2008; Opperman et al., 2008; Bellafiore and Briggs, 2010;
Haegeman et al., 2012). In a recent experiment, mass spectro-
metric analysis of nematode secretory proteins identified 486

proteins secreted by pre-parasitic M. incognita juveniles, which
illustrates the complexity of the effector repertoire used by nema-
todes (Bellafiore et al., 2008). Numerous effector proteins are
cell wall degrading enzymes such as cellulases, pectate lyases,
polygalacturonases, xylanases, and expansins. They are found
in ectoparasitic, migratory, and sedentary endoparasitic nema-
todes and are involved in cell wall softening mainly during root
migration. Several secreted enzymes, such as glutathione perox-
idase and peroxiredoxin, protect against reactive oxygen species
that may be formed in response to infestation (Jones et al., 2004;
Dubreuil et al., 2011). In the potato cyst nematode Globodera ros-
tochiensis a protein called SPRYSEC19 was identified that blocks
the activation and consecutive hypersensitive response of several
know resistance proteins (Postma et al., 2012). Other effectors are
thought to suppress SA or JA production or interfere with the
plant’s ubiquitin-proteasome pathway (Haegeman et al., 2012).
The latter is a mechanism that is often used by pathogens to sup-
press the plant immune system (Angot et al., 2007). Specific for the
sedentary nematodes are also numerous proteins that are thought
to be involved in feeding cell induction (Davis et al., 2008; Gheysen
and Mitchum, 2011; Haegeman et al., 2012).

Several R genes are identified in different plant species that ren-
der resistance against sedentary endoparasitic cyst and root-knot
nematodes (Tomczak et al., 2009). None of them seems to be effec-
tive during the root migration phase of the nematode, but rather
block the development of the feeding site, where after the nema-
tode dies due to starvation (Bakker et al., 2006). Interestingly, the
tomato Mi-1 R protein that renders resistance to root-knot nema-
todes (Meloidogyne spp.) also provides resistance to potato aphids
(Macrosiphum euphorbiae) and whiteflies (Bemisia tabaci; Rossi
et al., 1998; Vos et al., 1998; Nombela et al., 2003). It was demon-
strated that this ETI resistance requires SA, but not JA (Branch
et al., 2004; Li et al., 2006; Bhattarai et al., 2007, 2008). Strikingly,
host plants without the Mi-1 gene were more susceptible in a choice
experiment to potato aphids when the JA pathway was blocked
(Bhattarai et al., 2007). However, no effect of JA on the fecundity
or survival of the potato aphids was found. This illustrates that in
the absence of Mi-1-conferred ETI, plants still can have another
form of defense, in this case a JA-dependent defense that renders
them less attractive to the aphids.

SYSTEMIC INDUCED RESPONSES AFTER NEMATODE INFESTATION
While several gene expression studies have been performed on
PPN-infected plants, most of them were designed to analyse
the local response, mainly feeding site development of sedentary
endoparasitic nematodes. Only recently a few studies have been
published providing information on the systemic induced defense
after PPN infection. A microarray analysis of A. thaliana after
infection with the cyst nematode Heterodera schachtii revealed a
strong induction of VSP2, a marker gene for the MYC2 branch
of the JA defense pathway, in the whole root system at day 3
after nematode inoculation (Puthoff et al., 2003). At that time
point, juveniles have penetrated the roots and reached the vas-
cular cylinder where they just have started inducing the feeding
site. Transcriptome analysis during a time course experiment
(6 h till 8 days after infection) of soybean with the soybean
cyst nematode, Heterodera glycines, also found a clear induction
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of the JA pathway in the whole root system at all time points
(Alkharouf et al., 2006). A similarly clear systemic induction of
the JA pathway in soybean roots was observed at day 2, 5, and 10
after H. glycines infection (Ithal et al., 2007a), however, locally in
the developing syncytia the JA-controlled defense was suppressed
(Ithal et al., 2007b).

A comparison of systemic defense signaling after rice infec-
tion with a root-knot nematode and a migratory endoparasitic
nematode was performed (Kyndt et al., 2012). Infection with the
migratory endoparasitic nematode Hirschmanniella oryzae acti-
vates a systemic JA and ET signaling at day 3, while the SA
pathway is suppressed. However, by day 7 the JA and ET sig-
naling is repressed again. At day 3, infection with the root-knot
nematode Meloidogyne graminicola activates in the systemic root
tissue SA and JA, but suppresses ET. By day 7, also the JA path-
way is largely suppressed. In contrast, in the shoot tissue all three
hormonal defense pathways are suppressed already at day 3 by
this nematode. Foliar application of the hormones SA, JA, or
ET and mutants analysis showed that M. graminicola is mainly
sensitive to a JA- and ET-induced defense, but only slightly to
SA-induced defense, while H. oryzae was sensitive to all the
defenses controlled by all three hormones (Nahar et al., 2011;
Nahar et al., 2012). In tomato plants, spraying with methyl jas-
monate also results in a lower infection rate of M. incognita
(Fujimoto et al., 2011).

Similar observations of an early shoot defense suppression after
M. incognita infection were performed in A. thaliana where several
marker genes for the SA and JA pathway were measured after 5
till 14 days (Hamamouch et al., 2011). In the roots, M. incognita
infection of A. thaliana strongly induces the SA-controlled defense
at day 9 and 14, but not at day 5. In addition, a weak response of
JA-controlled defense markers was observed at day 9. A. thaliana
infection with the cyst nematode H. schachtii strongly induces the
SA, but not the JA marker genes in the roots starting from day 5.
In the shoots, however, also some JA marker genes are induced.
Moreover, SA-deficient A. thaliana mutants exhibit an increased
susceptibility to H. schachtii, whereas ectopic application of SA
renders wild type plants less susceptible (Wubben et al., 2008). In
conclusion, sedentary endoparasitic nematodes seem to initially
induce the JA, ET, and SA pathways, but very quickly, especially
after M. incognita infection, parts of these pathways are repressed
again.

PLANT DEFENSES AGAINST INSECTS
Insect herbivore-induced immune responses have been reviewed
extensively recently (Hilker and Meiners, 2010; Wu and Baldwin,
2010; Arimura et al., 2011; Bonaventure et al., 2011; Hogenhout
and Bos, 2011; Kim et al., 2011; Erb et al., 2012; Kerchev et al., 2012;
Mithofer and Boland, 2012; Smith and Clement, 2012). Therefore,
we only summarize the main points that are essential for under-
standing how interactions between root-feeding nematodes and
shoot-feeding herbivores may occur.

Similar to pathogens, insect herbivores are also detected in two
ways. First, wounding by chewing insect causes a release of cel-
lular components that are otherwise compartmentalized. Some
of these components act as elicitors of defense reactions and are
called damage-associated molecular patterns (DAMPS; Boller and

Felix, 2009; Koo and Howe, 2009). Second, herbivore elicitors
present in oral or ovipositor secretions, called herbivore-associated
molecular patterns (HAMPS), are detected by the plant (Mithöfer
and Boland, 2008).

Both DAMPS and HAMPS may trigger the production of a
plethora of plant defense responses, ranging from increases in
morphological defenses, such as trichomes (Mathur et al., 2012)
or chemical defense, such as phenolics, alkaloids, terpenoids, or
glucosinolates (van Dam et al., 2009; Turlings et al., 2012). These
induced responses may directly contribute to plant resistance by
deterring herbivore feeding or indirectly by attracting the herbi-
vores’ enemies, e.g., predators and parasitoids, to the plant (Dicke
et al., 2009). Which of the many defense compounds are produced
upon damage – and thus the effect on the herbivore or its para-
sitoids – is determined early in the induction process by cross-talk
between the JA, SA, and ET pathways. It is thought that cross-
talk between signaling pathways is essential for the fine-tuning
of plant responses to specific attackers. Each herbivore species
may elicit a specific signal signature, which triggers the tran-
scription of distinctive sets of genes (De Vos et al., 2005; Diezel
et al., 2009; Verhage et al., 2011). The feeding strategy of the her-
bivores may greatly co-determine the transcription profile after
induction: both specialist and generalist aphids induce transcrip-
tion profiles in A. thaliana that are more similar to each other
than to the transcription profiles induced by different species
of caterpillars (Bidart-Bouzat and Kliebenstein, 2011). Similar
as for pathogen-induced defense responses, herbivore-induced
defense responses are often systemic thus affecting the prefer-
ence and performance of other herbivores feeding elsewhere on
the plant (Bezemer and van Dam, 2005; Kaplan et al., 2008a,b;
Rasmann et al., 2011).

CHANGES IN PRIMARY METABOLISM
In addition to the increased production of defense compounds,
herbivore- and pathogen-induced responses may also alter the
plant’s primary metabolism, and, consequently, the preference
and performance of root and shoot herbivores feeding on the
plant. Several recent studies investigated the induced changes
of resource allocation after herbivore attack or application of
defense-related hormones. Radio-actively labeled CO2 was used
to track assimilated carbon in Populus spp. after JA treatment
of the leaves (Babst et al., 2005). An increased export of photo-
synthate toward the stem and roots was observed. An increased
allocation of photosynthate to the roots was also observed in Nico-
tiana attenuata after simulated herbivory (Schwachtje et al., 2006).
In tomato, JA treatment of the leaves resulted in an increased
export of photosynthate and amino acids out of the treated leaves
and resulted in an increased amino acid content in the roots
(Gómez et al., 2010).

A comparison of leaf and root JA application showed that leaves
had a lower total sugar and amino acid concentration after leaf JA
application, but only a lower total amino acid concentration after
root JA application (van Dam and Oomen, 2008). Measurement
of 56 primary metabolites in different tissues of tomato after her-
bivory with two caterpillar species demonstrated rapid changes
that are tissue and herbivore species specific (Steinbrenner et al.,
2011). Also PPN seem to influence the primary metabolism of
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its host. Metabolic analysis after infection with the cyst nema-
tode H. schachtii resulted in decreased amino acid levels in the
shoots, but a higher concentration of glyceric acid, gluconic acid,
trehalose, 1-kestose, and raffinose (Hofmann et al., 2010).

It is suggested that this change in primary metabolites after her-
bivore or pathogen infection can have several reasons (Schwachtje
and Baldwin, 2008): (i) primary metabolites are used to syn-
thesize defensive secondary metabolites (Smith and Stitt, 2007;
Bolton, 2009), (ii) reallocation of resources away from the site of
attack my safeguard them for future plant regrowth (Utsumi and
Ohgushi, 2007; Steinbrenner et al., 2011), (iii) primary metabo-
lites, such as trehalose, may serve as a signal in the defense
pathway (Ahn and Lee, 2003; Bolton, 2009), (iv) primary metabo-
lites may have a defensive function themselves (Lou and Baldwin,
2004). Moreover, recent findings indicate that insect herbivory
reduces photosynthesis by transcriptional reprograming as well
as physiological mechanisms (Kerchev et al., 2012). We there-
fore suggest that when investigating plant-mediated interactions
between different pathogens or herbivores, not only defense
mechanisms should be considered, but also changes in primary
metabolism. For instance, a change in the amino acid or sugar
content of the phloem sap could have significant effects on aphid
performance.

ABOVEGROUND–BELOWGROUND INTERACTIONS BETWEEN
NEMATODES AND INSECT HERBIVORES
As discussed above, there is clearly a scope for interactions between
belowground PPN and aboveground herbivores feeding on the
same plant. Most of the plant responses induced by either of these
herbivore classes are systemic and moreover the induced responses
are governed by the same signaling pathways. The feeding strategy
of the nematodes, the degree of host plant susceptibility to her-
bivores and the identity of shoot herbivorous insects have been
suggested as important factors determining the outcome of inter-
actions between root-feeding nematodes and shoot herbivorous
insects as these may differentially influence the responses of the
host plants to attackers (Mateille, 1994; van Dam et al., 2003, 2005;
Bezemer and van Dam, 2005; Wurst and van der Putten, 2007).
The penetration, migration, induction of feeding sites, forma-
tion of lesions, cell death, and other infection processes caused by
nematodes and the different feeding habits of herbivorous insects
(leaf chewing, sap-sucking, leaf mining and boring, and gall-
induction) may elicit different hormonal regulatory responses in
their host plants. These differential host responses in turn may
lead to different systemic induced responses and thereby have
differential effects on herbivores feeding on the other plant com-
partment. Based on what is currently known about plant responses
to different species of nematodes, it has been postulated that
migratory endoparasitic and ectoparasitic nematodes influence
the host plant’s immune system to a lesser extent than sedentary
endoparasites (Mateille, 1994; Zinov’eva et al., 2004; Bezemer and
van Dam, 2005). This would mean that the effects of sedentary
nematodes on aboveground herbivores would be greater than that
of migratory nematodes. However, there is little concrete experi-
mental evidence that this is the case. Here, we rather suggest that
each nematode species can significantly affect their host plant’s
defense equally strong, but that the direction of the effects on the

aboveground herbivores differ depending on the feeding strategy
and species of the nematode.

In the last decade, empirical evidence on the occurrence of
plant-mediated interactions between root-feeding nematodes and
aboveground herbivorous insects are accumulating (Table 1). van
Dam et al. (2005) reported that the quality of black mustard,
Brassica nigra, for the shoot herbivore Pieris rapae decreased as a
result of root herbivory by the migratory endoparasitic nematode
Pratylenchus penetrans. The reduced performance of the cater-
pillar was attributed to the enhanced production of phenolics
and glucosinolates following root- and shoot-feeding (van Dam
et al., 2005).

In a microcosm experiment, the PPNs, which mainly consisted
of ectoparasites and migratory endoparasites, caused a reduced
fecundity of the aphids Rhopalosiphum padi feeding on Agrostis
capillaris and Anthoxanthum odoratum (Bezemer et al., 2005).
A lower amino acid content was observed in the phloem sap of
the nematode-infected plants, and was probably one of the causes
of this decreased aphid performance. A study on Plantago lanceo-
lata also documented negative aphid–nematode interactions with
lower aphid fecundity on plants attacked by the nematode P. pene-
trans (Wurst and van der Putten, 2007). Herbivory by P. penetrans
decreased the number of offspring produced by the aphid Myzus
persicae by 43.8%. The authors suggested that the nematodes
might have affected the aphids via changes in the nutritional qual-
ity of the aboveground plant parts and possibly via the induction
of the same plant defense pathways as those induced by aphids.
The latter idea finds support in the fact that the Mi-1 gene con-
fers resistance to root-knot nematodes as well as aboveground
sucking insects such as white flies and aphids (Vos et al., 1998;
Kaloshian, 2004). The possibility of priming is also raised as
the earlier infection with nematodes might have enhanced the
defense against the subsequent attackers (aphids). Also cell content
feeding spider mites (Arthropoda) showed a reduced fecundity
when feeding on P. penetrans-infected Phaseolus vulgaris plants
(Bonte et al., 2010).

The influence of an infection with sedentary endoparasitic
nematodes on sap-sucking insects is rather variable. An infec-
tion with H. schachtii of Beta vulgaris or Brassica oleracea resulted
in a reduced growth and fecundity of Brevicoryne brassicae and
M. persicae (Hol et al., 2010). M. persicae also showed a reduced
growth rate and fecundity when feeding on M. incognita-infected
Nicotiana tabacum (Kaplan et al., 2011). In contrast, no effect on
the performance of B. brassicae was found by an infection of B.
oleracea with a mix of different root parasitic nematode species
(Kabouw et al., 2011). In A. thaliana, a simultaneous inoculation
with the sedentary endoparasitic nematode H. schachtii and the
aphid B. brassicae was performed (Kutyniok and Muller, 2012).
No effects of the nematode infection were observed on the aphid
performance at day 3. In contrast, a lower number of nematodes
were found on the aphid-infested plants compared to control
plants. Hong et al. (2010) studied the effects of soybean plant
infection with soybean cyst nematode (H. glycines) on the pref-
erence and performance of soybean aphid (Aphis glycines; Hong
et al., 2011). Soybean aphids prefer uninfected plants compared to
plants infected with soybean cyst nematode. However, the effect
of soybean cyst nematode on the performance of aphids was not
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significant in one set of experiments and significant in another
experiment. Ultimately, the authors concluded that soybean cyst
nematode primarily influences the behavior of soybean aphid
more than its performance. Similarly, in a controlled microcosm
experiment conducted on Marram grass, Ammophila arenaria,
the aphid Schizaphis rufula showed a lower preference for plants
infected with mix of Pratylenchus brzeskii, Meloidogyne and Het-
erodera sp. (Vandegehuchte et al., 2010). However, in the field no
significant correlations between the abundances of the two groups
of herbivores were detected. The authors argue that in the field,
other variables related to plant vitality and water content structure
herbivore populations.

Different results were also obtained when studying the plant-
mediated effects of sedentary endoparasitic nematodes on leaf
chewing insects. In a field study, a higher number of Heli-
coverpa zea larvae was found when Glycine max plants were
infected with H. glycines (Alston et al., 1991). Kaplan et al.
(2008a) reported that belowground herbivory by the root-knot
nematode M. incognita on tobacco plants increased the larval
weight of the aboveground generalist caterpillar Trichoplusia ni
by 29%, whereas herbivory by the same nematode did not
significantly affect the performance of the specialist caterpil-
lar Manduca sexta. As plants in the genus Nicotiana produce
alkaloids such as nicotine for constitutive and induced defense
against aboveground herbivores (Steppuhn et al., 2004), this facil-
itation effect of nematode herbivory on aboveground herbivorous
insects may result from interference of nematode feeding with
the transport and biosynthesis of nicotine which takes place in
the roots. This is supported by the higher (>2 times) con-
centration of leaf nicotine in control plants when compared to
M. incognita-infested plants (Kaplan et al., 2008a). Furthermore,
nematode root herbivory on nicotine producing plants increases
the weight gain of the caterpillar Spodoptera exigua, whereas the
performance of the caterpillar on nicotine-deficient plants is not
affected as a result of root herbivory by nematodes (Kaplan et al.,
2008a). The same authors have also noticed that nematode-free
plants respond to caterpillar feeding by inducing higher lev-
els of nicotine whereas nematode-infected tobacco plants are
impaired in their ability to induce nicotine levels upon larval
feeding.

Contrary to the above cases, Olson et al. (2008) reported that
root herbivory by the root-knot nematode M. incognita has little
influence on the direct and indirect induced defense of cotton,
Gossypium hirsutum, against insect herbivory. In this study, the
levels of gossypol and gossypol-like compounds, and the emis-
sions of induced local and systemic volatiles were measured in
cotton plants that are exposed to either the foliar feeder H. zea,
the root-feeding nematode M. incognita or their combination.
The attraction of the parasitic wasp Microplitis croceipes to plants
exposed to the different treatments was also investigated. Local and
systemic induction of volatiles that attract the parasitoid M. cro-
ceipes occurred two days after leaf herbivory, and an increased level
of herbivore-induced volatiles was recorded from plants infested
by nematodes. However, these differences in induced volatile emis-
sions did not affect the attraction of M. croceipes: plants with
nematodes and an aboveground herbivore were equally attractive
as plants with caterpillar damage only. None of the treatments led

to changes in gossypol and gossypol-like compounds in leaf or
root tissues. Also no effects were found on Pseudoplusia includens
caterpillar development by a M. incognita infection on Glycine max
(Carter-Wientjes et al., 2004).

While the above examples illustrate the influence of PPN
on aboveground feeding insects, leaf feeding insects in turn
can also influence PPN performance. Using field surveys and
experimental field studies, it was demonstrated that nematode per-
formance was influenced by the aboveground insect feeding guild
on tobacco plants (Kaplan et al., 2009). This study shows that posi-
tive interactions between nematodes and leaf chewing insects (e.g.,
caterpillars) predominate, whereas negative interactions occur
with sap-feeding insects (e.g., aphids). Overall, insect defoliated
plants had a 41% higher numbers of tobacco feeding nematodes
in the rhizosphere compared to insect-free plants (Kaplan et al.,
2009). The total numbers of nematodes were lower in the rhizo-
sphere of aphid-infested plants, but the effects differed between
nematodes species. The ectoparasitic nematode Tylenchorhynchus
was less abundant whereas the density of Pratylenchus remained
unaffected by aphid herbivory. Similarly, an increased number of
H. glycines and M. incognita were found on G. max when they were
defoliated by P. includes or H. zea caterpillars (Russin et al., 1989;
Alston et al., 1993; Russin et al., 1993). In contrast, stalk boring
by Ostrinia nubilalis resulted in a reduced number of M. incog-
nita penetrating the roots of Zea mays (Tiwari et al., 2009), while
defoliation by Romalea guttata had no effect on the number of
nematodes (Fu et al., 2001).

The above mentioned plant-mediated interactions between
root-feeding nematodes and leaf herbivorous insects are summa-
rized in Table 1. Although many more data are needed to draw any
real conclusions, the outcome of the interaction seems indeed to
be at least partially determined by the feeding habits. For instance,
migrating endoparasitic nematodes (e.g., Pratylenchus sp.) cause a
reduced aphid fecundity, while sedentary endoparasitic nematodes
(e.g., Heterodera, Meloidogyne) rather decrease the attractiveness
of the plants for these sap-sucking insects, but can have a vari-
able influence on the aphid performance. This example illustrates
also that when studying plant-mediated interactions between
nematodes and insects all different possible plant responses
against infestation should be considered. It would for instance
be interesting to know how a nematode infection influences
the oviposition preference of Lepidoptera. Moreover, because
indirect defenses, such as attraction of parasitoids and preda-
tors, are important mechanisms of plants to deal with herbivore
infections, plant-mediated interactions between nematodes and
herbivorous insects should preferably be studied in a multitrophic
environment.

CONCLUSIONS AND FUTURE OUTLOOK
Given the high abundance of both groups of herbivores in the field,
plants will inevitably encounter both root-feeding nematodes and
aboveground feeding insects in their lifetime. Both types of herbi-
vores will elicit induced defenses responses, and possibly also shifts
in primary metabolites, that are systemic throughout the plant.
It is therefore likely that PPN and aboveground insects interact
with each other via systemic induced responses in the plant. The
evidence for these interactions is slowly accumulating. Given the
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observed induction of SA, JA, and ET defense signaling pathways
and a partial repression of them later on by the sedentary PPN, it
is hard to predict the outcome of a combined infection with PPN
and herbivorous insects. Therefore, a more detailed analysis of the
plant-mediated interactions between PPN and insects is necessary
to better understand how plants integrate the induced responses
that are triggered by these different groups of herbivores. This
knowledge will also lead to new insights in the regulation of plant-
induced responses under multiple attacks, as is common in natural
environments. Moreover, analyzing the molecular responses of
plants challenged with a combined infection of root parasitic
nematodes and shoot herbivores will provide us with new insights
on the mechanisms of root-shoot communication. A systems-
biological approach, whereby a detailed transcriptomic analysis
of the systemic induced defense responses against nematodes and
insects in roots and shoots is complemented with metabolic mea-
surements, is necessary to obtain the most comprehensive view
on the causes and consequences of double infestations. Surely,
the model species A. thaliana could be used to investigate certain

molecular mechanisms, but the small size and the short life cycle of
this model plant makes it rather unsuitable to perform long-term
investigations of the direct and indirect defense strategies of plants
against these herbivores. Recent advances in genomic analysis of
other relevant host plants such as Brassica spp., tomato, and potato
should make this kind of studies feasible on a more realistic time
scale.

Another issue to be resolved is the validity of lab-based experi-
ments for processes in the fields. Therefore we suggest performing
the laboratory experiments in such a way that they mimic eco-
logical relevant conditions, including inoculum densities and
developmental stage of the insects and plants at the time of
infection. The results obtained under (semi)-controlled labo-
ratory conditions should be complemented with field studies.
This will not only indicate whether the mechanisms observed
in the greenhouse are working under natural conditions, but
it will also reveal the effect of additional factors influenc-
ing the performance of PPN, the foliar herbivore, and their
hosts.
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