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Plants possess two types of phosphofructokinase proteins for phosphorylation of fructose-
6-phosphate, the ATP-dependent phosphofructokinase (PFK) and the pyrophosphate-(PPi)
dependent pyrophosphate-fructose-6-phosphate-phosphotransferase (PFP). During oxy-
gen deficiency ATP levels in rice seedlings are severely reduced, and it is hypothesized that
PPiis used as an alternative energy source for the phosphorylation of fructose-6-phosphate
during glycolysis. In this study, we analyzed the expression of 15 phosphofructokinase-
encoding genes in roots and aerial tissues of anoxia-tolerant rice seedlings in response
to anoxic stress and compared our data with transcript profiles obtained from microarray
analyses. Furthermore, the intracellular localization of rice PFK proteins was determined,
and the PFK and PFP isoforms were grouped in a phylogenetic tree. Two PFK and two PFP
transcripts accumulated during anoxic stress, whereas mRNA levels of four PFK and three
PFP genes were decreased. The total specific activity of both PFK and PFP changed only
slightly during a 24-h anoxia treatment. It is assumed that expression of different isoforms
and their catalytic properties differ during normoxic and anoxic conditions and contribute to
balanced glycolytic activity during the low-oxygen stress. These characterizations of phos-
phofructokinase genes and the comparison to other plant species allowed us to suggest
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candidate rice genes for adaptation to anoxic stress.
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INTRODUCTION

The pronounced tolerance of oxygen deprivation during seed
germination and vegetative development makes rice plants an
interesting subject to elucidate mechanisms of response to low-
oxygen stress. Oxygen deficiency results in inhibition of mito-
chondrial respiration, leading to NADH accumulation as well as
ATP deficiency. Glycolytic production of ATP continues, when fer-
mentative enzymes are induced and able to regenerate sufficient
amounts of NAD™T (reviewed in Drew, 1997; de Sousa and Sodek,
2002; Geigenberger, 2003; Gibbs and Greenway, 2003).

Plant cells frequently enhance the rate of sucrose consump-
tion under low-oxygen stress to compensate for the low energy
yield during glycolysis (2—4 mol ATP per mol glucose), in com-
parison to aerobic mitochondrial respiration (30—36 mol ATP per
mol glucose) (Summers et al., 2000). We have shown previously
that rice plants sustain a higher fermentation rate during anoxia
as compared to anoxia-sensitive wheat plants, but ATP levels still
drop by two-third (Mustroph et al., 2006a). The decline in cellular
ATP content during low-oxygen stress will impact the glycolytic
phosphorylation reactions catalyzed by hexokinases and phospho-
fructokinases (Bouny and Saglio, 1996). Thus, it was hypothesized
that plants might use pyrophosphate (PPi) instead of ATP as an

Abbreviations: ADH, alcohol dehydrogenase; PDC, pyruvate decarboxylase;
PFK, ATP-dependent phosphofructokinase; PF2K, phosphofructo-2-kinase; PFP,
pyrophosphate-fructose-6-phosphate-phosphotransferase; PPi, pyrophosphate.

alternative energy source for phosphorylation processes during
ATP deficiency (Weiner et al., 1987; Stitt, 1998; Huang et al., 2008).
PPi is a by-product of many biosynthetic processes like DNA and
protein synthesis, and its levels are not changed during oxygen
deficiency stress (Dancer and ap Rees, 1989; Mohanty et al., 1993;
Mustroph et al., 2005).

Sucrose cleavage and subsequent phosphorylation of hexoses
are usually catalyzed by the ATP-dependent invertase/hexokinase
reaction, but can be replaced by the PPi-consuming sucrose
synthase/UDP-glucose pyrophosphorylase reaction. The activa-
tion of this alternative pathway of sucrose catabolism upon oxygen
deficiency stress was confirmed for several plant species, and the
substitution of the ATP-dependent reactions by the UTP and PPi-
dependent pair of enzymes is generally accepted (Springer et al.,
1986; Ricard et al., 1991, 1998; Guglielminetti et al., 1995; Perata
et al., 1996, 1997; Biemelt et al., 1999; Mustroph and Albrecht,
2003; Albrecht et al., 2004; Bailey-Serres and Voesenek, 2008).

The second phosphorylation step in the glycolytic pathway
is the phosphorylation of fructose-6-phosphate to fructose-1,6-
bisphosphate via phosphofructokinase. The reaction can be per-
formed by an ATP-dependent phosphofructokinase (PFK) or by
the PPi-dependent form pyrophosphate-fructose-6-phosphate-
phosphotransferase (PFP). PFP consists of two different subunits
(PFP-alpha, PFP-beta) that form a heterotetramer (Wong et al.,
1990; Teramoto et al., 2000), whereas the subunit composition of
a PFK complex is not known yet.
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The contribution of each phosphofructokinase enzyme to the
phosphorylation step and their functions during different growth
conditions remain unclear. While during hypoxic stress both
enzyme activities are induced in wheat and maize roots (Mus-
troph and Albrecht, 2003), their activities do not change in roots
of potato plants (Mustroph et al., 2005). Experiments with trans-
genic potato plants with a severe decrease in PFP activity revealed
no change in aerobic (Hajirezaei et al., 1994) or anoxic metabo-
lism (Mustroph, unpublished results). However, the PFP activity
was increased in anoxically germinated rice coleoptiles (Mertens
et al., 1990; Kato-Noguchi, 2002) and anoxic rice suspension cells
(Mohanty et al., 1993), whereas PFK activity was unaffected.

Studies on genes encoding the ATP- and PPi-dependent phos-
phofructokinases have been previously limited by the lack of
information on coding sequences for plant PFKs, which were only
recently described (Mustroph etal.,2007; Winkler etal., 2007). The
Arabidopsis thaliana phosphofructokinase gene family consists of 11
members, of which four members encode PFPs and seven encode
PFKs (Nielsen et al., 2004; Mustroph et al., 2007; Winkler et al.,
2007). Here, we identify 15 putative phosphofructokinase genes
of rice, five encoding PFPs and 10 encoding PFKs, and perform
transcriptomic and enzymatic studies to evaluate the contribu-
tion of phosphofructokinase genes to anoxic metabolism in roots,
stems, and leaves of the highly anoxia-tolerant plant. The analy-
sis includes evaluation of phosphofructokinase gene expression
during darkness and illumination, since it was already demon-
strated that illumination greatly enhances the tolerance of plants
to anoxic stress due to the contribution of photosynthesis to
energy production (Mustroph et al., 2006b). The findings indi-
cate that individual members of the PFK and PFP gene families
are induced by anoxia, although activities of these two enzymes are
only slightly increased by the stress. Notably, the induction of PFP
genes was greater in the shoots and leaves than in roots, leading
to the suggestion that the induction of the PPi-utilizing phospho-
fructokinase may only occur in tissues with sufficient carbohydrate
levels for consumption during the stress. During the study, mnRNA
sequences and intracellular localization of the proteins were ana-
lyzed, and several discrepancies to the annotated versions were
found.

MATERIALS AND METHODS

PLANT MATERIAL AND ANOXIC TREATMENT

Rice seeds (Oryza sativa ssp. indica cv. Cigalon) were watered,
germinated for 3 days in the dark at 27°C and transferred to pots
containing Knop nutrient solution that was continuously aerated
(Mustroph and Albrecht, 2003). After growth for 20 days in 16 h-
light/8 h-dark cycles and 250 wmoles photons m—2s~! the plants
were placed in desiccators, while their roots were immersed in
nutrient solution. The gaseous and the aqueous phase (the nutri-
ent solution) in the desiccator were continuously flushed with
nitrogen gas and plants were treated for 0.5, 2, 8, or 24h in
the light (250 umoles photons m~2 s~!) or in complete darkness.
Additionally, light-grown plants were exposed to 24 h darkness in
ambient air to distinguish between light-dependent and anoxia-
independent gene expression regulation. For harvest, plants were
removed from the desiccator, divided into roots, stem and leaf
sheaths, and frozen immediately in liquid nitrogen within 60 s.

ISOLATION OF RNA, cDNA SYNTHESIS, AND SEMI-QUANTITATIVE
REVERSE-TRANSCRIPTASE POLYMERASE CHAIN REACTION ANALYSIS
RNA from frozen tissues was extracted using the Trizol reagent
(Bioline GmbH, Luckenwalde, Germany). cDNA was synthesized
from 15 g RNA with standard protocols using oligodT primers
and MLV reverse transcriptase (Fermentas GmbH, St. Leon-
Rot, Germany). The PCR reactions were performed using Taq
polymerase (New England Biolabs GmbH, Frankfurt, Germany)
according to the purchaser’s protocol. The oligonucleotide primers
used are listed in Table S1 in Supplementary Material. Because of
the high GC content of rice cDNA, for each primer combination
the optimal PCR conditions were tested using different concentra-
tions of MgCl,, DMSO, betaine, cycle numbers, and temperatures.
The optimal conditions for the semi-quantitative amplification of
each fragment from cDNA are summarized in Table S2 in Supple-
mentary Material. PCR products were analyzed by electrophoresis
in standard 1% agarose gels. DNA bands were quantified by use of
the program AlphaEaseFC (Alpha Innotech Corporation).

CLONING AND SEQUENCING OF PFKs AND PFPs

For intracellular localization of the proteins and confirmation of
nucleotide sequences, full-length PFKs were amplified from cDNA
with VELOCITY DNA polymerase (Bioline, Germany) by use of
the primers listed in Table SI in Supplementary Material and
cloned into the vector pPDONR221 by use of the Gateway tech-
nology (Invitrogen, Germany). The resulting entry clones were
completely sequenced by Sanger sequencing and compared to
the reference sequences from the rice genome annotation project
(Ouyang et al., 2007)!. Subsequently, correct clones were trans-
ferred via the LR reaction into the vector pEarleyGate 103 (Earley
etal., 2006), which had been modified by the addition of one base
in order to put the C-terminal GFP into frame. The plasmids were
sequenced again to verify the correct frame of the PFK-GFP fusion.

The two sequences OsPFK07 and OsPFK08 did not fully match
the annotated mRNA sequences. In this case, several clones and
fragments of cDNA as well as of genomic DNA were sequenced,
not only from the variety Cigalon, but also from other varieties
(Nipponbare, M202, FR13A, CT6241, Dongjin, Hwayoung). For
OsPFK07, a new full-length construct was made based on the
truncated version of the Cigalon variety.

After the first localization studies and the observation of aggre-
gate formation in transiently transformed tobacco leaves, we also
cloned the N-terminal ca. 100 amino acids to obtain truncated PFK
sequences by use of the primers listed in Table S1 in Supplementary
Material. Here, products were amplified with Phusion DNA Poly-
merase (Fermentas GmbH, St. Leon-Rot, Germany), and cloned by
the Gateway technology into the vector pPDONR221 (Invitrogen,
Germany). After sequencing, correct sequences were subcloned by
the LR clonase into the vector pK7FWG2,0 (Karimi et al., 2002).

For sequencing of PFPs, a major piece of each mRNA sequence
was amplified by PCR from ¢cDNA by use of the primers listed
in Table S1 in Supplementary Material. The PCR products were
directly sequenced and compared to the annotated sequences.
Nucleotide sequences differing from the annotated versions were
submitted to GenBank with the IDs KC620557-KC620559.

Uhttp://rice.plantbiology.msu.edu
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TRANSIENT TRANSFORMATION OF TOBACCO LEAVES AND
INTRACELLULAR LOCALIZATION OF PFKs

Binary expression vectors containing PFK-GFP fusion con-
structs were transformed into the Agrobacteria strains LBA4404
(full-length constructs) and GV3103 (N-terminal truncations).
Tobacco leaves were transiently transformed by infiltration with
Agrobacteria suspensions as described in Bendahmane et al. (2000)
and Mustroph et al. (2007). About 3—4 days after infiltration, leaf
disks were collected and protoplasts were isolated as previously
described (Bayley et al., 1992; Mustroph et al., 2007). GFP flu-
orescence was analyzed on either protoplasts or undigested leaf
disks by confocal laser scanning microscopy using Leica TCS SP2
(Leica, Germany, at hex 488 nm, ke 530-555nm for GFP and
650—720 nm for chlorophyll emission).

ENZYME ACTIVITIES

Plant tissue was ground in liquid nitrogen to a fine powder
and extracted in 50 mM Hepes-KOH, pH 6.8 containing 5 mM
Mg acetate, 5 mM B-mercaptoethanol, 15% (v/v) glycerol, 1 mM
EDTA, 1 mM EGTA, 5mM DTT, and 0.1 mM Pefabloc proteinase
inhibitor (Boehringer Mannheim, Germany). The homogenate
was centrifuged at 13,000 g at 4°C for 15 min. The resulting super-
natant was used for spectrophotometric determination of PFK and
PFP activities as well as the fermentative enzymes alcohol dehy-
drogenase (ADH) and pyruvate decarboxylase (PDC) at 340 nm
using a UVIKON photometer (Kontron, Germany).

For the assay of PFK (EC 2.7.1.11), the reaction mixture was
0.1 M Hepes-KOH, pH 7.9 with 2 mM MgCl,, 0.15mM NADH,
7.5 mM fructose-6-phosphate, 1 U aldolase, 1 U triosephosphate
isomerase, and 1 U glycerol-3-phosphate-dehydrogenase (Sigma-
Aldrich, Germany). The reaction was started by addition of
2.5mM ATP. For assay of PFP (EC 2.7.1.90), the same reac-
tion mixture was used with the addition of 1 WM fructose-2,6-
bisphosphate, and initiation of the reaction with 1 mM NaPPi
(modified from Gibbs et al., 2000). PDC (EC 4.1.1.1) was assayed
in 50 mM MES, pH 6.8, with 25 mM NaCl, 1 mM MgCl,, 0.5 mM
thiamine pyrophosphate, 2 mM dithiothreitol, 0.17 mM NADH,
50 mM sodium oxamate, 10 U ADH (Sigma-Aldrich, Germany)
and the reaction was initiated by addition of 10 mM pyruvate
(Waters et al., 1991). ADH (EC 1.1.1.1) was assayed in 50 mM TES
buffer, pH 7.5, with 0.2 mM NADH and the reaction was initiated
by the addition of 10 mM acetaldehyde (Waters et al., 1991). Pro-
tein concentration was measured according to Bradford (1976).

BIOINFORMATICS AND STATISTICS

Nucleotide and protein sequences were analyzed by use of
the program Bioedit (Tom Hall, Ibis Biosciences, Carlsbad,
USA). ClustalW alignments were done with the website http:
/Iwww.genome.jp/tools/clustalw/. Phylogenetic trees were con-
structed by use of the website http://www.phylogeny.fr/version2_
cgi/phylogeny.cgi. Expression data from rice microarray experi-
ments were obtained from Mustroph et al. (2010), and heat maps
were drawn with TIGR-MeV (Saeed et al., 2006).

Polymerase chain reaction analyses were performed on three
independent bioreplicates. Infiltration of tobacco leaves was
repeated three to five times for each construct. Enzymatic
measurements were done with three independent bioreplicates,

and results were statistically analyzed with the package “mult-
comp” in R by use of the Tukey HSD test.

RESULTS

IDENTIFICATION OF GENES ENCODING PHOSPHOFRUCTOKINASES IN
RICE AND COMPARISON OF THEIR SEQUENCES

The Arabidopsis phosphofructokinase-encoding gene sequences
were used to perform a BLAST-search of the rice genome (Ouyang
et al., 2007)? for homologous nucleotide sequences. This analysis
identified 15 different sequences with high similarity to Arabidopsis
phosphofructokinase-encoding genes. A phylogenetic tree based
on the amino acid sequences was generated, including the sequence
of phosphofructo-2-kinase/fructose-2,6-bisphosphatase, which is
a similar, but unrelated protein (Figure 1). Four of the rice pro-
teins (LOC_0Os02g48360, LOC_0s06g22060, LOC_0s08g25720,
LOC_0Os09g12650) grouped with the two putative Arabidopsis
PFP-alpha subunits (At1g20950, At1g76550) and known PFP-
alpha subunits from other plants. Surprisingly, two rice PFP-
alpha protein sequences (LOC_0Os08g25720, LOC_0Os09g12650)
were found to be distinct from the PFP-alpha subunit sequences
of dicotyledonous species known so far (Figure 1). One rice
amino acid sequence (LOC_Os06g13810) showed high homology
to the two putative Arabidopsis PFP-beta subunits (At1g12000,
At4g04040) and the PFP-beta subunits from Citrus x paradisii,
potato and Ricinus communis.

The remaining 10 rice phosphofructokinases grouped with
seven Arabidopsis PFK proteins, indicating that both species have
larger families of ATP-dependent than PPi-dependent phospho-
fructokinases. Based on the sequence similarities among the
PFK family, three sub-clades were distinguished (Figure 1). One
group includes five rice (LOC_Os01g09570, LOC_0Os01g53680,
LOC_0s05g10650, LOC_0s05g44920, LOC_0Os06g05860) and
five Arabidopsis PFKs, the two other groups have each
one Arabidopsis member (At2g22480, At5g47810), and two
(LOC_Os04g39420, LOC_0s09g30240), or three (LOC_
0s08g34050, LOC_0s09g24910, LOC_0Os10g26570) rice mem-
bers, respectively (Figure 1). Based on these results, we propose
to distinguish the three PFK sub-clades as PFK_A, PFK_B, and
PFK_C (Table 1). The amino acid alignment reveals distinct
sequence patterns with high similarity among the members of each
sub-clade that differentiate them from the other two sub-clades
(Figure S1 in Supplementary Material). Besides other sequence
differences, members of group B have shorter N- and C-termini,
whereas members of group C have shorter C-termini compared to
group A members. Furthermore, all members of group C are pre-
dicted to be localized to plastids (Table 1; TargetP, Emanuelsson
et al., 2000; pSort, Horton et al., 2006).

EXPRESSION OF PHOSPHOFRUCTOKINASE GENES UNDER AERATION

To study the expression patterns of all representatives of the rice
phosphofructokinase gene family, transcript abundance was ana-
lyzed by use of semi-quantitative reverse transcription polymerase
chain reaction (RT-PCR) using total RNA from roots, leaf sheaths,
and stems of rice seedlings grown under non-stress conditions in

Zhttp://rice.plantbiology.msu.edu
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FIGURE 1 | Phylogeny of plant phosphofructokinase genes. Unrooted
neighbor joining tree produced from CLUSTALW alignment of amino acid
sequences of Arabidopsis and rice phosphofructokinase genes. Genes
marked with a “plus” showed increased transcript levels and names marked
with a “minus” showed decreased transcript levels during anoxic stress
treatment, respectively. Arabidopsis genes marked with a plus are those that

002948360 050622060 (PFPA2) ©
(PFPA1) At1920950
At1g76550
PFPA_Citrus
PFPA_Ricinus
PFPA_Potato

0508925720 (PFPA3) &
0509912650 (PFPA4) ©

PFP_alpha

PFPB_Citrus
PFPB_Ricinus
At1g12000
Atdg04040
PFPB_Potato
® 0506913810 (PFP-B)

PFP_beta

* plastidal localization
® anoxia induced
© anoxia reduced

At1g07110

were induced by >2-fold in published microarray experiments (Mustroph

et al., 2010). Genes marked with a black dot are plastid localized. PF2K:
Arabidopsis phosphofructo-2-kinase gene (At1g07110) used as an outgroup in
the phylogenetic analysis. Accession numbers for other plant PFPs:
Citrus_Alpha, AAC67587; Potato_Alpha, P21342; Ricinus_Alpha, Q41140;
Citrus_Beta, AAC67586; Potato_Beta, P21343; Ricinus_Beta, Q41141.

the light or after transfer to complete darkness for 24 h (labeled
as 0 h* in Figure 2). The abundance of actin mRNA was used as a
loading control (Ren et al., 2005). The accumulation of some tran-
scripts encoding PFKs and PFPs were organ-specifically and/or
light-dependently regulated, while others exhibited ubiquitous
expression patterns. mRNAs for OsPFK01 — OsPFK03, OsPFK05 —
OsPFKO08, and OsPFKI0 were detected in all analyzed organs
of seedlings exposed to light, as well as transcripts of OsPFPAI
and OsPFPA4 (Figure 2). OsPFK04 and OsPFK09 mRNAs were
present at low levels in tissues of non-stressed seedlings during
both light and dark exposure (0 h anoxia). OsPFPA2 was strongly
expressed in the stem, and OsPFPA3 as well as OsPFP-B showed
lower expression in leaves than in roots and stems. The trans-
fer of seedlings to darkness for 24 h resulted in a decrease in
transcripts encoding OsPFPA4 in all tissues, and OsPFK07 and
OsPFPA1 in leaves (0h* in Figure 2). OsPFPA3 transcript levels
were slightly enhanced during darkness, whereas transcripts of
OsPFK01 — OsPFK03, OsPFKO05, OsPFK06, OsPFK0S8, OsPFK10,
OsPFKPFPA2, and OsPFKPFP-B accumulated to similar extent
during dark and light growth.

EXPRESSION OF PHOSPHOFRUCTOKINASE GENES UNDER ANOXIA IN
LIGHT AND DARKNESS

To identify the phosphofructokinase genes that may play a tis-
sue specific role in the response to anoxic metabolism in rice
seedlings, transcript levels of the 10 PFK and 5 PFP genes were
quantified in seedling tissues following exposure to anoxia (30 min

to 24h), in the light or complete darkness. The pyruvate decar-
boxylase (PDC1, LOC_0Os05¢39310) transcript, which is known to
significantly increase in abundance under low-oxygen conditions
in rice seedlings, was monitored as positive control for anoxic
stress (Figure 2). Under normoxic conditions, the PDCI mRNA
was more abundant in roots as compared to stems and leaves.
PDCI transcript level increased within 30 min of anoxia stress in
roots, whereas the increase in stems and leaves was detected after
2h of stress. PDCI transcripts were induced by anoxia in roots
and leaves with similar kinetics in seedlings exposed to light or
darkness. In stems, the induction of PDC was slightly faster in
darkness than during light irradiation.

The evaluation of anoxic stress-responsive mRNA accumu-
lation of the rice PFK and PFP genes identified three groups.
Expression of group 1 phosphofructokinase genes (OsPFKO0I,
OsPFK02, OsPFK03) did not change during stress treatment
(Figure 2). Group 2 phosphofructokinase genes (OsPFKO06,
OsPFKO07, OsPFK08, OsPFK10, OsPFPA1, OsPFPA2, OsPFPA4)
showed a decrease in transcript levels in response to anoxia.
Among these genes, OsPFK10 and OsPFPA2 transcripts were
reduced in stems only after 24 h anoxia in darkness, whereas the
transcript abundance of the other five genes reduced more rapidly.
OsPFK06 transcripts decreased in roots and stems, whereas
OsPFKO07, OsPFK08, OsPFPA 1,and OsPFPA4 transcripts decreased
in all analyzed tissues. Interestingly, all PFK genes in group 2
that showed reduced expression under anoxia are predicted to
be plastid-localized (Table 1).
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Table 1 | Rice phosphofructokinase genes, Locus identifier, length of coding sequence (number of bases), and protein size (number of amino

acids).
Locus ID Name Length of mRNA Length of protein Predicted localization RNAseq expression
level from 16 tissues

Maximum Mean

PFK_A

LOC_0Os01g09570 OsPFKO1 15696 531 Cytosolic 69.04 2760

LOC_0s01g53680 OsPFK02 1683 560 Cytosolic 44.50 10.24

LOC_0s05g10650 OsPFK04 1629 542 Cytosolic 2.89 1.40

LOC_0Os05g44922 OsPFK05 1704 567 Cytosolic 53.36 14.39

LOC_0Os06g05860 OsPFK06 1677 558 Plastid (confirmed cytosolic) 118.48 33.60

PFK_B

LOC_0s049g39420 OsPFK03 801 266 Cytosolic 46.80 6.89

LOC_0s09g30240 OsPFK09 1398 465 Cytosolic 48.42 5.79

PFK_C

LOC_0s08g34050 OsPFK07 1590 (1608) 529 (535) Plastid 798 2.10

LOC_0s09g24910 OsPFK08 15684 (1665) 527 (655) Plastid 14.83 4.51

LOC_0Os10g26570 OsPFK10 1575 524 Plastid 41.14 6.07

PFP-ALPHA

LOC_0s02948360 OsPFPA1 1854 617 Cytosolic 98.49 19.19

LOC_0s06922060 OsPFPA2 1869 622 Cytosolic 171.15 53.64

LOC_0s08g25720 OsPFPA3 1854 617 Cytosolic 102.03 42.51

LOC_0s09g12650 OsPFPA4 1884 (1722) 627 (573) Cytosolic 0.68 0.36

PFP-BETA

LOC_0s06913810 OsPFP-B 1704 567 Cytosolic 110.02 52.99

Numbers for OsPFKO7 are for the sequence of the variety FR13A. Numbers in brackets are annotated sizes from the rice genome annotation project (http:

//rice.plantbiology.msu.edu; Ouyang et al., 2007). Intracellular localization was predicted by use of two online programs (TargetR Emanuelsson et al., 2000;

pSort, Horton et al., 2006). RNAseq expression data are from the Nipponbare variety from 16 tissues, summarized from the rice genome annotation project

(http.// rice.plantbiology.msu.edu/ expression.shtml).

Phosphofructokinase genes of group 3 were induced under
anoxia (OsPFK04, OsPFK05, OsPFPA3, OsPFP-B). OsPFK09 is also
included in group 3, but displayed a markedly delayed increase
in mRNA accumulation in response to stress at an extremely low
expression level. OsPFK04, predicted to encode a cytosolic enzyme,
expresses the strongest anoxia-induced transcript of group 3.
OsPFK04 mRNA content was below the detection level in seedlings
grown under aerated conditions, but increased dramatically within
30 min of anoxia in roots resembling the pattern of PDCI accu-
mulation. OsPFK05 mRNA accumulated less dramatically only in
leaves after 224 h of anoxia. Among the PFP genes, only the con-
tent of OsPFPA3 and OsPFP-B mRNAs slightly increased in leaves
and stems after 2 h of anoxia (Figure 2), resembling the expression
of OsPFKO05. The group 2 and group 3 phosphofructokinase genes
are highlighted in the phylogenetic tree with a minus or plus sign,
respectively, for their low-oxygen stress responsiveness (Figure 1).

Exposure to light or darkness most dramatically altered mRNA
content of group 2 genes of the phosphofructokinase family. These
genes showed a higher decrease in transcript levels in response to
anoxia in darkness as compared to anoxia during illumination.
OsPFPAI and OsPFPA4 mRNA content was reduced during dark
anoxia most likely in response to the transfer to darkness, as 24 h
dark incubation under constant aeration (sample 0 h* in Figure 2)
caused a similar loss of the mRNA level. On the other hand,

OsPFK06, OsPFK07, OsPFK08, OsPFK10, and OsPFPA2 transcript
levels were decreased stronger during anoxia in darkness than in
light, but not during darkness alone.

SEQUENCE VARIATIONS OF PHOSPHOFRUCTOKINASE GENES

Amplification and sequencing of PFK genes revealed in the
OsPFK07 and OsPFKO08 sequences a significant difference to anno-
tated sequences. OsPFK08 was annotated with two splicing forms
(Ouyang et al., 2007)3. The longer form LOC_0s09g24910.1 con-
tained a sequence that was not present in any other sequence of
the group PFK_C (Figure 3A; Figures S1 and S2 in Supplemen-
tary Material). Sequencing of several cDNA clones derived from
RNA of different rice varieties revealed the unique presence of the
shorter annotated splicing form, LOC_0s09¢24910.2 (Figure 3A
and data not shown). OsPFKO07 surprisingly revealed the lack of 20
nucleotides in its mRNA sequence in comparison to the annotated
version, leading to a frame shift in the translated protein sequence
and a premature stop codon (Figure 3B). We re-sequenced the
OsPFK07 cDNA and genomic DNA of several rice varieties in
order to confirm the initial findings. Genomic clones of OsPFK07
of all varieties consistently resulted in the complete annotated

3http://rice.plantbiology.msu.edu
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FIGURE 2 | Semi-quantitative RT-PCR analysis of transcript
abundance of the rice phosphofructokinase genes. Total RNA was
extracted from roots, stems, and leaves of 3-week-old rice plants under
normoxia or after different durations of anoxic stress. Samples in (A) were
treated in the light; samples in (B) were treated in the dark. The sample 0*
was harvested after 24 h in darkness under normoxic conditions. Actin and
PDC1 (0s05g39310) transcript levels were used to control for equal

A dark[h] 0* 05 2 8 24

B leaf

0052 8 24

stem
0052 8 24

root

No cycles

64 70 75 75 98 69 79 65 47 67 106 102 93 86 77

63 63 62 73 74 60 59 59 65 36 55 76 82 82 78

125 110 70 87 90 82 76 66 64 68 60 55 62 46 52

17 128 116 42 94 0 3 49 68 14 12 22 13 0 80

91 107 122 127 126 66 77 98 89 101 89 97 128 134 115

63 68 66 63 20 94 79 80 24 0 117 106 100 93 91

28

67 76 70 66 21 70 55 59 22 23 47 68 34 13 7

—_—— ek 34

70 78 77 66 39 66 70 63 6 6 48 61 50 16 12

34

41

88 98 94 103 122 103 101 93 63 46 129 123 128 115 98

36

72 98 96 86 20 77 90 85 20 O 10 60 47 3 0

36

15 27 3 0 0 59 63 46 6 9 59 76 53 41 13

32

84 106 110 110 125 81 85 105 97 59 65 43 128 144 143

40

12 88 90 37 77 12 65 73 11 7 8 91 111 114 28

40

95 114 111 107 123 40 57 111 127 104 34 66 121 139 110

41

21 50 56 61 61 0 24 50 46 29 0 0 46 65 59

28

28

loading and to confirm low-oxygen stress, respectively. RT-PCR product
levels were quantified by use of the program AlphaEaseFC (Alpha Innotech
Corporation), and normalized to the level of actin mRNA in the same
sample. The relative transcript level is indicated above each band (% of
light control). Gel images are representative of three independent
biological replicate experiments. RT-PCR conditions are listed in Table S2 in
Supplementary Material.
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FIGURE 3 | Sections of protein alignments for different Full-length nucleotide and protein sequences can be found in Figure S2
phosphofructokinase subgroups, whose sequences differ from the in Supplementary Material. (A) Two splicing forms of OsPFKO0S; (B)
annotated public sequences (http://rice.plantbiology.msu.edu, modified splicing for OsPFK07, leading to a frame shift in the protein,
Ouyang et al., 2007). New sequences that were confirmed by and the modified sequence in the rice variety FR13A; (C) modified
sequencing of PCR products are indicated as “modified” (mod). splicing of OsPFPA4.
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sequence including the 20 nucleotide region, while sequencing
of the OsPFK07 cDNA of these varieties gave always rise to a trun-
cated sequence lacking this stretch of 20 nucleotides. As result,
a truncated protein lacking 120 amino acids at the C-terminus
is predicted to be most likely non-functional. Supposedly, this
mutation could occur in the rice genome since two other mem-
bers of the PFK_C are available, while Arabidopsis only contains
one isoform of this subgroup (Figure 1). In consistency with a
putative non-functional gene, the expression level of OsPFKO07 is
very low in many tissues, as derived for example from RNAseq
analyses (Table 1). However, this finding was not confirmed in
our experiments (Figure 2).

Interestingly, two rice varieties, FR13A and CT6241, revealed a
second modification of the OsPFK07 gene, an insertion of two
bases in the genomic sequence close to the modified splicing
site (Figure S2 in Supplementary Material). This altered sequence
restores the reading frame comparable to OsPFK08 and OsPFK10
(Figure 3B). However, which of the two sequence variants evolved
earlier during evolution remains to be explored in future.

Our sequencing revealed also a modified OsPFPA4 nucleotide
sequence. The annotated sequence lacks part of the final coding
sequence leading to encoded PFP-alpha subunit with a truncated
C-terminus in comparison to the other three isoforms. However,
the sequencing results revealed another mRNA sequence that rep-
resents an un-annotated alternative splicing form, which more
closely resembles the sequence of the other three homologous
genes (Figure 3C; Figure S2 in Supplementary Material). Inter-
estingly, the expression level of OsPFPA4 was very low in rice

tissues as observed by RNAseq analyses (Table 1), but in our analy-
ses OsPFPA4 was significantly expressed in detectable amounts in
seedlings (Figure 2).

INTRACELLULAR LOCALIZATION OF PFKs

The expression analysis under anoxia revealed decreased expres-
sion of several PFK genes, in particular those representatives that
encode putative plastid-localized proteins. We therefore aimed
to confirm the intracellular localization of PFK isoforms, and
applied a similar approach as previously shown for Arabidopsis
PFKs (Mustroph et al., 2007). Using the leaf infiltration technique
for transient transformation of the rice PFK genes in tobacco
leaves, we showed the clear localization of 5 out of 10 differ-
ent PFK isoforms in the cytoplasm. Expression of the full-length
PFKs of OsPFK01, OsPFK02, OsPFK04, OsPFK05, and OsPFK06
resulted in their cytosolic localization (Figure S3 in Supplementary
Material), but the proteins formed cytoplasmic aggregates. Several
modified protocols of transient transformation were tested, but
resulted always in the production of aggregates: changes in incu-
bation time of transiently transformed tobacco leaves, at different
temperatures, use of different Agrobacteria strains and binary vec-
tors, and ultimately stable transformation in Arabidopsis (data
not shown). However, expression of fusion proteins containing
the first 100 amino acids of the respective PFK protein resulted
in even distribution throughout the cytosol (Figure 4). Surpris-
ingly, OsPFK06, which was predicted to be plastid-localized, was
clearly cytosolic (Figure 4E). As a very short transit peptide of
only 10 amino acids was predicted (TargetP, Emanuelsson et al.,

FIGURE 4 | Subcellular localization of PFK isoforms from rice.
Full-length mRNA sequences or the N-terminal part of the sequences
were cloned in frame in front of a GFP-coding sequence and were
transiently transformed into tobacco leaves by Agrobacterium infiltration.
After 3-4 days, protoplasts or undigested leaf disks were isolated and

..

analyzed by confocal microscopy. Green color represents GFP
fluorescence, red color represents chlorophyll autofluorescence.
N-terminal part: (A) OsPFKO1; (B) OsPFKO02; (C) OsPFK04; (D) OsPFKO05;
(E) OsPFK06; (K) OsPFK08, (L) OsPFK10. Full-length CDS: (F) OsPFKO07;
(G) OsPFKO08; (H) OsPFK10; (1) OsPFKO03; (J) OsPFKO09.
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2000), it is suggested that the organellar localization is a false
prediction.

OsPFK03 and OsPFK09 are both members of the weakly
expressed PFK_B subgroup and are mainly expressed in seeds
(Figure S4 in Supplementary Material). Tobacco leaves infiltrated
with the truncated or full-length constructs p35S::OsPFK03-GFP
and p35S::0sPFK09-GFP did surprisingly not show GFP fluores-
cence in tobacco mesophyll cells in four independent experiments,
although the same vectors, bacterial strains and conditions had
been used as for the positive control p35S::0OsPFK05-GFP. How-
ever, we observed GFP fluorescence in a few epidermal cells that
demonstrate cytosolic localization of the proteins (Figure 4; Figure
S3 in Supplementary Material). It can be concluded that both pro-
teins are less stable during transient overexpression in tobacco
leaves than members of the PFK_A group.

All members of the PFK_C group, OsPFK07, OsPFK08, and
OsPFK10, were predicted to be localized in plastids, with a pre-
dicted transit peptide consisting of 30—-50 amino acid residues. Our
assay revealed localization of the full-length proteins in plastids,
however associated with the formation of aggregates (Figure 4), as
previously described for Arabidopsis AtPFK4 and AtPFK5 (Mus-
troph et al., 2007). Still, we observed clear association of the
aggregates with chloroplasts, and not with other compartments
(Figure 4; Figures S3S,T in Supplementary Material). Expression
of the N-terminal part did not result in detectable plastidal GFP
fluorescence (Figures 4K,L).

PHYLOGENETIC ANALYSIS AND EXPRESSION UNDER OXYGEN
DEFICIENCY STRESS

The expression analysis of phosphofructokinase genes of rice under
anoxia revealed differential gene expression of several members in
roots and shoots of seedlings. For a wider comparison among
species, we first identified phosphofructokinase genes in differ-
ent plant species by use of the Phytozome genome collection?,
and constructed a separate phylogenetic tree for PFK and PFP
sequences (Figures 5 and 6). We selected phosphofructokinase
genes from plant genomes, of which expression data are available
under oxygen deficiency stress, and additionally used two other
monocotyledonous species, Sorghum bicolor and Brachypodium
distachyon. Comparison of the genome of the green algae Chlamy-
domonas reinhardtii revealed the presence of PFK_C genes only,
hinting at a complex evolution of phosphofructokinase genes in
higher plants. Gene expression data from published microarray
experiments were added from rice (Lasanthi-Kudahettige et al.,
2007; Narsai et al., 2009; Mustroph et al., 2010), Arabidopsis
(Branco-Price et al., 2008; Hsu et al., 2011; Lee et al., 2011), poplar
(Kreuzwieser et al., 2009), cotton (Christianson et al., 2010), and
soybean (Nanjo et al., 2011). It was intended to obtain a first qual-
ified overview about the potential role of phosphofructokinases
under oxygen deficiency stress.

Interestingly, all analyzed monocotyledonous species only con-
tained one gene for the beta-subunit of PFP, while dicotyledo-
nous species usually contained more isoforms. In general, PFP-
beta-encoding genes of either monocotyledonous or dicotyledo-
nous species show only a low induction upon low-oxygen stress,

*http://www.phytozome.net/

among them the rice PFP-B-encoding gene being up to 3.8 times
induced in the microarray experiments (Table S3 in Supplemen-
tary Material). This induced expression was shown to a similar
extent in our experiments (Figure 2). Transcript levels of three
PFP-alpha subunit-encoding genes were reduced or unchanged
under oxygen deficiency stress in rice, while OsPFPA3 was moder-
ately induced in leaves, as indicated by RT-PCR (Figure 2) and
microarray analyses (Figure 5). This latter gene was grouped
into a monocotyledonous-specific sub-clade of PFP-alpha sub-
unit encoding sequences. The genes most similar to dicotyle-
donous species were down-regulated, similar to the PFP-alpha
subunit encoding genes of other plant species, whose expres-
sion was hardly induced (Figure 5). It would be interesting to
analyze if other members of this monocotyledonous-specific sub-
group are also induced by oxygen deficiency stress, for example in
Sorghum or Brachypodium, or if this induction is specific to the
submergence-tolerant rice plant.

Among the PFK gene family, each plant species analyzed con-
tained members that were induced by oxygen deficiency stress
(Figure 6), indicating an important function in plant metabolism
under the stress condition. Most of the induced genes,among them
OsPFK04, OsPFK05, AtPFK3, and AtPFK6, belong to the subgroup
PFK_A. The plastidal genes of subgroup PFK_C were generally
down-regulated in rice, Arabidopsis and soybean (Figure 6; Table
S3 in Supplementary Material). OsPFK06 shows the strongest
reduced mRNA content and its encoded PFK isoform is localized
in the cytosol (Figure 4E). OsPFK06 was grouped with two other
genes from monocotyledonous species, whose expression under
oxygen deficiency stress remains to be determined.

ACTIVITY OF PHOSPHOFRUCTOKINASES AFTER ANOXIC TREATMENT
To further evaluate the relative importance of PFK and PFP dur-
ing the transition from aerated to anoxic growth conditions in rice
seedlings, we measured the specific activities of these two distinct
phosphofructokinases along with the fermentative enzymes ADH
and PDC (Table 2). In comparison to anoxically treated plants,
the ADH showed the lowest basal activity in leaves in ambient
oxygen concentration, whereas PDC activity was low in all tis-
sues. [llumination did not affect the basal ADH and PDC activity,
but the anoxic induction of these enzymes was more pronounced
in illuminated seedlings than in darkness. As expected, a signifi-
cantly elevated ADH activity was observed after 24 h of anoxia in
all tissues. ADH activity increased threefold to ninefold during the
24-h anoxic treatment. Thereby, the greatest increase of activity
was observed in leaves relative to the low basal level in this organ.
Also for PDC activity, a significant anoxia-induced elevation was
determined after 24 h of anoxia (Table 2).

Evaluation of PFK activity revealed a decline of 20 and 50%
PEK activity after 24 h dark incubation under normoxia in com-
parison to the illuminated control in stems and leaves, respectively.
By contrast, PFP activity was not modified upon the transfer of
seedlings to darkness (Table 2). In general, PFP and PFK activities
did only moderately change during anoxic treatment. PFK activ-
ity in stems was significantly higher after 4 and 24 h of anoxia in
light and in dark anoxic treatment as compared to the respective
control (Table 2), which likely results from increased expression
of OsPFKO5 in this tissue (Figure 2). PFK activity did not change
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FIGURE 5 | Phylogenetic tree of plant PFP genes, constructed by
the platform http://www.phylogeny.fr (Dereeper et al., 2008).
Protein sequences were obtained from Phytozome, with
modifications after sequencing of rice genes. Gene expression data
were collected into a heat map, when available. Data are from the
following sources: Hypoxia seedlings: Arabidopsis (Branco-Price
etal.,, 2008, 2 and 9h), rice (Narsai et al., 2009, 3 and 6 h);

Submergence root/shoot: Arabidopsis (Lee et al., 2011, 7 and 24 h),
rice (Mustroph et al., 2010, 24 h shoot); soybean (Nanjo et al., 2011, 6
and 12 h, roots only); Flooding root/shoot: Arabidopsis (Hsu et al.,
2011, 3and 12 h), cotton (Christianson et al., 2010, 4 h root and 24 h
shoot), poplar (Kreuzwieser et al., 2009, 5 and 24 h root, 168 h shoot);
Anoxic germination: rice (Narsai et al., 2009, 24 h;
Lasanthi-Kudahettige et al., 2007, 96 h).

significantly in response to anoxia in roots or leaves. The activity
of PFP was slightly but not significantly increased in leaves only
after 24 h of anoxia in light and darkness (Table 2), but not in roots
or stems.

DISCUSSION

PHOSPHOFRUCTOKINASE GENES IN RICE AND THEIR EXPRESSION
UNDER NORMOXIC CONDITIONS

In this report we analyzed the expression of 15 phosphofructokinase
genes in rice (Table 1). Five gene sequences resemble PFP genes

derived from other plant species, which have been described earlier
(Carlisle et al., 1990; Todd et al., 1995; Kapri et al., 2000; Suzuki
et al., 2003). Genes encoding the two different subunits of the
heterotetrameric PFP were found in the rice genome (Figure 1).
Whereas Arabidopsis possesses two genes each encoding the PFP-
alpha and PFP-beta subunits (Mustroph et al., 2007), available
rice sequence data predicts four genes for PFP-alpha subunits,
which represent the regulatory PFP subunit (Table 1), and one
gene encoding the PFP-beta subunit (PFP-B, LOC_Os06¢13810)
representing the catalytically active subunit of the PFP complex
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FIGURE 6 | Phylogenetic tree of plant PFK genes, constructed by the
platform http://www.phylogeny.fr (Dereeper et al., 2008). Protein
sequences were obtained from Phytozome, with modifications after
sequencing of rice genes. Chlamydomonas reinhardtii phosphofructokinase
genes were added for comparison. Gene expression data were collected
into a heat map, when available. Data are from the following sources:
Hypoxia seedlings: Arabidopsis (Branco-Price et al., 2008, 2 and 9h), rice
(Narsai et al., 2009, 3 and 6 h); Submergence root/shoot: Arabidopsis (Lee
etal., 2011, 7 and 24 h), rice (Mustroph et al., 2010, 24 h shoot); soybean
(Nanjo et al., 2011, 6 and 12 h, roots only); Flooding root/shoot: Arabidopsis
(Hsu et al., 2011, 3 and 12 h), cotton (Christianson et al., 2010, 4 h root and
24h shoot), poplar (Kreuzwieser et al., 2009, 5 and 24 h root, 168 h shoot);
Anoxic germination: rice (Narsai et al., 2009, 24 h; Lasanthi-Kudahettige
etal., 2007, 96 ).

(Yan and Tao, 1984; Theodorou et al., 1992; Theodorou and
Plaxton, 1996). It is suggested that rice uses several regulatory
subunits with distinct properties that are activated under different
growth conditions. Indeed, the four OsPFPA genes show diverse

expression patterns in plant tissues and under various light con-
ditions (Figure 2). OsPFPA2 mRNA was detected primarily in
stems, whereas OsPFPAI and OsPFPA3 mRNAs were less abun-
dant in leaves than in stems or roots (Figure 2). PFP activity was
very low in leaf extracts compared to that of roots and stems
(Table 2). Furthermore, OsPFPAI and OsPFPA4 showed dark-
dependent decreases in mRNA accumulation in leaves (Figure 2),
but the PFP activity after dark incubation was unchanged in com-
parison to light-grown leaves (Table 2). These observations in rice
are consistent with the previous report of decreased abundance
of two Arabidopsis PFP gene transcripts (At1g12000, At1g20950)
after transfer to darkness, although no apparent change in PFP
activity was determined (Gibon et al., 2004). We predict that the
total in vitro enzymatic activity from whole cell extracts conceals
the biologically significant differences in the assembly of PFP het-
erotetrameric complexes in response to the cell-specific variation
of the expression of PFP isoforms.

The other 10 phosphofructokinase genes (Table 1) showed
homology to the seven AtPFK genes (Mustroph et al., 2007)
(Figure 1). Five of these proteins form a sub-clade, designated
the PFK_A group, together with the five AtPFK proteins that are
important for cytosolic glycolysis (Figure 1). The present study
confirms that four of these rice genes are highly expressed in all
observed tissues, with the exception of OsPFK04 (Figure 2). Inter-
estingly, the rice genome does not contain a true plastidal isoform
in this subgroup, since the predicted plastidal OsPFK06 of the
PFK_A group was clearly cytosolic (Figure 4E), while AtPFK4
presents a plastidal isoform in the PFK_A group. The rice PFK_C
group members apparently fulfill the sole plastidal PFK function
(see below).

The protein sequences of the PFK_B and PFK_C groups
markedly differ from the sequences of the group PFK_A (Figure 1;
Figure S1 in Supplementary Material). OsPFK03 and OsPFK09
were closely related to AtPFK2 (At5g47810), and form the PFK_B
group (Figure 1). The protein sequences of the PFK_B group
are shorter than the other PFK sequences (Table 1; Figure Sl
in Supplementary Material). AtPFK2 is specifically expressed in
seeds, but scarcely expressed in other tissues, and the same expres-
sion pattern was determined for both rice genes (Figure S4 in
Supplementary Material; Winter et al., 2007). Nevertheless, in
our transcript analysis OsPFK03 was expressed at considerable
amounts, while OsPFK09 transcripts were present only at very
low levels in vegetative tissues (Figure 2). All members of this
sub-clade are localized to the cytosol (Figure 4, Mustroph et al.,
2007). It is proposed that PFK_B members are characterized by
distinct enzymatic properties for specific tissues, such as seeds
and embryos. But, expression of AtPFK2 in tobacco leaves did not
induce enhanced PFK activity under our assay conditions (Mus-
troph etal., 2007). Future analyses of Arabidopsis and rice mutants
with deficiency in AtPFK2 and OsPFK03/09 expression could shed
light on this topic.

The PFK_C subgroup proteins are targeted to plastids and
include the rice genes OsPFK07, OsPFK08, and OsPFK10 as well
as AtPFK5 (At2g22480; Mustroph et al., 2007; Figure 4). Indeed,
PFK isoforms of various plant species were found in chloro-
plasts and in the cytosol (Cawood et al., 1988; Knowles et al.,
1990; Turner and Plaxton, 2003). While cytosolic PFKs catalyze
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Table 2 | Specific activities of phosphofructokinases (PFK, PFP) and fermentative enzymes (ADH, PDC) (nmol x mg protein—"' x min—") in roots,

stems, or leaves of rice seedlings after 4 and 24 h of anoxic stress (A), or under normoxic conditions (C).

PFK PFP ADH PDC
ROOT
C 24h Light 24.12 +5.45° 94.98 £ 28.742 122.26 + 30.56° 0.0040.00?
C 24 h Dark 20.98 4 1.322 84.27 +£22.51° 116.90 £ 34.212 0.00+0.00?
A 4h Light 20.70 4 3.422 110.76 & 29.55° 212.13+25.83? 1.12+0.98°
A 4 h Dark 23.03+£7132 120.55 + 39.30° 256.62 + 16.242 0.75 4 1.302
A 24 h Light 31.33+4.45° 102.21 + 11.922 980.43 + 152.23P 21.95+2.32P
A 24 h Dark 20.2340.99° 75.16 + 12.822 692.15 4+ 121.28° 14.75+3.26°
STEM
C 24 h Light 16.55 =+ 1.46°¢ 135.34+£9.022 186.27 £17.02° 1.4541.872
C 24 h Dark 12.44 4+ 1.99¢ 132.30 £ 10.222 183.65 = 11.222 2.294+0.912
A 4h Light 23.8542.728 141.81 £ 12.728 325.01 +33.06° 5.47 +1.17°
A 4 h Dark 18.33+£2.53° 131.33+9.61° 207.26 +0.862 4.38+1.502
A 24 Light 20.68 + 1.09% 143.28 £ 4.502 599.35 +20.47¢ 16.38 4 3.08°
A 24 h Dark 17.25 4 1.73%¢ 142.75 + 7.482 475.82 +52.069 16.63 & 2.20°
LEAF
C 24 Light 11.23 4 3.46% 21,52 +0.98° 26.58 4 3.832 0.00+0.00?
C 24 h Dark 5.28 +1.25° 19.94 +1.712 24.69 +1.942 0.00+0.00?
A 4nh Light 12.54 4 0.942¢ 22.16 + 1.86° 75.60 & 4.48° 0.17+0.212
A 4 h Dark 8.58 + 1.54¢ 21.39+ 2.882 55.81 +6.78% 0.06+£0.112
A 24 Light 13.74 £ 1.062 25.55 + 3.09° 258.36 + 31.83¢ 4.1040.51°
A 24 h Dark 8.0140.90b¢ 23.62+0.21° 156.41 + 7414 2.76 +£0.34°

Data are mean values from three biological replicate samples +SD. Values with the same letter within one organ are significantly different at P< 0.05.

a step in the normal cytosolic glycolysis for energy metabolism,
plastidal glycolysis using plastidal PFK contributes to starch break-
down and generation of metabolites for biosynthetic processes in
dark-adapted or non-photosynthetic plastids (Plaxton, 1996). We
propose that plastidal PFKs are light-dependently inactivated to
avoid breakdown of photosynthates. But, we found significantly
lower PFK activity in 24h dark-incubated leaves and stems of
rice plants exposed to ambient air (50% activity in comparison to
light-grown plants, Table 2). It is possible that the in vitro activity
does not reflect the in planta activity which could be influenced
by redox regulation and phosphorylation (Kachru and Anderson,
1975; Cséke et al., 1982; Heuer et al., 1982).

PFK AND PFP GENE EXPRESSION UNDER ANOXIA

The function of the two different phosphofructokinases in plants
is still a matter of debate. It was hypothesized that plants might
use PFP instead of PFK for the phosphorylation of fructose-6-
phosphate during ATP deficiency (Weiner et al., 1987; Mertens
et al., 1990; Stitt, 1998). Our results show that anoxia-tolerant rice
plants induce the expression of genes coding for both enzymes,
PFK as well as PFP, during anoxia. OsPFK04 is a bona fide inducible
gene upon anoxia in all organs, whereas OsPFKO05 transcripts were
moderately increased in stems and leaves (Figure 2). Induction
of OsPFK04 transcript occurred within 30 min of anoxic stress.
This rapid induction resembles that of accumulating PDCI mRNA
(Figure 2). It is suggested that rice has a sensitive and rapid signal-
ing pathway for the detection of low-oxygen levels, most likely via
post-translational and oxygen-dependent regulation of group VII

EREF transcription factors (Gibbs et al., 2011; Licausi et al., 2011).
However, such induction of PFK genes was also found for all other
plant species observed (Figure 6), including low-oxygen-sensitive
Arabidopsis (At4g26270, At4g32480) and soybean. Therefore, it
can be proposed that induction of PFK is important for metabo-
lism under oxygen deficiency in both, sensitive and tolerant plants.

Also OsPFPA3 and OsPFP-B transcripts were clearly increased
in rice under anoxia in light and darkness (Figure 2), mainly in
stems and leaves, which are the tissues with the highest tolerance
to anoxia (Mustroph et al., 2006a,b). As stems and leaves store
more carbohydrates and ferment them during anoxic periods,
their cells survive anoxia better than root cells. Furthermore, these
tissues might be able to produce more adaptive proteins, including
PFP against stress through enhanced availability of photosynthetic
energy. Interestingly, while PFPAs encoding the regulatory subunit
were not induced in low-oxygen sensitive Arabidopsis or soybean
plants, the OsPFPA3 was stronger induced in anoxic rice seedlings
than the catalytic subunit OsPFP-B (Figures 2 and 5) indicating a
high importance for modulation of enzyme activity under oxygen
deficiency (Figure 5). These results favor the idea that PFP plays a
role in the reorganization of metabolism during low-oxygen stress
in anoxia-tolerant leaves, but not in sensitive Arabidopsis plants or
rice roots. However, the particular role of PFP in plant metabolism
remains open. This question should be addressed in transgenic rice
plants displaying reduced PFP activity.

Transcripts of four PFK genes were found to be less abun-
dant during anoxia compared to aeration (OsPFK06, OsPFK07,
OsPFK08, OsPFK10; Figure 2). Remarkably, three of the four
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PFK genes are plastidic and belong to group PFK_C (Table 1).
Also Arabidopsis, soybean and poplar PFK_C members were not
induced under oxygen deficiency stress and hypothetically hint at
reduced plastidal starch degradation and biosynthetic processes
under oxygen deficiency. However, rice seeds are able to ger-
minate under anoxia by making use of the amylase-degraded
starch (Guglielminetti et al., 1995; Perata et al., 1997). It is not
entirely excluded that either the degradation products of starch
are translocated from plastids as hexoses, or plastidal PFK activity
is mainly post-translationally stimulated despite the transcrip-
tional reduction. Thus, more detailed studies are needed to eluci-
date the link between reduced OsPFK transcription of plastid-
localized isoforms and the response and adaptation to anoxic
stress.

Ilumination during the anoxic period greatly enhances the
plant survival rates due to photosynthesis-driven ATP produc-
tion (Mustroph et al., 2006b). In our recent analysis, we did not
find dramatic differences in the induction of phosphofructokinase
genes (Figure 2) or enzyme activities (Table 2) in light versus
dark anoxia. This suggests that phosphofructokinase activity has
not a major role in the positive effect of illumination during
oxygen deficiency stress. But, all phosphofructokinase genes with
reduced expression during an anoxic stress period showed an even
stronger decrease in darkness than in light, especially in stems
and leaves (Figure 2) suggesting an energy-dependent decrease of
transcription in anoxia. It is reasonable to speculate on the avoid-
ance of unwanted transcription and translation to save valuable
ATP. It is reported that the highly energy-consuming translation of
house-keeping genes is especially tightly regulated under oxygen
deficiency stress (Branco-Price et al., 2008; Mustroph et al., 2009).
In consistency, ADH and PDC activities did not increase as much
during anoxia in darkness as in light (Table 2; Mustroph et al,,
2006a,b).

Complete analyses of the expression of phosphofructokinase
gene family under oxygen deficiency are only now possible after
the identification of the entire gene family in rice. Previously, the
effect of oxygen deficiency on the content of a single phospho-
fructokinase transcript was studied by RNA blot analysis in rice
(Umeda and Uchimiya, 1994; Minhas and Grover, 1999). Based on
our classification of the phosphofructokinase genes, both research
groups monitored OsPFP-B and concluded that the transcriptlevel
is strongly increased upon oxygen deprivation. This is in agree-
ment with our results showing a two- to threefold increase in the
OsPFP-B mRNA content (Figure 2). Data from recent microarray
analyses using rice coleoptiles exposed to anoxic stress (Lasanthi-
Kudahettige et al., 2007; Narsai et al., 2009), and of rice leaves to
submergence (Mustroph et al., 2010) confirmed the highest accu-
mulation of OsPFK04 and OsPFKO05 transcript levels among the
phosphofructokinase genes (Figure 6; Table S3 in Supplementary
Material). The microarray data also show a moderate induction of
OsPFPA3 and OsPFP-B (Figure 5), as shown in our experiments
(Figure 2). Furthermore, the reduced accumulation of OsPFK06,
OsPFK08, OsPFK10, and OsPFPAI transcripts during anoxia in
comparison to the aerated controls was congruently presented in
the microarray profiles and our studies. When expression patterns,
for example from OsPFK01 and OsPFPA4, differ between reported
and our own studies, these differences likely refer to the use of

different plant tissues and rice cultivars as well as different growth
conditions and stress applications.

INDUCED EXPRESSION OF PHOSPHOFRUCTOKINASE GENES DOES
MODIFY ENZYME ACTIVITIES ONLY SLIGHTLY

Despite the fact that some PFK and PFP genes were strongly
expressed during anoxia in rice compared to aeration, the activ-
ities of PFK and PFP in cell extracts were only slightly increased
in response to anoxic treatment (Table 2). PFP activity increased
slightly but not significantly after 24 h of anoxia in leaves, which
correlated with increased OsPFPA3 transcript levels, while PFK
activity was slightly induced in stems during illuminated anoxia.
Although the translational activity of single mRNAs and the sta-
bility of individual isoforms are not known, it is proposed that
the simultaneous increase of transcript amounts for two PFK and
two PFP genes and the decrease of transcript amounts for four
PEK and three PFP genes contribute to the maintenance of the
activity of both enzymes during anoxia (Figure 2). However, rice
shoots, the most tolerant tissue in this study, showed an increase
in PFP enzyme activity during long-term anoxia. This elevated
activity was never obtained for the anoxia-sensitive Arabidopsis
plants (data not shown) and could presumably partly contribute
to anoxia tolerance.

Increased activities of PFP, but not of PFK were reported for rice
coleoptiles (Mertens et al., 1990; Kato-Noguchi, 2002) or suspen-
sion cells (Mohanty et al., 1993) in response to oxygen deficiency.
Two reasons could explain the lower activation of enzyme activity
in the present experiments. First, plant organs respond differently
to oxygen deficiency stress. Coleoptiles possess the highest anoxia
tolerance among the different plant tissues and can survive several
days of anoxia. Therefore, it is possible that among other factors
this tolerance is due to strong increase of PFP activity. Second, the
experimental conditions differ in the studies. Rice suspension cells
were exposed to 12 and 24 h of anoxia in darkness with carbohy-
drate addition, and a sixfold PFP activity increase was determined,
but no increase of PFK activity (Mohanty et al., 1993). Without
additional sugar supply, dark-incubated rice seedlings do not tol-
erate anoxia for more than 24 h before they die (Mustroph et al.,
2006a). It is likely that the sugar supplement enables the strong
increase in enzyme activity in the previous study (Mohanty et al.,
1993).

We conclude that, although the overall in vitro activity of PFK
and PFP was only slightly modified during anoxic treatment, the
induction and repression of several of the PFK and PFP genes
contributes to changes of the in planta metabolic activity. The
encoded phosphofructokinases could have different affinities to
substrates and cofactors, such as fructose-6-phosphate, ATP, and
PPi. Furthermore, PFK and PFP activities are highly regulated by
other metabolites like magnesium or phosphoenolpyruvate (sum-
marized in Plaxton, 1996). Another possible factor is phosphate,
a potent activator of cytosolic PFK activity that functions as an
inhibitor of plastidic PFK activity (Kelly and Latzko, 1977). In
conclusion, the distinct upregulation of PFP genes during anoxia
in rice provides a means for the use of PPi instead of ATP for
the conversion of fructose-6-P to fructose-1,6-BP. An increase in
PFP transcript levels and PFP activity during anoxia in rice likely
alleviates the energy crisis. These regulatory mechanisms were
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not observed in low-oxygen sensitive plants, such as Arabidopsis,
soybean, or poplar.
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The Supplementary Material for this article can be found
online at http://www.frontiersin.org/Plant_Physiology/10.3389/
fpls.2013.00125/abstract

Figure S1 | Alignment of amino acid sequences of PFKs from Arabidopsis
and rice. The sequences were aligned by use of the ClustalWW method
(http://www.genome.jp/tools-bin/clustalw). Similar amino acids are marked with
shadows. The letters A, B, and C mark the three PFK subgroups. For the
alignment, the corrected protein sequences for LOC_0Os08g34050 (OsPFK07)
and LOC_0s09g24910 (OsPFK08) were used (see Figure S2 in Supplementary

found in different varieties, one for Nipponbare (as well as Cigalon, M202,
Dongjin, Hwayoung), and one for FR13A (as well as CT6241).

Figure S3 | Subcellular localization of PFK isoforms from rice. Full-length
mRNA sequences or the N-terminal part of the sequences were cloned in frame
in front of a GFP-coding sequence and were transiently transformed into
tobacco leaves by Agrobacterium infiltration. After 3-4 days, protoplasts or
undigested leaf disks were isolated and analyzed by confocal microscopy. Green
color represents GFP fluorescence, red color represents chlorophyll
autofluorescence. Full-length CDS: (A) OsPFKO1; (B) OsPFK02; (C) OsPFKO04;
(D) OsPFKO05; (E) OsPFKOB6; (l,J) OsPFKO3; (0) OsPFKQ9; (S) OsPFKO08; (T)
OsPFK10. N-terminal part: (F-H) OsPFK03; (K-N) OsPFK09; (P-R) OsPFKO05.

Figure S4 | Expression of the PFK_B group members in different organs.
eFP browser pictures were obtained through http://bar.utoronto.ca (WVinter

et al., 2007). Red color intensity shows high expression level in the respective
tissue type.

Table S1 | Primers used for the experiments. Actin primers were those used
by Ren et al. (2005).

Table S2 | Semi-quantitative RT-PCR analysis of rice phosphofructokinase
genes: conditions for the PCR reactions.

Material).

Figure S2 | Modified nucleotide and protein sequences for
LOC_0s089g34050 (OsPFK07), LOC_0s099g24910 (OsPFK08), and
LOC_0s09g12650 (OsPFPA4) after sequencing of several PCR products and
comparison to the annotated sequences. For OsPFK07, two versions were
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