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A key feature of innate immunity is the ability to recognize and respond to potential
pathogens in a highly sensitive and specific manner. In plants, the first layer of defense is
induced after recognition by pattern recognition receptors of microbe-associated molecular
patterns. This recognition elicits a defense program known as pattern-triggered immunity.
Pathogen entry into host tissue is a critical early step in causing infection. For foliar bacterial
pathogens, natural surface openings such as stomata, are important entry sites. Stomata
in contact with bacteria rapidly close and can thus restrict bacterial entry into leaves.
The molecular mechanisms regulating stomatal closure upon pathogen perception are not
yet well-understood. Plant lectin receptor kinases are thought to play crucial roles during
development and in the adaptive response to various stresses. Although the function of
most plant lectin receptor kinases is still not clear, a role for this kinase family in plant
innate immunity is emerging. Here, we summarize recent progresses in the identification
of lectin receptor kinases involved in plant innate immunity. We also discuss the role of
lectin receptor kinases in stomatal innate immunity signaling.
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INTRODUCTION

Plants face threats from various pathogenic microbes and resist
attacking pathogens through both constitutive and inducible
defenses (Jones and Dangl, 2006). The pattern-triggered immu-
nity (PTI) defense response represents the front line of plant
innate immunity. PTT is activated upon recognition of pathogen-
or microbe-associated molecular patterns (PAMPs or MAMPs)
via pattern recognition receptors (PRRs; Jones and Dangl, 2006;
Zipfel, 2009; Tsuda and Katagiri, 2010; Zhang and Zhou, 2010).
Examples of MAMPs comprise the lipopolysaccharide envelope
of Gram-negative bacteria, peptidoglycans from Gram-positive
bacteria, eubacterial flagellin, eubacterial elongation factor (EF),
methylated bacterial DNA fragments, and fungal cell wall derived
glucans, chitins, and proteins (Girardin etal., 2002; Cook etal.,
2004; Ausubel, 2005; Boller and Felix, 2009). MAMP percep-
tion results in PTT activation which includes downstream defense
responses such as production of reactive oxygen species (ROS),
activation of mitogen-activated protein kinases, changes in gene
expression, and production of defense compounds together lead-
ing to broad resistance to pathogens (Boller and Felix, 2009). In
addition, MAMP perception at stomatal guard cells induces stom-
atal closure, thus activating stomatal innate immunity (Melotto
etal., 2006; Zeng etal., 2010).

Pathogen entry into host tissue is a critical, first step in causing
plant infection. Stomata at the leaf epidermis are natural open-
ings that bacteria use to enter into leaves. Typically, Arabidopsis
stomata close when in contact with bacteria, thus functioning
as innate immunity gates to actively prevent bacteria entry into
plants (Melotto etal., 2006, 2008, Schulze-Lefert and Robatzek,
2006; Zeng et al., 2010; Faulkner and Robatzek, 2012). Usually, 1 h
after exposure to Pseudomonas syringae pv. tomato strain DC3000
(Pst DC3000) bacteria, Arabidopsis stomata close as a result of

stomatal innate immunity activation. Virulent bacteria such as Pst
DC3000 can re-open Arabidopsis Col-0 stomata 3—4 h after infec-
tion through the action of the chemical effector coronatine (COR)
suggesting that plant pathogens have evolved virulence factors to
suppress innate immunity functions of stomata (Melotto etal.,
2006; Schulze-Lefert and Robatzek, 2006). The ability of COR to
inhibit stomatal closure is dependent on the COII gene (Melotto
etal,, 2006) and the priming compound beta-aminobutyric acid
(BABA) blocks the COR-dependent re-opening of stomata dur-
ing Pst DC3000 and Pectobacterium carotovorum ssp. carotovorum
(Pcc) infection (Tsai et al., 201 1; Po-Wen et al., 2013). Stomatal clo-
sure in response to treatments with flg22, a peptide representing
the most conserved domain of bacterial flagellin, is dependent on
the flagellin receptor FLS2 (FLAGELLIN SENSITIVE2), demon-
strating that perception of bacterial MAMPs through PRRs leads
to closure of Arabidopsis stomata (Zipfel et al., 2004; Zeng and He,
2010). The chloroplastic enzyme ASPARTATE OXIDASE that cat-
alyzes de novobiosynthesis of nicotinamide adenine dinucleotide is
also a critical player during activation of stomatal innate immunity
in response to Pst infection (Macho etal., 2012). In addition, both
salicylic acid (SA) and abscisic acid (ABA) signaling pathways are
required during bacteria- and MAMP-induced stomatal closure in
Arabidopsis (Melotto etal., 2006; Zeng etal., 2010). Recent works
emphasized the lectin receptor kinases in plant innate immunity.
In this review, we will thus focus on the role of this emerging fam-
ily of receptor kinases in plant innate immunity, with highlights
on stomatal innate immunity.

LECTIN RECEPTOR KINASES IN PLANT DEFENSE

In plants, perception and transduction of environmental stim-
uli are largely governed by receptor-like kinases (RLKs; Mahajan
and Tuteja, 2005). RLKs belong to a vast protein family found in
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higher plants that is represented by 610 genes in the Arabidopsis
genome (Shiu and Bleecker, 2001, 2003).Lectin receptor kinases
are RLKs characterized by an extracellular lectin motif. These
lectin receptor kinases are classified into three types: G, C, and
L (Bouwmeester and Govers, 2009; Vaid et al., 2012). G-type lectin
receptor kinases are known as S-domain RLKs and are involved
in self-incompatibility in flowering plants (Kusaba etal., 2001;
Sherman-Broyles etal., 2007). C-type (calcium-dependent) lectin
motifs can be found in a large number of mammalian proteins
that mediate innate immune responses and play a major role in
pathogen recognition (Cambi etal., 2005), but are rare in plants.
Arabidopsis has only a single gene encoding a protein with a C-
type lectin motif but so far its function has not been elucidated
(Bouwmeester and Govers, 2009). Arabidopsis contains 45 L-type
lectin receptor kinases (LecRKs) that are characterized by an extra-
cellular legume lectin-like domain, a transmembrane domain and
an intracellular kinase domain (Herve etal., 1996; Barre etal.,
2002; Bouwmeester and Govers, 2009). LecRKs were suggested to
play a role in abiotic stress signal transduction (Garcia-Hernandez
etal., 2002; Nishiguchi et al., 2002; Riou et al., 2002; He et al., 2004;
Deng etal., 2009; Joshi etal., 2010). Notably, LecRK members of
the Arabidopsis LecRK-VI clade (Bouwmeester and Govers, 2009),
are redundant negative regulators of the ABA response during seed
germination (Xin etal., 2009).

Due to the resemblance of the extracellular domain with lectin
proteins known to bind to fungal and bacterial cell wall compo-
nents, lectin receptor kinases are predominantly hypothesized to
participate in biotic stress tolerance (Bouwmeester and Govers,
2009). Some lectin receptor kinases were indeed reported to be
involved in plant resistance to pathogens. For example, Pi-d2, a G-
type lectin receptor kinase from rice, provides resistance against
the fungal pathogen Magnaporthe grisea, the causal agent of rice
blast (Chen et al., 2006). In tobacco, the expression of another G-
type lectin receptor kinase was recently shown to be up-regulated
by lipopolysaccharides (Sanabria etal., 2012). In Nicotiana ben-
thamiana, the LecRK NDLRK1 was suggested to be a component
of the N. benthamiana protein complex that recognizes the Phy-
tophthora infestans INF1 elicitor and mediates INF1-induced cell
death (Kanzaki etal., 2008).

Like few other RLK proteins, such as PERK (proline-rich
extensin-like receptor protein kinase), WAK (wall-associated
kinase) and CrRLK (Catharanthus roseus-like RLK), LecRK-
1.9 mediates cell wall-plasma membrane (CW-PM) continuum
(Bouwmeester and Govers, 2009). The maintenance of struc-
tural CW-PM continuity is a critical factor that governs plants
response to various stimuli and is essential for defense against
pathogens (Bouwmeester and Govers, 2009; Bouwmeester etal.,
2011). The association of RGD (arginine—glycine—aspartic acid)
motif containing proteins with cellular proteins is a key mecha-
nism that maintains the structural integrity of CW-—PM contacts
(Gouget etal., 2006). The RGD motif present in IPI-O (in
planta induced-O), a secreted effector protein of the oomycete
pathogen Phytophthora infestans, disrupts CW-PM adhesions
upon interaction with a variety of cellular proteins, including
LecRKs (Gouget etal., 2006). Further analysis revealed that defi-
ciency in LecRK-1.9, earlier found to interact with RGD motif
containing proteins (Gouget etal., 2006), leads to a gain of

susceptibility phenotype toward the oomycete Phytophthora bras-
sicae (Bouwmeester etal., 2011). These results imply that LecRKs
may be involved in protein—protein interactions with RGD-
containing proteins as potential ligands, and may play a structural
and signaling role at the plant cell surfaces upon pathogen
infection.

LecRK-VI.2 is critical for resistance against hemibiotrophic
Pst DC3000 and necrotrophic Pcc bacteria (Singh etal., 2012).
Increased susceptibility of the transferred DNA (T-DNA) inser-
tion mutant line lecrk-VI.2-1 is correlated with defective bacteria-
and MAMP-induced MPK3 (Mitogen-activated protein kinase 3)
and MPK6 (Mitogen-activated protein kinase 6) activities, PTI-
responsive gene expression, and callose deposition (Singh etal,,
2012). Transcriptome analysis of a LecRK-VI.2 over-expression
line revealed transcription up-regulation of numerous genes
responsive to virulent or avirulent bacteria, the MAMP flg22, or
to the SA functional analog benzothiadiazole further suggesting a
role for LecRK-VI1.2 in the Arabidopsis PTI response (Singh etal.,
2012). BAK1 (Brassinosteroid insensitivel-associated kinase 1)
and FLS2 association, BIK1 (BOTRYTIS-INDUCED KINASE1)
phosphorylation, and ROS production that are usually consid-
ered as early PTI responses (Zipfel and Robatzek, 2010), were
not compromised in the mutant lecrk-VL.2-1. These data sug-
gest that LecRK-VI.2 positively modulates PTI signaling upstream
of MPK3 and MPK6 and downstream of FLS2 (Singh etal,
2012). In addition, LecRK-VIL.2 is a key modulator of BABA-
mediated priming and BABA-induced resistance (Singh etal,
2012). Further analyses of the function of LecRK-VL.2 revealed
that LecRK-VI.2 possesses a functional kinase domain and is not
critical for resistance to the necrotrophic fungal pathogen Botry-
tis cinerea (Singh etal., 2013). By contrast, over-expression of the
plasma membrane-localized L-type lectin-like protein kinase 1,
AtLPK1 (LecRK-IV.3) induces Arabidopsis resistance to B. cinerea
(Huang etal., 2013).

Lectin receptor kinases are also critical for plant resistance to
insects. The lectin receptor kinase 1 (LecRK1) is important during
herbivory by Manduca sexta larvae to suppress insect-mediated
inhibition of jasmonic acid-induced defense responses in Nico-
tiana attenuata (Gilardoni etal., 2011). Importantly, reduction
of LecRK1 expression in N. attenuata induces increased Manduca
sexta folivory (Gilardoni etal., 2011). The insect-induced accu-
mulation of protease inhibitors, as well as the expression of the
gene encoding threonine deaminase, two critical defense responses
were also several fold reduced in N. attenuata with a silenced
LecRK1 when compared to non-silenced controls (Gilardoni et al.,
2011). Inhibition of SA accumulation through the expression of
nahG in silenced lecRKI plants restores wild-type levels of resis-
tance against Manduca sexta herbivory, suggesting that LecRK1
inhibits the accumulation of SA during herbivory (Gilardoni et al.,
2011). More recently, LecRK-1.8 was suggested to be important
for the perception of insect egg-derived elicitors in Arabidopsis
(Gouhier-Darimont etal., 2013).

LecRK-VI.2 AND LecRK-V.5 IN Arabidopsis STOMATAL
INNATE IMMUNITY

In addition to positively regulating apoplastic PTI, LecRK-
VI.2 is also critical for Arabidopsis stomatal innate immunity
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(Singh etal., 2012). Notably and similarly to the PRR mutant fIs2
(Zeng and He, 2010), lecrk-V1.2-1 mutants demonstrate a high
sensitivity to Pst DC3000 COR™ deficient bacterial mutants that
cannot re-open stomata upon infection. Since Arabidopsis is resis-
tant to these bacterial mutants (Melotto et al., 2006), LecRK-V1.2
may play a positive role in bacteria-mediated stomatal closure
(Singh etal., 2012). Consistent with this observation, stomatal
closure upon bacterial inoculation and MAMPs treatments were
found to be defective in the mutant lecrk-V1.2-1 (Singh et al., 2012).
This suggests that LecRK-VL.2 plays a positive role during stom-
atal innate immunity activation at a signaling node downstream of
MAMP perception. In addition, transgenic lines over-expressing
LecRK-VI.2 demonstrate constitutive stomatal closure, further
suggesting a positive role for LecRK-VI.2 in stomatal innate immu-
nity (Singh etal.,, 2012). The mutant lecrk-VI.2-1 demonstrates
wild-type stomatal closure levels in response to ABA indicating
that LecRK-VI.2 acts upstream or independently of ABA signaling
during stomatal closure (Singh etal., 2012).

Another LecRK involved in Arabidopsis stomatal innate immu-
nity is LecRK-V.5. However, in contrary to LecRK-VIL.2 that
positively regulates stomatal innate immunity, LecRK-V.5 nega-
tively regulates stomatal closure upon bacterial infection. Plants
lacking a functional LecRK-V.5 are resistant to Pst DC3000 and
Pcc surface inoculation, but are normally sensitive to infiltra-
tion inoculation (Arnaud etal., 2012; Desclos-Theveniau etal.,
2012). These observations suggest that disruption of LecRK-V.5
affects early Arabidopsis defenses by restricting bacterial entry
into leaves and point to a role of LecRK-V.5 in stomatal innate
immunity (Desclos-Theveniau etal., 2012). Analyses of stomatal
apertures in lecrk-V.5 indeed revealed that this mutant possesses
constitutively closed stomata (Desclos-Theveniau etal., 2012).
Transgenic lines over-expressing LecRK-V.5 are less resistant to
Pst DC3000 COR™and this is correlated with a re-opening of
stomata in LecRK-V.5 over-expression lines even in the absence
of COR. These observations suggest the existence of a stom-
atal re-opening mechanism positively modulated by LecRK-V.5
(Desclos-Theveniau etal., 2012). Interestingly, LecRK-V.5 over-
expression lines are also defective in MAMP-induced stomatal
closure. Together these data indicate that LecRK-V.5 negatively
regulates Arabidopsis resistance to bacteria through fine-tuning of
stomatal innate immunity (Desclos-Theveniau et al., 2012). Local-
ized expression of LecRK-V.5 upon PTI activation at stomatal
guard cells further supports a role for LecRK-V.5 in stomatal
innate immunity (Desclos-Theveniau etal., 2012). Similarly to
the scord5 mutant that shows a defective stomatal innate immu-
nity but exhibits wild-type apoplastic immunity (Zeng etal,

2011), apoplastic PTI responses such as flg22-triggered oxida-
tive burst, bacteria-mediated callose deposition and up-regulation
of PTI marker genes are not affected in lecrk-V.5 mutants. COR
treatments re-open closed stomata in lecrk-V.5 mutants (Desclos-
Theveniau etal., 2012), suggesting that LecRK-V.5 acts upstream
of COR. lecrk-V.5 mutants accumulate high levels of ROS in guard
cells and chemical inhibition of ROS accumulation in lecrk-V.5
guard cells re-opens closed stomata (Desclos-Theveniau etal.,
2012). By contrast, treatments with PAMPs increase guard cell
ROS levels in wild-type, but no increase of ROS production
was observed in Arabidopsis over-expressing LecRK-V.5 (Desclos-
Theveniau etal., 2012). Since ROS induce stomatal closure, high
levels of ROS, and defective ROS accumulation may explain consti-
tutive stomatal closure in lecrk-V.5 mutants and deficient stomatal
closure in LecRK-V.5 over-expression lines, respectively. In addi-
tion, lines over-expressing LecRK- V.5 demonstrate a compromised
ABA-mediated stomatal closure (Desclos-Theveniau etal., 2012),
thus LecRK-V.5 functions in guard cell ABA signaling pathway
downstream of MAMP perception. LecRK-V.5 may thus act at a
specific branch involving ABA for the control of stomatal innate
immunity and may negatively regulate ABA-mediated stomatal
responses (Desclos-Theveniau etal., 2012). Negative regulation
of stomatal innate immunity may have evolved in order to avoid
the deleterious effects of a prolonged inhibition of photosynthe-
sis that would be caused by decreased CO, availability following
prolonged stomatal closure.

CONCLUSION

Although new knowledge about lectin receptor kinases func-
tion and signaling has emerged recently, many questions still
remain unanswered. For example, what are the potential ligands
and downstream partners that modulate lectin receptor kinase-
dependent innate immunity responses are critical points that need
to be solved. Importantly, the unraveling of the mechanisms mod-
ulating ligands perception by lectin receptor kinases will provide
further insights into how LecRKs affect the plant response to
pathogens. This may clarify whether these receptor kinases func-
tion as PRRs. Knowledge derived from such studies could lead to
novel methods for managing plant disease resistance.
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