
“fpls-04-00149” — 2013/5/17 — 18:46 — page 1 — #1

MINI REVIEW ARTICLE
published: 21 May 2013

doi: 10.3389/fpls.2013.00149

Hop-on hop-off: importin-α-guided tours to the nucleus in
innate immune signaling
Lennart Wirthmueller1*, Charlotte Roth 2, Mark J. Banfield1 and Marcel Wiermer 2*

1 Department of Biological Chemistry, John Innes Centre, Norwich Research Park, Norwich, UK
2 Albrecht-von-Haller-Institute for Plant Sciences, Department of Plant Cell Biology, Georg-August-University Göttingen, Göttingen, Germany

Edited by:

Laurent Deslandes, Centre National
de la Recherche Scientifique, France

Reviewed by:

Mahmut Tör, University of Worcester,
UK
Wladimir Igor Tameling, Wageningen
University, Netherlands

*Correspondence:

Lennart Wirthmueller, Department of
Biological Chemistry, John Innes
Centre, Norwich Research Park,
Norwich, NR4 7UH, UK.
e-mail: lennart.wirthmueller@jic.ac.uk;
Marcel Wiermer, Albrecht-von-
Haller-Institute for Plant Sciences,
Department of Plant Cell Biology,
Georg-August-University Göttingen,
Julia-Lermontowa-Weg 3, 37077
Göttingen, Germany.
e-mail: wiermer@uni-goettingen.de

Nuclear translocation of immune regulatory proteins and signal transducers is an essential
process in animal and plant defense signaling against pathogenic microbes. Import of
proteins containing a nuclear localization signal (NLS) into the nucleus is mediated by
nuclear transport receptors termed importins, typically dimers of a cargo-binding α-subunit
and a β-subunit that mediates translocation through the nuclear pore complex. Here, we
review recent reports of importin-α cargo specificity and mutant phenotypes in plant-
and animal–microbe interactions. Using homology modeling of the NLS-binding cleft of
nine predicted Arabidopsis α-importins and analyses of their gene expression patterns,
we discuss functional redundancy and specialization within this transport receptor family.
In addition, we consider how pathogen effector proteins that promote infection by
manipulating host cell nuclear processes might compete with endogenous cargo proteins
for nuclear uptake.
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HOP-ON HOP-OFF: IMPORTIN-MEDIATED NUCLEAR
PROTEIN IMPORT
In eukaryotic cells, nuclear transport receptors (NTRs) of the
importin-α family recognize and bind to canonical nuclear local-
ization signal (NLS)-containing cargo proteins in the cytoplasm
and link them to importin-β, the NTR that facilitates passage of
the ternary complex through the nuclear pore complex (NPC)
into the nucleus. Cargos may contain one (monopartite) or
two (bipartite) NLS sequence motifs and directional binding
to and release from the importin-α/β heterodimer is imposed
by the nucleotide-binding state of Ran, a small guanosine-5′-
triphosphatase (GTPase) that cycles between GTP-bound nuclear
and guanosine-5′-diphosphate (GDP)-bound cytoplasmic states
(Terry et al., 2007; Meier and Somers, 2011). The RanGDP-
RanGTP gradient across the nuclear envelope (NE) is generated
by the asymmetric distribution of two regulators, RanGAP in the
cytoplasm and RanGEF in the nucleus that is associated with chro-
matin and drives nuclear cargo release upon binding of RanGTP
to importin-β. After dissociation of the import complex and cargo
delivery into the nucleus, importin-β bound to RanGTP is recycled
to the cytoplasm, whereas importin-α interacts with the RanGTP-
bound export receptor CAS for recycling of cargo-free importin-α
back to the cytoplasm. In the cytoplasm, RanGAP stimulates GTP
hydrolysis on Ran to release the importins for another round of
import (Stewart, 2007).

α-importins typically consist of an N-terminal auto-inhibitory
importin-β-binding (IBB) domain followed by a series of ten
armadillo (ARM) repeats that form the NLS-binding cleft

(Goldfarb et al., 2004; Figures 1A,B). The flexible IBB domain not
only connects importin-α to importin-β but also contains a cluster
of basic amino acids that competes with NLS-cargos for binding
to the ARM-repeat domain of importin-α. Thus, the IBB domain
is involved in regulating both formation of the trimeric import
complex in the cytoplasm and release of cargo in the nucleus after
the IBB domain is freed from importin-β by RanGTP (Görlich
et al., 1996a; Kobe, 1999; Stewart, 2007). Following cargo release
in the nucleus α-importin is exported to the cytoplasm by a com-
plex of the export carrier CAS and RanGTP (Goldfarb et al., 2004;
Matsuura and Stewart, 2004).

Stimulus-induced nuclear translocation and/or accumulation
of signaling molecules and transcriptional regulators are essen-
tial for the coordinated relay of defense signals in both plant
and animal innate immune responses to microbial pathogens.
Inside the nucleus, these signals direct the expression of defense-
related genes. In addition, it has become increasingly evident
that not only do host resistance components show dynamic par-
titioning between the cytoplasm and the nucleus, but also that
a significant number of animal and plant pathogen virulence
factors exploit host cell nuclear import pathways to act directly
within the nucleus and promote disease. In this review, we pro-
vide an overview of recent studies reporting importin-α cargo
selectivity in animal and plant innate immunity and discuss poten-
tial promiscuity within the Arabidopsis import receptor family.
We also consider how microbial virulence factors may hijack
the nuclear import machinery to manipulate host cell nuclear
processes.
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IMPORTIN-α PARALOGS IN Arabidopsis thaliana
Although the Saccharomyces cerevisiae genome encodes only a
single importin-α (Yano et al., 1992), several paralogs have been
reported in most higher eukaryotes – seven in humans, six in
mouse, three in Drosophila, five in rice, and nine in Arabidopsis
(Ouyang et al., 2007; Ratan et al., 2008; Hu et al., 2010; Kel-
ley et al., 2010; Merkle, 2011). Conceivably, expansion of the
importin-α gene family in multicellular eukaryotes reflects adapta-
tion toward a more complex regulation of nuclear import. Several
mammalian importin-α paralogs show tissue-specific expression
patterns (Köhler et al., 1997; Tsuji et al., 1997; Yasuhara et al.,
2007), and nuclear import of some cargo proteins is preferen-
tially mediated by specific importin-α adapters (Miyamoto et al.,
1997; Nadler et al., 1997; Köhler et al., 1999; Melén et al., 2003;
Quensel et al., 2004). In Arabidopsis importin-α1-4, α6, and α9 are
ubiquitously expressed (Figure 1C). However, there is controversy
from different profiling techniques regarding the levels and tissue-
specificity of importin-α5, α7, and α8 expression (Meyers et al.,
2004; Bhattacharjee et al., 2008; Hruz et al., 2008; Huang et al.,
2010). For example, although Huang et al. (2010) report specific
expression of importin-α8 in rosette/cauline leaves and flowers, a
search for genes regulated by the male germ line-specific transcrip-
tion factor (TF) DUO1 suggests that importin-α8 is a DUO1 target
gene that is specifically expressed in the male germ line (Borg et al.,
2011). These data indicate that importin-α8 may have a distinct
function during pollen development. Notably, importin-α8 does
not have an IBB domain (Figure 1B) suggesting that it lacks both
the capacity to bind importin-β and the auto-inhibitory mech-
anisms that are conserved in the other α-importins. Therefore,
it remains to be tested if importin-α8 can function as a NTR
and whether the loss of the IBB domain is a consequence of
specialization in pollen development.

The comparably high number of α-importins in Arabidopsis
can only partially be rationalized by tissue-specific expression
of single paralogs. Alternatively, multiple paralogs might have
evolved to transport specific cargos. Indeed, the NLS from the
rice COP1 protein binds in vitro the two rice importins α1a and
α1b, but not importin-α2 (Jiang et al., 2001). This, and other
examples outlined below, provides evidence for cargo specificity
of α-importins and it appears likely that higher eukaryotes are
equipped with an array of α-importins that accumulate to different
levels and exhibit different affinities for distinct cargos. Transcrip-
tional and post-translational regulation of importin-α protein
levels in response to environmental stimuli would constitute a
flexible system to alter nuclear import kinetics and specificities in
changing environments.

SEQUENCE DIVERSITY IN Arabidopsis α-IMPORTINS
Resolved crystal structures of α-importins from yeast, human,
mouse, and rice revealed strong structural conservation of the
ARM repeat domains that form the NLS binding sites (Conti
et al., 1998; Kobe, 1999; Fontes et al., 2003; Chang et al., 2012).
ARM repeats from yeast, human, and mouse α-importins can
be superimposed with a root mean square deviation of less than
1.8Å and amino acids that contribute to the NLS binding sites
occupy very similar positions in these structures. We used homol-
ogy modeling to characterize conservation of the NLS binding site

among the nine Arabidopsis α-importins. As in α-importins from
other species, a conserved array of Trp/Asn pairs protruding from
the third helix of the ARM repeats (H3) forms the core of the
major and minor NLS binding sites in Arabidopsis α-importins
(Figure 1A). Previous comparative analysis revealed that major
determinants of specificity are (i) the amino acid positioned three
residues upstream of the conserved Trp, and (ii) residues that
constitute the loops connecting the H3 and H1 helices (Marfori
et al., 2012). Notably, the Trp/Asn array at the minor NLS bind-
ing site is not entirely conserved in plant α-importins (Figure 1D
and Table 1). As some plant NLSs specifically bind to the minor
NLS binding site (Chang et al., 2012) it will be interesting to test
whether these divergent amino acids determine binding to specific
NLSs.

IMPORTIN-α CARGO SPECIFICITY IN ANIMAL IMMUNE
RESPONSES
Both animal and plant innate immune systems have evolved pat-
tern recognition receptors (PRRs) to detect microbe-associated
molecular patterns (MAMPs) and defend against pathogens
(Nürnberger et al., 2004; Ausubel, 2005). In addition to MAMP
detection, the plant innate immune system also imparts pathogen-
specific recognition via nucleotide-binding/leucine-rich repeat
immune sensors (NLRs) that detect the actions of isolate-
specific pathogen virulence factors, termed effectors (Jones and
Dangl, 2006). In contrast, animal NLRs detect MAMPs inside
host cells (Kanneganti et al., 2007a; Ronald and Beutler, 2010;
Maekawa et al., 2011). Activation of both NLRs and PRRs ini-
tiates signaling cascades that convey the biotic stress stimulus
into the host cell nucleus to alter defense gene expression. Thus,
stimulus-induced changes in the NPC permeability of signal
transducers, immune and transcriptional regulators represent
an important mechanism for controlling defense-associated gene
expression.

Changes in nuclear translocation rates are often achieved via
post-translational protein modifications leading to conforma-
tional changes that expose or conceal NLSs or nuclear export
sequences (NESs). For example, gene expression changes in mam-
malian innate immunity are largely governed by the induced
nuclear translocation of the NF-κB family of Rel-type TFs. Nuclear
accumulation of NF-κB is controlled by its association with IκB
proteins. Depending on the type of IκB, these proteins either
sequester NF-κB in the cytoplasm by masking its NLS, or pre-
vent its ability to bind to chromatin due to a strong NES in
IκB that directs dominant nuclear export over nuclear import
(Johnson et al., 1999; Huang et al., 2000; Malek et al., 2001).
Signal-dependent phosphorylation by IκB-kinase targets IκB for
proteolysis, thereby allowing NF-κB nuclear import to activate
defense gene expression. In human cells, the closely related
importins α3 and α4 are the two main isoforms responsible for
nuclear import of NF-κB p50/p65 heterodimers following IκB
degradation. Whereas the major NLS binding site of importin-
α3 binds to p50, the minor NLS binding site mediates association
with p65 (Fagerlund et al., 2005).

Innate immune responses in Drosophila are also controlled at
the level of nuclear transport. Upon activation of the Toll sig-
naling cascade, NF-κB/Rel-type TFs translocate to the nucleus
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FIGURE 1 | Expression profile and sequence comparison of Arabidopsis

importins α1-9. (A) Homology model of the ARM repeat domain of
Arabidopsis importins α1-9 based on the structure of rice importin-α1a (RCSB
identifier 4B8J, Chang et al., 2012). Left image: major NLS binding site. Right
image: minor NLS binding site. Amino acids that are likely to contribute to the
NLS binding sites are shown in stick representation. The color code indicates
the level of conservation in Arabidopsis α-importins. (B) Phylogenetic tree
constructed using neighbor joining in Molecular Evolutionary Genetics
Analysis (MEGA) v4.0 (Tamura et al., 2007). Importin-α9 was used to root the
tree. Scale bar represents amino acid substitutions per position. Schematic
representation: The different protein domains are depicted as boxes within
the full length protein sequence. Importin-β-binding domains are shown in
dark blue and the ten Armadillo repeat domains are shown in light blue. Scale

bar shows number of amino acids. (C) Gene expression data were gathered
from the Genevestigator database (https://www.genevestigator.com/gv/; Hruz
et al., 2008). Data referring to whole tissues were chosen for comparison of
expression levels. Numbers represent linear signal intensity values of the
given gene in the indicated tissues. Heat map indicates low signal intensity
(green) to high signal intensity (red). (D) Multiple sequence alignment of
full-length protein sequences performed using ClustalW2
(http://www.ebi.ac.uk/Tools/msa/clustalw2/; Larkin et al., 2007). Color code
for conservation as in A. Blue arrows and parenthesis indicate candidate
amino acids that are predicted to contribute to the NLS binding sites based on
analysis of yeast, mouse, and human α-importins (Marfori et al., 2012).
Variations in these motifs are likely to determine specificity of α-importins for
NLS binding.
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Table 1 | Some plant α-importins diverge from the otherwise conserved pattern of amino acids protruding from ARM H3 helices that form the

core of the NLS binding sites. The amino acid pairs denoted as consensus sequence (column two) are conserved in α-importins from yeast, human,
mouse, and Drosophila, as well as the remaining α-importins from Arabidopsis and rice. Amino acids in blue bold font indicate divergence from the
consensus sequence whereas “cons.” indicates conservation of the consensus sequence.

ARM repeat Consensus

sequence

At

importinα5

At

importinα8

At

importinα9

Os importin

Os07g48880

Os

importinα2

ARM2 Trp/Asn cons. cons. cons. cons. cons.

ARM3 Trp/Asn cons. cons. cons. cons. cons.

ARM4 Trp/Asn cons. cons. cons. cons. cons.

ARM5 Trp/Tyr Trp/Asn Met/His cons. cons. cons.

ARM6 Arg/Asn cons. Leu/Ala cons. Thr/Arg cons.

ARM7 Trp/Asn cons. cons. cons. Leu/Asn cons.

ARM8 Trp/Asn cons. cons Tyr/Asn cons. Tyr/Asn

in a process that is dependent on nuclear transport factor-
2 (NTF-2), an essential component of nuclear trafficking that
acts as nuclear import receptor for RanGDP to replenish the
nuclear Ran pool (Ribbeck et al., 1998; Smith et al., 1998; Bhat-
tacharya and Steward, 2002). Whether NTF-2 directly binds Rel
proteins or indirectly affects their nuclear import rates by reg-
ulating the function of Drosophila α-importins remains to be
determined.

Like NF-κB, signal transducers and activators of transcription
(STAT) proteins are a family of latent cytoplasmic TFs, consist-
ing of seven members in mammals. Upon cytokine activation
of the canonical STAT-signaling pathway, tyrosine phosphoryla-
tion induces STAT homo- or hetero-dimerization and subsequent
importin-α-dependent nuclear import (Lim and Cao, 2006).
Activated STAT1 homodimers and STAT1/STAT2 heterodimers
interact with importin-α5 (Melén et al., 2001; Fagerlund et al.,
2002) whereas RNAi-mediated silencing of importin-α3 but not of
other tested importin-α family members impairs nuclear translo-
cation of STAT3, but not of STAT1 (Liu et al., 2005). This indicates
that different α-importins can have distinct STAT protein binding
preferences.

Further examples of vertebrate immune regulatory proteins
that contain NLSs and can shuttle into the nucleus are the NLRs
CIITA and NLRC5. Both these proteins function through asso-
ciation with DNA-binding proteins to regulate MHC class II
and class I gene expression, respectively (Spilianakis et al., 2000;
Cressman et al., 2001; Meissner et al., 2012). Correlating potential
importin-α binding specificities for CIITA and NLRC5 remains to
be determined.

IMPORTIN-α CARGO SPECIFICITY IN PLANT INNATE
IMMUNITY
In rice, the intracellular kinase domain of the PRR XA21 car-
ries a functional NLS and translocates to the nucleus after
cleavage from the activated receptor, probably to modulate tran-
scription (Park and Ronald, 2012). Also, several NLRs exhibit
nucleocytoplasmic partitioning, including Arabidopsis RPS4, snc1
and RRS1-R, tobacco N, barley MLAs, and potato Rx (Des-
landes et al., 2003; Burch-Smith et al., 2007; Shen et al., 2007;

Wirthmueller et al., 2007; Cheng et al., 2009; Slootweg et al., 2010;
Tameling et al., 2010). Except for MLA and Rx, these proteins
possess predicted NLSs and it appears that mono- or bipartite
NLSs are widespread among Arabidopsis NLRs (Shen and Schulze-
Lefert, 2007; Caplan et al., 2008; Liu and Coaker, 2008). However,
experimental proof for the function of these motifs has only
been provided for RPS4 (Wirthmueller et al., 2007) and it is not
understood how nucleocytoplasmic partitioning of these immune
sensors is regulated.

Besides NLRs, the dynamic translocation of several plant
immune regulatory proteins is a key factor in defense path-
way regulation. In healthy Arabidopsis cells, the transcriptional
co-activator NPR1 is retained partially in the cytoplasm as a homo-
oligomeric complex. Changes in the cell’s redox potential, induced
by the defense hormone salicylic acid, promotes release of NPR1
monomers and their nuclear accumulation, presumably via expo-
sure of an obscured NLS (Kinkema et al., 2000; Mou et al., 2003;
Tada et al., 2008). A negative regulator of cell death, the Arabidop-
sis zinc finger protein LSD1, antagonizes transcriptional activity
of the nucleocytoplasmic shuttling leucine-zipper TF, bZIP10, by
sequestering bZIP10 in the cytoplasm. Dissociation in response to
pathogens is thought to unmask the NLS of bZIP10, permitting its
nuclear translocation and expression of target genes (Kaminaka
et al., 2006). Another report suggests that LSD1 itself localizes
to nuclei, as Pisum sativum LSD1 is nuclear when transiently
expressed in Arabidopsis protoplasts. PsLSD1 nuclear localization
is mediated by its zinc finger motifs that interact with several Ara-
bidopsis α-importins and may constitute a novel NLS (He et al.,
2011). The cell death pathway repressed by LSD1 depends on
the activities of EDS1 and PAD4, two key regulators of basal
resistance and immunity triggered by Toll interleukin-1 recep-
tor (TIR)-type NLRs (Aarts et al., 1998; Feys et al., 2001; Wiermer
et al., 2005). EDS1 harbors a predicted NLS and NES and forms
dynamic nucleocytoplasmic complexes with PAD4 and SAG101,
yet NTR binding-specificities responsible for nuclear targeting
remain elusive (Feys et al., 2005; Garcia et al., 2010).

Evidence of importin-α cargo specificity in plants comes from
a report by Kanneganti et al. (2007b). Silencing of Nicotiana ben-
thamiana importin-α1 and α2 inhibits nuclear targeting of the
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transiently expressed Phytophthora infestans effectors Nuk6 and
Nuk7 while nuclear import of Nuk12 is unaffected.

Constitutive immune signaling induced by a point mutation
in SNC1, an Arabidopsis TIR-type NLR, is partially suppressed by
mutations in importin-α3 (Palma et al., 2005). A pool of active
snc1 protein is found in nuclei and auto-immunity is abolished
by a snc1-NES fusion (Cheng et al., 2009). Overexpression of
GFP-tagged SNC1-4 (a mutant version of snc1-1) in wild type Ara-
bidopsis protoplasts results in an entirely nuclear accumulation of
the fusion protein, while the same construct is nucleocytoplasmic
in protoplasts lacking importin-α3 (Zhu et al., 2010). Although
this makes importin-α3 a candidate NTR of SNC1-4 it remains
to be tested whether SNC1-4 binds importin-α3 directly. Alter-
natively, importin-α3 may be required for nuclear import of
signaling components activated by snc1. Partial suppression of
the snc1-1 phenotype by knock-out of importin-α3 indicates that
other α-importins might work redundantly with importin-α3 in
snc1-triggered immunity.

A knock-out of Arabidopsis importin-α4 results in a rat (resis-
tant to Agrobacterium transformation) phenotype (Bhattacharjee
et al., 2008). Transformation by Agrobacterium requires active
nuclear import of the transfer DNA/protein complex (T-complex).
Two Agrobacterium effectors, VirD2 and VirE2 are essential for
plant transformation and both proteins carry NLSs, provid-
ing a molecular link between the T-complex and the host’s
nuclear import machinery (Gelvin, 2010; Pitzschke and Hirt,
2010). Although VirE2 and VirD2 can interact with several Ara-
bidopsis α-importins, only a knock-out of importin-α4 impairs
host transformation (Bhattacharjee et al., 2008). Significantly, the
rat phenotype is not only complemented by importin-α4 over-
expression but also by overexpression of six other Arabidopsis
α-importins. This suggests that although importin-α4 is the most
relevant NTR for the T-complex other α-importins can comple-
ment loss of importin-α4 function when their protein levels are
increased. These results are in agreement with findings in yeast
which show that nuclear import of different NLSs, with vary-
ing affinities for importin-α, is largely governed by the rate of
NLS/importin-α complex formation (Riddick and Macara, 2005;
Hodel et al., 2006; Timney et al., 2006). Thus, nuclear import rates
can be elevated by either increasing protein levels of the cargo or
importin-α, or by increasing the affinity of the NLS for the NTR.

HOLD ON TIGHT - NUCLEAR PATHOGEN EFFECTORS AND THE
IMPORTIN-α/NLS AFFINITY CONTROVERSY
Notably, the “optimal” binding affinity of a NLS for importin-α
is still controversial. Several in vitro studies reported dissociation
constants in the low nanomolar range based on indirect affin-
ity measurements (Hodel et al., 2001; Timney et al., 2006; Kosugi
et al., 2008). Two other studies determined NLS/importin-α affini-
ties in vitro by isothermal titration calorimetry and found Kd

values of ∼3 and ∼48 μM, respectively (Ge et al., 2011; Lott et al.,
2011). Kd values in the low nanomolar range are difficult to rec-
oncile with the finding that in vivo importin-α-mediated nuclear
import cannot be saturated even by ∼20-fold molar excess of NLS-
cargo suggesting that the actual dissociation constants in the cyto-
plasm are significantly higher, possibly due to competitive binding
of other cytoplasmic proteins to importin-α (Timney et al., 2006).

Indeed, a non-invasive FRET/FLIM approach revealed Kd values
in the low micromolar range in mammalian cells and substanti-
ates the idea that formation of the NLS/importin-α complex in the
cytoplasm is the rate-limiting event for nuclear import (Cardarelli
et al., 2009). Artificial NLS peptides with extremely low Kd val-
ues interfere with dissociation of the NLS/importin-α complex in
the nucleus and prevent recycling of importin-α to the cytoplasm
(Kosugi et al., 2008). Consequently, these peptides inhibit nuclear
import. Whether some cargo proteins with high-affinity NLS such
as the cap-binding complex remain bound to importin-α in the
nucleus is still matter of discussion (Görlich et al., 1996b; Dias
et al., 2009, 2010).

A significant number of host-targeted pathogen effector pro-
teins localize entirely to host cell nuclei, indicating active nuclear
import or passive diffusion through the NPC and sequestration in
the nucleus (Deslandes and Rivas, 2011; Caillaud et al., 2012a,b).
Generally, nuclear localization correlates with NLS motifs in
the primary sequence suggesting that these effectors exploit the
host cell’s nuclear import machinery for nuclear translocation.
To what extent nuclear-targeted effectors need to compete with
endogenous cargos is not understood. Effectors presumably act
at relatively low protein levels to prevent activation of host
defense. Given their low abundance and requirement for efficient
nuclear targeting, effector NLSs might be an interesting source
of high-affinity NLSs. Positioning effector NLSs within the above
functional affinity limits will reveal whether pathogens evolved
atypical NLS motifs that promote efficient nuclear import of effec-
tors. Given the importance of nucleocytoplasmic transport for
some immune pathways it has been hypothesized that microbial
effectors might not only exploit but also manipulate or mimic
components of the nuclear translocation machinery to subvert
defense signaling. It is known that some animal viruses interfere
with nucleocytoplasmic trafficking (Cohen et al., 2012), however,
for microbial pathogens experimental proof for this hypothesis is
lacking.

The reports discussed in this review substantiate the idea that
tissue-specific expression, importin-α protein levels and sequence
variation in the NLS binding cleft determine which importin-α
functions as NTR for a cargo protein. However, more thorough
analyses of plant NLS/importin-α complexes both in vitro and
in vivo using emerging quantitative cell biology approaches are
required to understand the complex regulation of nuclear import.
Finally, many nuclear proteins do not have canonical NLS motifs.
Although other import routes such as direct binding to importin-
β (Marfori et al., 2011) or binding to other NTRs (Genoud et al.,
2008) can account for some of these observations, the quest for
novel NLSs continues.
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