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In eukaryotes, the ubiquitous TOR (target of rapamycin) kinase complexes have emerged
as central regulators of cell growth and metabolism. The plant TOR complex 1 (TORC1),
that contains evolutionary conserved protein partners, has been shown to be implicated
in various aspects of C metabolism. Indeed Arabidopsis lines affected in the expression
of TORC1 components show profound perturbations in the metabolism of several sugars,
including sucrose, starch, and raffinose. Metabolite profiling experiments coupled to tran-
scriptomic analyses of lines affected in TORC1 expression also reveal a wider deregulation
of primary metabolism. Moreover recent data suggest that the kinase activity of TORCT1,
which controls biological outputs like mMRNA translation or autophagy, is directly regulated
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by soluble sugars.

INTRODUCTION

The adjustment of primary metabolism to environmental condi-
tions and to the availability of energy and nutrients is of primary
importance to maintain cell homeostasis. Plants, like other eukary-
otic organisms, have evolved to make an optimal use of nutrients
and to adapt to nutritional deficiencies. This implies that plants
have the ability to monitor the amount of available nutrients
and energy and to adapt their transcriptional, translational, and
metabolic responses to this information. In animals, in which
cells are continuously maintained in a rather buffered and uni-
form supply of nutrients, this regulation of metabolic activity and
cell growth at the cellular level is mainly driven by growth fac-
tors and hormones. For plants, nutrients provide not only the
food for growth but also the signals for growth. Indeed nutrients
serve both as the resources by which the cell increases mass and
generates energy and as the signals controlling the metabolic and
developmental programs which optimize survival under particular
nutritional states.

Furthermore, plants experience rapid, sudden, and often
long changes from optimal growth conditions and they must
be able to both monitor precisely these changes and to trigger
counter-measures ensuring survival and adaptation while main-
taining growth and biomass production. In plants, like in other
eukaryotes, the signaling pathway involving the TOR (target of
rapamycin) protein kinase has emerged as an evolutionary con-
served and critical link between external cues and metabolic and
growth adaptations (see Wullschleger etal., 2006; Ma and Blenis,
2009; Loewith and Hall, 2011; Laplante and Sabatini, 2012; Cornu
etal., 2013 for general reviews and Dobrenel et al., 2011; John et al.,
2011; Robaglia et al., 2012 for reviews on the plant TOR signaling
pathway).
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Target of rapamycin was identified 20 years ago in yeast in a
screen for mutations conferring resistance to rapamycin, an antibi-
otic that stops growth and induces a shift to the GO quiescent stage
(Heitman etal., 1991). It was later shown that rapamycin inhibits
TOR by triggering the formation of an artificial complex between
the TOR FRB (FKBP12-rapamycin binding)domain and the small
FKBP12 protein (Wullschleger et al., 2006). Rapamycin treatment
inhibits some of the TOR-linked activities and results, in yeast and
animal cells, in the accumulation of the storage compound glyco-
gen, in translation decrease and in the induction of autophagy
(Schmelzle etal., 2004; Rohde etal., 2008; Broach, 2012; Cornu
etal, 2013). These changes also occur in nutrient-starved cells
(Rohde etal., 2008; Broach, 2012), which suggests that TOR is one
of the main components of the transduction chain linking nutrient
signaling to cellular adaptations. Indeed a wealth of studies, both in
yeastand in animals, have clearly established that the TOR kinase is
activated by external signals like the availability of amino acids or
the presence of hormones, and then controls a myriad of biologi-
cal outputs including transcription of RNA, translation, ribosome
biogenesis, translocation of regulatory proteins, autophagy, and
storage of reserve compounds (see above reviews). This review
will mainly focus on the cross-talk between the conserved plant
TOR kinase signaling pathway and C metabolism with a particular
emphasis on C storage compounds.

THE TOR KINASE

The large TOR kinase associates in high molecular mass complexes
with other conserved protein partners (Wullschleger etal., 2006;
Loewith and Hall, 2011; Wang and Proud, 2011). In yeast and
animals, the TOR kinase functions in two distinct multiprotein
complexes named TOR complex 1 (TORC1) and TOR complex 2
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(TORC2). The rapamycin-sensitive TORCI contains three major
proteins (TOR, KOG1/RAPTOR, and LST8/Gbetal), which are
also found in plants (Menand etal., 2002; Anderson etal., 2005;
Deprost etal., 2005; Mahfouz etal., 2006; Moreau etal., 2012)
and is thought to mainly regulate metabolism, mRNA translation,
and autophagy (Wang and Proud, 2011). The TOR/RAPTOR and
TOR/LSTS interactions have also been established in plants (Mah-
fouz etal., 2006; Diaz-Troya et al., 2008; Moreau etal., 2012). The
TORC2 complex contains LST8/GbetaL with specific proteins like
AVO3/RICTOR and AVO1/SIN1 (Wullschleger etal., 2006). The
existence of the TORC2 complex in plants has not been proven
so far but it may represent a more recent addition to the TOR
signaling pathway.

It was previously thought that rapamycin, even at impor-
tant doses, does not affect plant growth. Indeed plant FKBP12
proteins carry mutations that would preclude the formation of
a TOR-rapamycin—FKBP12 ternary complex (Xu etal., 1998;
Menand et al., 2002; Mahfouz etal., 2006; Sormani etal., 2007).
Accordingly no interactions were detected between Arabidopsis
TOR and FKBPI12 proteins using two-hybrid techniques (Mah-
fouz etal., 2006; Sormani etal., 2007). However, the Arabidopsis
TOR FRB domain could bind the yeast (Sormani etal., 2007)
or human (Mahfouz etal., 2006) FKBP12 proteins in the pres-
ence of rapamycin. This opened the possibility of increasing plant
sensitivity toward rapamycin by expressing the yeast FKBP12 pro-
tein (Sormani etal., 2007; Leiber etal., 2010; Ren etal., 2012).
Conversely, the unicellular green alga Chlamydomonas is sensitive
to moderate levels of rapamycin (100-500 nM), a concentration
range similar to the one necessary to inhibit yeast growth (Heit-
man etal., 1991; Crespo etal., 2005). This can be explained by
the fact that the algal FKBP12 protein is closer to human or
yeast homologs and the residues critical for binding rapamycin are
conserved only in Chlamydomonas. Nevertheless, it was recently
shown that rapamycin, when added repeatedly at high concen-
trations (1-10 wM) to liquid cultures of Arabidopsis, could affect
plant growth and development (Xiong and Sheen, 2012).

This varying and reduced susceptibility of plants to rapamycin
has clearly delayed the development of molecular studies on the
plant TOR signaling pathway. Moreover the disruption of the
AtTOR gene by T-DNA insertions was shown to be embryo lethal
(Menand etal., 2002; Ren etal., 2011), which precluded the use
of these mutants to further study the role of TOR in plants. To
circumvent these difficulties we have produced constitutive and
ethanol-inducible RNAI lines which allow a stable or conditional
silencing of the AtTOR gene (Deprost etal., 2007). This study
and other reports using estradiol-inducible artificial microRNA
(amiRNA) showed that, when the expression of AtTOR was
silenced, plant growth was arrested and several metabolites accu-
mulated, including starch, triacylglycerides (TAGs), and amino
acids (Deprost etal., 2007; Dobrenel et al., 2011; Xiong and Sheen,
2012; Caldana etal., 2013). This was accompanied by vast mod-
ifications in the plant transcriptome. Arabidopsis plants silenced
for the AtTOR expression also displayed a significant reduction in
polysome abundance (Deprost etal., 2007), in the phosphoryla-
tion of the ribosomal S6 kinase (S6K, Schepetilnikov etal., 2011;
Xiong and Sheen, 2012) and were presenting signs of constitutive
autophagy (Liu and Bassham, 2010). These results suggest that the

main biological targets of the yeast and animal TORCI complex,
namely, S6K, mRNA translation, and autophagy are conserved
during evolution. All these Arabidopsis lines provided invaluable
tools to start deciphering the metabolic consequences of the inhi-
bition of TOR activity in time-course experiments. It should
be stressed that TOR inhibition by RNAi is likely to reveal a
larger spectrum of phenotypes than rapamycin since this drug
is known to inhibit only a subset of TORC1 activities, and not the
TORC2 complex (Feldman et al., 2009; Guertin and Sabatini, 2009;
Thoreen etal., 2009). Accordingly recent data suggest that knock-
ing out TOR activity by silencing has more profound consequences
than partly inhibiting the TORC1 complex with rapamycin (Ren
etal., 2012).

REGULATION OF THE TORC1 COMPLEX BY SUGARS

In yeast it has been shown that carbon or nitrogen starvation
inhibits TORCI activity and that rapamycin action mimics the
effects of nutrient removal by, for example, inducing autophagy
or the expression of genes involved in the utilization of alterna-
tive source of nutrients (Rohde etal., 2008; Broach, 2012). It was
for a long time unclear how nutrients regulated TORCI activity,
but recent reports nicely demonstrated that the vacuolar H-
ATPase (v-ATPase) activates the TORC1 complex by recruiting
it to the surface of yeast vacuoles or animal lysosomes in the
presence of amino acids (Binda etal., 2009; Zoncu etal., 2011).
This recruitment of TOR and the subsequent increase in TORC1
activity are mediated by the Rheb and Rag GTPase complexes
(Cornu etal., 2013). Very recently it was found that glucose also
induces TOR activity by regulating the binding of the v-ATPase
to Rag GTPases, thus suggesting a shared regulatory mechanism
between sugars and amino acids (Efeyan etal., 2013). Moreover
the glycolytic enzyme glyceraldehyde-3-phosphate dehydrogenase
(GAPDH) binds Rheb in low-glucose conditions and inhibits
mTORC1 (mammalian target of rapamycin complex 1) signal-
ing (Lee et al., 2009). Interestingly, in plants, the v-ATPase has also
important roles in nutrient storage and signaling (Schumacher
and Krebs, 2010). Similarly glucose, an important plant regula-
tory molecule, has been shown to be linked to TOR activation in
Arabidopsis (Xiong and Sheen, 2012). The class III/Vps34 PI3K
(phosphoinositide 3-kinase) has also been involved in nutrient
activation of TORCI1 through the production of PI3P (Gulati et al.,
2008). Since this kinase is well-conserved in plants and affects
the TOR signaling pathway (Turck etal., 2004), it would be quite
interesting to evaluate its contribution to the nutrient regulation
of TORCI.

ROLE OF THE PLANT TORC1 COMPLEX IN STARCH AND
RAFFINOSE ACCUMULATION

Inhibition of TOR activity results in C storage through glyco-
gen accumulation in animal muscles and yeast (Schmelzle etal.,
2004; Cornu etal., 2013). Conversely TOR inhibition in the liver
decreases the level of stored glycogen and the animals become
hyperglycemic, a situation also found in type 2 diabetes. This
suggests a prominent role of TOR in maintaining animal glu-
cose homeostasis (Cornu etal., 2013). In yeast TORCI inhibition
by rapamycin triggers a switch from fermentation to respiration
by reducing the expression of genes encoding glycolytic enzymes
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and increasing the expression of genes encoding tri carboxylic
acid (TCA) enzymes (Figure 1A; De Virgilio and Loewith, 2006).
The TORCI signaling pathway is evidently important for cell
metabolism and proliferation, therefore its perturbation is impli-
cated in many human diseases (Cornu etal., 2013). Indeed
activation of the TOR kinase is frequently encountered in human
cancers and has been found to promote the flux of C through
glycolysis by up-regulating genes involved in glucose uptake
and glycolysis. TOR activation also stimulates lipogenesis and
the pentose phosphate pathway (Diivel etal., 2010; Yecies and
Manning, 2011).

In plants most of the stored C is found in starch. Several stud-
ies have established that starch is mainly synthesized during the
day within the chloroplasts and degraded at night to provide cells
with C metabolites and energy (for an excellent and recent review
see Stitt and Zeeman, 2012). When limited in nitrogen, Chlamy-
domonas cells accumulate starch (Ball etal., 2011) and TAG (Siaut
etal., 2011). Similarly, plants affected in nitrate assimilation accu-
mulate starch at high levels (Saux etal., 1987). These results point
clearly to a control of starch synthesis by the availability of nitro-
gen. Indeed in conditions where nitrogen is limiting, and growth
is therefore reduced, most of the available C seems to be redirected
toward the accumulation of reserves rather than toward other sinks
like the synthesis of cell wall or the production of energy. Consis-
tently, metabolite profiling of Arabidopsis accessions has shown
that starch and sucrose contents are negatively correlated with
rosette growth in Arabidopsis (Sulpice et al., 2009, 2010).

Conditional silencing of the Arabidopsis TOR gene led to a
decrease in photosynthesis with a yellowing of the leaves linked to
chlorophyll breakdown (Deprost et al., 2007). These symptoms of
early senescence where accompanied by an accumulation of high
amounts of soluble sugars, amino acids, and starch (Figure 1B).
This suggests that TOR activity is needed to restrain senescence
and could thus be involved in the regulation of life span in Ara-
bidopsis (Deprost et al., 2007; Ren et al., 2012). A recent study also
showed that TOR inhibition in Arabidopsis by inducible amiRNA
results in high levels of starch accumulation (Figure 1B) together
with increased levels of TAG (Caldana etal., 2013). A concomitant
increase in TCA cycle intermediates was also detected after TOR
inhibition by either amiRNA (Caldana etal., 2013), the treatment
by rapamycin of Arabidopsis lines expressing a FKBP12 protein
(Ren etal., 2012) or in Ist8 mutants (Moreau etal., 2012). The
same perturbation in the TCA cycle was observed in yeast treated
with rapamycin (De Virgilio and Loewith, 2006).

In the study by Sulpice etal. (2009) described above, it
was found that rosette biomass negatively correlated with the
amount of starch but a strong positive correlation was detected
with the expression of myo-inositol-1-phosphate synthase 1
(MIPS1/At4g39800). MIPS is conserved in all eukaryotes and cat-
alyzes the first committed step in the synthesis of myo-inositol,
a central C-metabolite that serves in the synthesis of the sig-
naling lipids (phosphatidyl)inositol-phosphate (PIP), of cell wall
precursors like UDP-glucuronate and of the raffinose family
oligosaccharides (RFOs, Figure 2; for a review see Valluru and
Van den Ende, 2011). The levels of raffinose, of its precursor
galactinol and of myo-inositol, which serves as a cofactor in this
biosynthetic pathway, are often strongly correlated (Figure 2; G.
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FIGURE 1 | The roles of the TOR kinase in the regulation of C
metabolism. (A) Summary of the cross-talk between the TORC1 signaling
pathway and the sugar metabolism. Glucose seems to induce TOR activity,
which in turn activates glycolysis and raffinose synthesis in response to
stresses. Conversely TOR represses the synthesis of reserve molecules.
Animal reserve compounds are in red, plant ones are in green. Activation is
shown by arrows. (B) Accumulation of starch following inactivation of the
TORC1 complex in percentage of the control wild-type (WT). The effect of
the inactivation of the TORC1 component LST8 on starch accumulation was
investigated in insertion mutants. Results from the analysis of /st8 mutants
are from Moreau etal. (2012) and are compared to the corresponding
control WT (Col8). A time-course experiment shows the accumulation of
starch following inactivation of TOR by ethanol-inducible RNAi (24-72 hours
(h) after ethanol induction; Deprost etal., 2007). The 6 days (6d) point is
from Caldana etal. (2013) using estradiol-inducible amiRNA lines.

Clément, personal communication; Sulpice etal., 2010). A survey
of metabolite profiling experiments shows that raffinose accumu-
lates in stress situations like high light, nitrogen starvation, or
high salt (G. Clément, personal communication and unpublished
data).

A common trend that emerges from the analysis of stressed
Arabidopsis plants affected in the activity of the TORC1 complex
is the decrease in raffinose and galactinol accumulation. Ren
etal. (2012) observed lower levels of raffinose and myo-inositol
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FIGURE 2 | Overview of the raffinose synthesis pathway and of its
relationship with the sucrose and starch synthesis pathways. This
figure shows that glucose 6-phosphate (GIc6P) can be used either for
the synthesis of starch in chloroplasts or for the synthesis of sucrose or
myo-inositol and raffinose in the cytosol. After TOR inactivation, or
mutations in the TORC1 components RAPTOR and LST8, an accumulation
of starch and sucrose was observed together with a decrease in the
synthesis of raffinose in stress conditions. This suggests TOR inactivation
triggers a redirection of C fluxes toward starch and sucrose for,
respectively, storage and export. Pgm, phosphoglucomutase; StSynt,
starch synthase; AGPase, ADPglucose pyrophosphorylase; UGPase,
UDPglucose pyrophosphorylase; SucSynt, sucrose synthase; MIPS,
myo-inositol 3-phosphate synthase; Ins(3P), myo-inositol (3 phosphate);
InsPase, inositol monophosphate phosphatase; PtdIns,
phosphatidylinositol; UDPGIcA, UDP-glucuronic acid; Gol(Synt), galactinol
(synthase); Raf(Synt), raffinose (synthase).

in rapamycin-treated plants expressing a yeast FKBP12 protein in
normal growth conditions. However, a decrease in the accumula-
tion of these sugars and of galactinol was only evident in stressed
TOR RNAI lines compared to control wild-type plants or when Ist8
mutants were exposed to long days (Moreau et al., 2012). Similarly,
stressed raptor mutants fail to accumulate raffinose and galactinol
(Szambien et al., submitted). Galactinol is synthesized from UDP-
Gal and myo-inositol in the cytosol (Figure 2). Galactinol then
serves for raffinose production using sucrose as a substrate, with
a release of myo-inositol (Figure 2; Nishizawa etal., 2008; Val-
luru and Van den Ende, 2011). Raffinose and galactinol usually
accumulate in seeds and in response to many stresses and could
function as storage C molecules (Taji et al., 2002; Peters et al., 2010;
Valluru and Van den Ende, 2011). It has been proposed that one of
the main role of these polysaccharides is to scavenge reactive oxy-
gen species in the cytosol and in the chloroplast (Keunen etal.,
2013). Moreover RFOs represent significant sinks for glucose-
and sucrose-derived C since they can accumulate at rather high
concentrations.

Like Ist8 mutants (Moreau etal., 2012), plants affected in the
MIPS1 gene expression were described as lacking galactinol accu-
mulation and being sensitive to long days (Meng etal., 2009).
Accordingly the transcriptome variations due to either mipsI or
Ist8 mutations shared some striking similarities. Indeed, nearly
70% of the genes differentially expressed in the Ist8 mutant when
shifted to long days were also found to be either down- or up-
regulated in the mipsl mutant (Moreau etal., 2012). This indicates
that a large proportion of the impact of Ist8 mutations, which
probably result in a decreased TORCI activity, on the adapta-
tion to long days can be explained by a default in MIPS1 activity
and thus by a decrease in myo-inositol production. This default
in raffinose and galactinol production after extension of the light
period could explain the arrest of growth and the severe pheno-
type of both Ist8 and mipsl mutants following a shift to long day
conditions.

Furthermore MIPS and galactinol synthases were found to be
significantly repressed in TOR RNAI lines or in the Ist8 mutants
grown in long days. These results are in agreement with the
observed lack of galactinol and raffinose accumulation in plants
where the TORCI activity is reduced (Moreau etal., 2012; Ren
etal,, 2012). The MIPS genes could therefore serve as a hub
for adjusting the plant metabolism to changes in environmental
conditions. The inducible overexpression of the bZIP11 tran-
scription factor, which is normally up-regulated by the SnRK1
kinase, results in an augmented level of raffinose (Ma etal,
2011). This is consistent with the fact that raffinose is also accu-
mulated in response to multiple stresses (Valluru and Van den
Ende, 2011). Indeed this could possibly be the result of the
activation of the SnRKI1 kinase in stress conditions (Robaglia
etal, 2012). Nevertheless it is surprising, given the expected
opposite role of the TOR and SnRK1 kinases (Robaglia etal.,
2012), that TOR also seems to be required for raffinose pro-
duction. One explanation could be that TORCI activity is also
needed for bZIP11 expression and it would be interesting to
determine if the bZIP11-induced accumulation of raffinose is
TOR-dependent.

CONCLUSION

It is now clear that inhibiting the TORCI activity results in
starch and TAG accumulation (Dobrenel etal., 2011; Caldana
etal., 2013), a decrease in biomass production but also a decrease
in protein concentration and mRNA translation (Deprost etal.,
2007; Sormani etal., 2007; Ren etal., 2012; Xiong and Sheen,
2012; Caldana etal., 2013). It thus appears that the TOR signaling
pathway may contribute to the close link between starch, pro-
tein, and biomass observed in plants (Sulpice etal., 2009, 2010).
The signals triggering starch accumulation and re-routing of C
fluxes in response to TORCI inactivation remain to be deter-
mined, but it is striking that the accumulation of starch observed in
TORC1-deficient Arabidopsis plants is accompanied by a decrease
in raffinose production, both being dependent on the supply
of glucose-6P (Figure 2). The TORCI activity is probably also
required for plant adaptation to stresses by stimulating synthesis of
myo-inositol and RFOs. Whether they serve as C storage molecules
or for the scavenging of reactive oxygen species remains to be
determined more clearly.
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Since the inactivation of TOR results, as in other eukaryotes, in
the accumulation of reserve molecules in plants (TAG and starch),
it can be anticipated that the regulation of TOR activity in devel-
oping seeds may also be of importance for the synthesis of seed
storage compounds. Moreover, using TOR inactivation to redirect
C fluxes toward reserves compounds like starch or TAG, which are
easier to process than lignocellulosic molecules, could foster the
use of plants for the production of biofuels and other bio-based

components.

REFERENCES

Anderson, G., Veit, B., and Han-
son, M. (2005). The Arabidopsis

AtRaptor genes are essential for post-
embryonic plant growth. BMC Biol.
3:12. doi: 10.1186/1741-7007-3-12

Ball, S., Colleoni, C., Cenci, U,
Raj, J. N, and Tirtiaux, C. (2011).
The evolution of glycogen and
starch metabolism in eukaryotes gives
molecular clues to understand the
establishment of plastid endosym-
biosis. J. Exp. Bot. 62, 1775-1801.

Binda, M., Peli-Gulli, M. P,, Bonfils, G.,
Panchaud, N., Urban, J., Sturgill, T.
W., etal. (2009). The Vamé6 GEF con-
trols TORC1 by activating the EGO
complex. Mol. Cell 35, 563-573.

Broach, J. R. (2012). Nutritional control
of growth and development in yeast.
Genetics 192, 73-105.

Caldana, C., Li, Y., Leisse, A., Zhang, Y.,
Bartholomaeus, L., Fernie, A. R., et al.
(2013). Systemic analysis of inducible
target of rapamycin mutants reveal a
general metabolic switch controlling
growth in Arabidopsis thaliana. Plant
J. 73, 897-909.

Cornu, M., Albert, V., and Hall, M. N.
(2013). mTOR in aging, metabolism,
and cancer. Curr. Opin. Genet. Dev.
doi: 10.1016/j.gde.2012.12.005 [Epub
ahead of print].

Crespo, J., Diaz-Troya, S., and Floren-
cio, E. (2005). Inhibition of target
of rapamycin signaling by rapamycin
in the unicellular green alga Chlamy-
domonas reinhardtii. Plant Physiol.
139, 1736-1749.

Deprost, D., Truong, H., Robaglia, C.,
and Meyer, C. (2005). An Arabidopsis
homolog of RAPTOR/KOG1 is essen-
tial for early embryo development.
Biochem. Biophys. Res. Commun. 326,
844-850.

Deprost, D., Yao, L., Sormani, R.,
Moreau, M., Leterreux, G., Nico-
lai, M., etal. (2007). The Arabidop-
sis TOR kinase links plant growth,
yield, stress resistance and mRNA
translation. EMBO Rep. 8, 864—870.

De Virgilio, C., and Loewith, R. (2006).
The TOR signalling network from
yeast to man. Int. J. Biochem. Cell Biol.
38, 1476-1481.

Diaz-Troya, S., Florencio, F.,, and Cre-
spo, J. (2008). Target of rapamycin

and LST8 proteins associate with
membranes endoplas-
mic reticulum in the unicellular
green alga Chlamydomonas rein-
hardtii. Eukaryot. Cell 7, 212-222.

Dobrenel, T., Marchive, C., Sormani, R.,
Moreau, M., Mozzo, M., Montané,
M. H.,, etal. (2011). Regulation of
plant growth and metabolism by the
TOR kinase. Biochem. Soc. Trans. 39,
477-481.

Diivel, K., Yecies, J. L., Menon, S.,
Raman, P, Lipovsky, A. I, Souza,
A. L., etal. (2010). Activation of a
metabolic gene regulatory network
downstream of mTOR complex 1.
Mol. Cell 39,171-183.

Efeyan, A., Zoncu, R., Chang, S.,
Gumper, 1., Snitkin, H., Wolfson,
R. L., etal. (2013). Regulation of
mTORC1 by the Rag GTPases is nec-
essary for neonatal autophagy and
survival. Nature 493, 679-683.

Feldman, M. E., Apsel, B., Uotila, A.,
Loewith, R., Knight, Z. A., Ruggero,
D., etal. (2009). Active-site inhibitors
of mTOR target rapamycin-resistant
outputs of mTORC1 and mTORC2.
PLoS Biol. 7:e38. doi: 10.1371/jour-
nal.pbio.1000038

Guertin, D. A., and Sabatini, D.
M. (2009). The pharmacology of
mTOR inhibition. Sci. Signal.
2, pe24.

Gulati, P, Gaspers, L. D., Dann, S.
G., Joaquin, M., Nobukuni, T., Natt,
E, etal. (2008). Amino acids acti-
vate mTOR complex 1 via Ca2+/CaM
signaling to hVps34. Cell Metab. 7,
456—465.

Heitman, J., Movva, N. R., and
Hall, M. N. (1991). Targets for cell
cycle arrest by the immunosuppres-
sant rapamycin in yeast. Science 253,
905-909.

John, F, Roffler, S., Wicker, T., and
Ringli, C. (2011). Plant TOR signal-
ing components. Plant Signal. Behav.
6, 1700-1705.

Keunen, E., Peshev, D., Vangronsveld, J.,
Van den Ende, W., and Cuypers, A.
(2013). Plant sugars are crucial play-
ers in the oxidative challenge during
abiotic stress. Extending the tradi-
tional concept. Plant Cell Environ.
doi: 10.1111/pce.12061 [Epub ahead
of print].

from the

ACKNOWLEDGMENTS

This work was partly supported by ANR grants (ANR Blanc06-
3-135436 and Blanc2011-SV6-01002) to Christian Meyer, Rod-
nay Sormani, and Christophe Robaglia. Manon Moreau was
supported by a joint PhD grant from INRA (Plant Biology
Department) and DSV CEA. Chloé Marchive was supported
by a joint INRA-FAPESP grant. We thank our colleagues
for fruitful discussions and the reviewers for improving our

manuscript.

Laplante, M., and Sabatini, D. M.
(2012). mTOR signaling in growth
control and disease. Cell 149,
274-293.

Lee, M. N.,, Ha, S. H, Kim, ],
Koh, A., Lee, C. S, Kim, J. H,,
etal. (2009). Glycolytic flux signals
to mTOR through glyceraldehyde-3-
phosphate dehydrogenase-mediated
regulation of Rheb. Mol. Cell. Biol.
29, 3991-4001.

Leiber, R., John, E, Verhertbruggen,
Y., Diet, A., Knox, J., and Ringli,
C. (2010). The TOR pathway mod-
ulates the structure of cell walls in
Arabidopsis. Plant Cell 22,1898-1908.

Liu, Y., and Bassham, D. (2010).
TOR is a negative regulator
of autophagy in  Arabidopsis
thaliana. PLoS ONE 5:e11883. doi:
10.1371/journal.pone.0011883

Loewith, R., and Hall, M. N. (2011).
Target of rapamycin (TOR) in nutri-
ent signaling and growth control.
Genetics 189, 1177-1201.

Ma, ], Hanssen, M., Lundgren, K., Her-
nandez, L., Delatte, T., Ehlert, A., et al.
(2011). The sucrose-regulated Ara-
bidopsis transcription factor bZIP11
reprograms metabolism and regu-
lates trehalose metabolism. New Phy-
tol. 191, 733-745.

Ma, X. M., and Blenis, J. (2009). Molec-
ular mechanisms of mTOR-mediated
translational control. Nat. Rev. Mol.
Cell Biol. 10, 307-318.

Mahfouz, M., Kim, S., Delauney, A.,
and Verma, D. (2006). Arabidopsis
TARGET OF RAPAMYCIN interacts
with RAPTOR, which regulates the
activity of S6 kinase in response to
osmotic stress signals. Plant Cell 18,
477-490.

Menand, B., Desnos, T., Nussaume, L.,
Berger, E, Bouchez, D., Meyer, C.,
etal. (2002). Expression and disrup-
tion of the Arabidopsis TOR (target
of rapamycin) gene. Proc. Natl. Acad.
Sci. U.S.A. 99, 6422—-6427.

Meng, P. H., Raynaud, C., Tcherkez, G.,
Blanchet, S., Massoud, K., Domeni-
chini, S., etal. (2009). Crosstalks
between myo-inositol metabolism,
programmed cell death and basal
immunity in Arabidopsis.  PLoS
ONE 4:¢7364. doi: 10.1371/jour-
nal.pone.0007364

Moreau, M., Azzopardi, M., Clément,
G., Dobrenel, T., Marchive, C., Renne,
C., etal. (2012). Mutations in the
Arabidopsis homolog of LST8/GBL, a
partner of the target of Rapamycin
kinase, impair plant growth, flower-
ing, and metabolic adaptation to long
days. Plant Cell 24, 463—481.

Nishizawa, A., Yabuta, Y., and Shigeoka,
S. (2008). Galactinol and raffinose
constitute a novel function to protect
plants from oxidative damage. Plant
Physiol. 147,1251-1263.

Peters, S., Egert, A. Stieger, B.,
and Keller, F (2010). Functional
identification of Arabidopsis ATSIP2
(At3g57520) as an alkaline alpha-
galactosidase with a substrate speci-
ficity for raffinose and an appar-
ent sink-specific expression pattern.
Plant Cell Physiol. 51, 1815-1819.

Ren, M., Qiu, S., Venglat, P, Xiang,
D., Feng, L., Selvaraj, G., etal
(2011). Target of rapamycin regulates
development and ribosomal RNA
expression through kinase domain
in Arabidopsis. Plant Physiol. 155,
1367-1382.

Ren, M., Venglat, P, Qiu, S., Feng, L.,
Cao, Y., Wang, E,, etal. (2012). Tar-
get of rapamycin signaling regulates
metabolism, growth, and life span in
Arabidopsis. Plant Cell 24, 4850-4874.

Robaglia, C., Thomas, M., and Meyer, C.
(2012). Sensing nutrient and energy
status by SnRK1 and TOR kinases.
Curr. Opin. Plant Biol. 15,301-307.

Rohde, J. R., Bastidas, R., Puria, R.,
and Cardenas, M. E. (2008). Nutri-
tional control via Tor signaling in
Saccharomyces cerevisiae. Curr. Opin.
Microbiol. 11, 153-160.

Saux, C., Lemoine, Y., Marion-Poll,
A., Valadier, M. H., Deng, M,
and Morot-Gaudry, J. E (1987).
Consequence of absence of nitrate
reductase activity on photosynthesis
in Nicotiana plumbaginifolia plants.
Plant Physiol. 84, 67-72.

Schepetilnikov, M., Kobayashi, K., Gel-
dreich, A., Caranta, C., Robaglia, C.,
Keller, M., etal. (2011). Viral factor
TAV recruits TOR/S6K1 signalling to
activate reinitiation after long ORF
translation. EMBO J. 6, 1343—1356.

Schmelzle, T., Beck, T., Martin, D. E.,
and Hall, M. N. (2004). Activation

www.frontiersin.org

April 2013 | Volume 4 | Article 93 | 5


http://www.frontiersin.org/
http://www.frontiersin.org/Plant_Physiology/archive

Dobrenel etal.

Sugars and the TOR kinase

of the RAS/cyclic AMP pathway sup-
presses a TOR deficiency in yeast.
Mol. Cell. Biol. 24, 338-351.

Schumacher, K., and Krebs, M. (2010).
The V-ATPase: small cargo, large
effects. Curr. Opin. Plant Biol 13,
724-730.

Siaut, M., Cuine, S., Cagnon, C,
Fessler, B., Nguyen, M., Carrier, P,
etal. (2011). Oil accumulation in
the model green alga Chlamydomonas
reinhardtii: characterization,
ability between common laboratory
strains and relationship with starch
reserves. BMC Biotechnol. 11:7. doi:
10.1186/1472-6750-11-7

Sormani, R. Yao, L., Menand, B,
Ennar, N., Lecampion, C., Meyer, C,,
etal. (2007). Saccharomyces cerevisiae
FKBP12 binds Arabidopsis thaliana
TORand its expression in plants leads
to rapamycin susceptibility. BMC
Plant Biol. 7:26. doi: 10.1186/1471-
2229-7-26

Stitt, M., and Zeeman, S. C. (2012).
Starch turnover: pathways, regulation
and role in growth. Curr. Opin. Plant
Biol. 15, 282-292.

Sulpice, R., Pyl, E. T., Ishihara, H,,
Trenkamp, S., Steinfath, M., Witucka-
Wall, H., etal. (2009). Starch as
a major integrator in the regula-
tion of plant growth. Proc. Natl.

vari-

Acad.  Sci.
10353.
Sulpice, R., Trenkamp, S., Steinfath, M.,
Usadel, B., Gibon, Y., Witucka-Wall,
H., etal. (2010). Network analysis
of enzyme activities and metabo-

US.A. 106, 10348—

lite levels and their relationship to
biomass in a large panel of Ara-
bidopsis accessions. Plant Cell 22,
2872-2893.

Taji, T., Ohsumi, C., Iuchi, S., Seki,
M., Kasuga, M., Kobayashi, M., etal.
(2002). Important roles of drought-
and cold-inducible genes for galacti-
nol synthase in stress tolerance in
Arabidopsis thaliana. Plant J. 29,
417-426.

Thoreen, C. C., Kang, S. A., Chang, J.
W,, Liu, Q., Zhang, J., Gao, Y., etal.
(2009). An ATP-competitive mam-
malian target of rapamycin inhibitor
reveals rapamycin-resistant functions
of mTORCI. J. Biol. Chem. 284,
8023-8032.

Turck, E, Zilbermann, F., Kozma, S.,
Thomas, G., and Nagy, F. (2004).
Phytohormones participate in an S6
kinase signal transduction pathway
in Arabidopsis. Plant Physiol. 134,
1527-1535.

Valluru, R., and Van den Ende,
W.  (2011). Myo-inositol
beyond—emerging networks under

and

stress.  Plant  Sci. 387-
400.

Wang, X., and Proud, C. G. (2011).
mTORCI signaling: what we still
don’t know. J. Mol. Cell Biol. 3,
206-220.

Wullschleger, S., Loewith, R., and
Hall, M. (2006). TOR signaling in
growth and metabolism. Cell 124,
471-484.

Xiong, Y., and Sheen, J. (2012).
Rapamycin and glucose-target of
rapamycin (TOR) protein signal-
ing in plants. J. Biol. Chem. 287,
2836-2842.

Xu, Q., Liang, S., Kudla, J., and
Luan, S. (1998). Molecular char-
acterization of a plant FKBPI2
that does not mediate action of
FK506 and rapamycin. Plant J. 15,
511-519.

Yecies, J. L., and Manning, B.
D. (2011). Transcriptional con-
trol of cellular metabolism by
mTOR signaling. Cancer Res. 71,
2815-2820.

Zoncu, R., Bar-Peled, L., Efeyan, A.,
Wang, S., Sancak, Y., and Saba-
tini, D. M. (2011). mTORCI1 senses
lysosomal amino acids through an
inside-out mechanism that requires
the vacuolar HT -ATPase. Science 334,
678-683.

181,

Conflict of Interest Statement: The
authors declare that the research was
conducted in the absence of any com-
mercial or financial relationships that
could be construed as a potential con-
flict of interest.

Received: 06 February 2013; paper
pending published: 21 February 2013;
accepted: 27 March 2013; published
online: 15 April 2013.

Citation: Dobrenel T, Marchive C,
Azzopardi M, Clément G, Moreau M,
Sormani R, Robaglia C and Meyer C
(2013) Sugar metabolism and the plant
target of rapamycin kinase: a sweet oper-
aTOR?. Front. Plant Sci. 4:93. doi:
10.3389/fpls.2013.00093

This article was submitted to Frontiers in
Plant Physiology, a specialty of Frontiers
in Plant Science.

Copyright © 2013 Dobrenel, Marchive,
Azzopardi, Clément, Moreau, Sormani,
Robaglia and Meyer. This is an open-
access article distributed under the terms
of the Creative Commons Attribution
License, which permits use, distribution
and reproduction in other forums, pro-
vided the original authors and source
are credited and subject to any copy-
right notices concerning any third-party
graphics etc.

Frontiers in Plant Science | Plant Physiology

April 2013 | Volume 4 | Article 93 | 6


http://dx.doi.org/10.3389/fpls.2013.00093
http://dx.doi.org/10.3389/fpls.2013.00093
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://www.frontiersin.org/Plant_Physiology/
http://www.frontiersin.org/Plant_Physiology/archive

	Sugar metabolism and the plant target of rapamycin kinase: a sweet operator?
	Introduction
	The TOR kinase
	Regulation of the TORC1 complex by sugars
	Role of the plant TORC1 complex in starch and raffinose accumulation
	Conclusion
	Acknowledgments
	References


