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Seeds are a crucial stage in plant life. They contain the nutrients necessary to initiate the
development of a new organism. Seeds also represent an important source of nutrient for
human beings. Iron (Fe) and zinc (Zn) deficiencies affect over a billion people worldwide.
It is therefore important to understand how these essential metals are stored in seeds.
In this work, Particle-Induced X-ray Emission with the use of a focused ion beam (WPIXE)
has been used to map and quantify essential metals in Arabidopsis seeds. In agreement
with Synchrotron radiation X-ray fluorescence (SXRF) imaging and Perls/DAB staining,
wPIXE maps confirmed the specific pattern of Fe and Mn localization in the endodermal
and subepidermal cell layers in dry seeds, respectively. Moreover, wPIXE allows absolute
quantification revealing that the Fe concentration in the endodermal cell layer reaches
~800g-g~" dry weight. Nevertheless, this cell layer accounts only for about half of
Fe stores in dry seeds. Comparison between Arabidopsis wild type (WT) and mutant
seeds impaired in Fe vacuolar storage (vit7-7) or release (nramp3nramp4) confirmed the
strongly altered Fe localization pattern in vit7-1, whereas no alteration could be detected
in nramp3nramp4 dry seeds. Imaging of imbibed seeds indicates a dynamic localization of
metals as Fe and Zn concentrations increase in the subepidermal cell layer of cotyledons
after imbibition. The complementarities between wPIXE and other approaches as well as
the importance of being able to quantify the patterns for the interpretation of mutant
phenotypes are discussed.
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INTRODUCTION

Thanks to their redox properties or Lewis acid strength under
physiological conditions, iron (Fe), manganese (Mn), copper
(Cu), or zinc (Zn) act as major cofactors in many enzymes such
as proteases or antioxidant enzymes as well as in electron transfer
chains of mitochondrial respiration or chloroplast photosynthesis
(Marschner, 2012). While micronutrients are essential at ade-
quate concentrations, excess leads to toxicity. Moreover, certain
trace metals such as cadmium (Cd) or mercury (Hg) have no
known function as nutrients and are potentially toxic at low con-
centrations (Clemens, 2006; Clemens et al., 2013). Therefore,
mechanisms for tight regulation of metal homeostasis are vital
(Kraemer and Clemens, 2006; Marschner, 2012).

Seeds are a crucial stage in the life of a plant. They contain the
macro- and micronutrients necessary to initiate the development
of a new organism. More specifically, essential micronutrients
need to be safely stored and readily remobilized during early ger-
mination. Seeds also represent an important source of nutrient
for human beings. Fe and Zn deficiencies affect over a billion
people worldwide (Murgia et al., 2012). Consequently, studies
on seed transition metal content are necessary. Despite its rela-
tively high abundance, Fe availability remains limited for living
organisms. In seeds, Fe is stored either as highly bio-available
phytoferritins localized in plastids, or as poorly bio-available

Fe-phytate salts, localized in vacuolar inclusions called globoids
(Harrison and Arosio, 1996; Briat and Lobreaux, 1997; Otegui
et al., 2002; Lanquar et al., 2005). The balance between those
two forms is different according to plant species and is greatly
modified during germination. Besides, in seeds, phytate salts are
also the main storage form of potassium (K), magnesium (Mg),
calcium (Ca), and Zn (Mikus et al., 1992).

In Arabidopsis, VIT1, a vacuolar Fe transporter required for
Fe storage in the vacuole during seed formation, was identified
by Kim et al. (2006). Synchrotron radiation X-ray fluorescence
(SXRF) tomographic imaging demonstrated that loss of VIT1
function disrupts the cell specific localization of Fe in dry seeds.
Whereas Fe is stored in endodermal cells surrounding the provas-
cular tissues in wild type (WT), it co-localizes with Mn in
the subepidermal cell layer of vit1-1 knockout mutant embryos
(Kim et al., 2006; Roschzttardtz et al., 2009). Fe mislocalization
results in drastically decreased viability of vitI-1 seedlings under
Fe deficiency. While VIT1 mediates Fe influx into the vacuole,
NRAMP3 and NRAMP4 metal transporters have been shown to
act redundantly to export Fe out of the vacuole (Lanquar et al.,
2005). Energy-Dispersive X-ray (EDX) technique indicated that
the nramp3nramp4 double knockout mutant is defective in Fe
retrieval from seed vacuolar globoids during germination. As a
consequence, nramp3nramp4 mutant seedlings display an early
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developmental arrest when germinated on low Fe. Furthermore,
the drastic morphological and biological changes that occur
during germination must be accompanied by a relocation of
nutrients to the sites where they are required for metabolism.
Although several reports have addressed metal patterning in dry
seed, the changes in metal localization and their kinetics upon
seed germination have not been addressed at the tissue level.
Three imaging techniques have been used to investigate Fe dis-
tribution in Arabidopsis WT and mutant seeds EDX (Lanquar
et al., 2005), SXRF (Kim et al., 2006), and Perls/DAB staining
(Roschzttardtz et al., 2009). However, those techniques provided
either non-quantitative data (EDX, Perls/DAB) or approximate
quantification (SXRF) of metal concentrations in the different
seed tissues.

Particle-Induced X-ray Emission induced by a focused ion
beam (WPIXE) allows multi-elemental mapping in biological
samples with high spatial resolution (1 pm range) and high sen-
sitivity (down to jLg-g~' range). Importantly, WPIXE technique
presents the unique advantage of providing quantitative results
when used simultaneously with Rutherford Backscattering (RBS)
and Scanning Transmission Ion Microscopy (STIM) analyses
(Deves et al., 2005). The combined measurements of trace ele-
ment amount by PIXE, charge monitoring and organic element
determination by RBS and sample local mass determination by
STIM are often referred as “fully” quantitative results in the lit-
erature in opposition to “semi’-quantitative results obtained by
other imaging techniques.

In plants, WPIXE has been used for the localization and quan-
tification of essential macro- and micronutrients in specific tis-
sues and organs such as elemental mapping of buckwheat seeds
(Vogel-Mikus et al., 2009), Fe in barley roots (Schneider et al.,
2002), Fe and Zn in Phaseolus seeds (Cvitanich et al., 2010, 2011),
Cu in Brassica carinata leaf and root (Cestone et al., 2012). wPIXE
was also used to image and quantify non-essential elements. In
the context of environmental contamination, WPIXE was used to
study cesium (Cs) in Arabidopsis leaf, stem, and trichome (Isaure
et al., 2006), Cd and Ni in soybean seed (Malan et al., 2012), and
uranium (U) in leaf and root of oilseed rape, sunflower, and wheat
(Laurette et al., 2012). In the context of metal hyperaccumula-
tion, it was used to analyze Cd in leaf and seed of Thalspi praecox
(Vogel-Mikus et al., 2007, 2008) or nickel (Ni) in Berkheya coddii
leaves (Budka et al., 2005).

Here, the WPIXE approach was used to quantitatively anal-
yse metal distribution in Arabidopsis seeds. A sample preparation
protocol suitable for WPIXE analysis of Arabidopsis thaliana dry
but also imbibed seeds was established. Analysis of some nutri-
tionally important elements by wPIXE mapping confirmed the
previously established pattern in WT dry seed metal distribu-
tion, exhibiting Mn accumulation at the abaxial side of cotyledons
as well as Fe localization around the provascular tissues. Local
Fe, Mn, and Zn concentrations were determined in these tis-
sues in WT and both nramp3nramp4 and vitl-1 mutant seeds.
Moreover, a comparison between elemental maps obtained with
dry or imbibed seeds revealed early changes in metal localization.
The WPIXE results are put in perspective with other elemental
analysis techniques raising questions regarding the input of ele-
ment quantification in the interpretation of mutant phenotypes.

Finally, WPIXE results obtained for WT dry and imbibed seeds
are discussed with respect to the possible use of this technique to
study dynamic element redistribution.

MATERIALS AND METHODS

PLANT MATERIAL

Mature (dry) and imbibed seeds of Arabidopsis (Arabidopsis
thaliana accession Columbia-0) WT, nramp3nramp4 (nr3nr4)
and vitl-1 mutants were used. Generation of both mutants has
been described previously in Ravet et al. (2009b) and Kim et al.
(2006), respectively. Dry seeds of all genotypes were harvested
from plants grown on potting soil (Tonerde PAM argile, Brill
France) in a greenhouse under a 16 h photoperiod with regular
watering (2-3 times per week). Seeds were imbibed in deion-
ized water on an orbital shaker (40 rotations-min—'), under
continuous light (60 wmol photon-m~2-s~!) at 21°C for 48 h.

AAS ANALYSES OF DRY SEEDS

Three to four replicates of circa 20 mg of dry seeds were digested
in 2 ml of 70% nitric acid in a DigiBlock ED36 (LabTech, Italy) at
80°C for 1h, 100°C for 1h, and 120°C for 2 h. After dilution to
12 ml with ultrapure water, K, Ca, Mn, Fe, Cu, and Zn contents of
the samples were determined by atomic absorption spectrometry
using an AA240FS flame spectrometer (Agilent, USA).

SAMPLE PREPARATION FOR . PIXE ANALYSIS

In order to avoid losses of elements and their redistribution
in the analysed samples, cryotechniques were used. The seeds
were fixed by high pressure cryofixation (Leica EM PACT2,
Leica Microsystems, Germany) and stored in liquid nitrogen.
Subsequent steps were performed in a cryostat (CM3050-S, Leica
Microsystems, Germany) at —30°C: seeds were recovered from
their cryofixation container in cold isopentane, embedded in an
inert matrix (Tissue-Tek® OCT compound, Sakura Finetek, USA)
and cut with a tungsten blade in sections of approximately 30 pm.
Sections were individually mounted on a cold aluminium sam-
ple holder covered with a pioloform film (1 g pioloform, 75 ml
chloroform). Samples were carefully transferred to a freeze-dryer
(Alpha 1-4, Christ Martin, Germany), freeze-dried at —10°C,
under a vacuum of 0.37 mbar for 48 h and brought back to room
temperature (RT) by steps of 5°C per hour. Finally, samples were
covered by a second pioloform film and stored in an anhydrous
environment at RT until WPIXE analyses. Section integrity of seed
sample was verified by putting a few freshly cut sections directly
on a microscope slide (Menzel-Gliser SUPERFROST®, Thermo
Fisher Scientific, USA) stored in the cryostat. After sectioning,
the microscope slides mounted with seed sections were quickly
brought to RT in a vacuum desiccator and checked under a light
microscope.

MULTI-ELEMENTAL LOCALIZATION BY pPIXE

Microanalyses of Arabidopsis sections were performed at the
Saclay nuclear microprobe, France (Khodja et al., 2001). The
sample holder with seed sections and reference samples were
attached to a motorized vacuum goniometer in the analyzing
chamber. After closing the chamber and establishing a vacuum
(typically 107® mbar), rough positioning of the samples was
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achieved using an optical camera. The proton beam of 3.0 MeV
and 200 pA current was focused down to a 1.5 x 1.5 m? spot,
used to rapidly scan large areas of the sample and finally adjusted
to scan the seed section areas (usually 500 x 500 wm?) during
circa 4 h. Simultaneous PIXE, RBS, and STIM analyses were per-
formed. A 40 mm?-Bruker XFlash SDD detector placed at 75°
relative to the beam path and at 21 mm working distance of
the scanned sample was used to collect X-rays emitted by non-
organic elements. A 50 wm Mylar foil was placed in front of the
detector to stop backscattered protons and attenuate X-ray sig-
nals from major elements. Backscattered particles were collected
by a 180 mm?-surface barrier detector positioned at 170° and
35mm from incident beam. Energy-loss maps based on STIM
were obtained by collecting scattered particles at 30° using a
surface barrier detector located behind the sample. In total, 11
seed sections were analyzed: 5 from WT, 5 from nramp3nramp4
mutant and 1 from vitI-1 mutant.

MULTI-ELEMENTAL QUANTIFICATION BY wPIXE

In order to generate WPIXE qualitative elemental images, PIXE
spectra of the scanned Arabidopsis sections were processed using
RISMIN software (Daudin et al., 2003). Distinct regions of par-
ticular interest (ROIs) such as seed morphological structures or
areas enriched for one particular element were selected as ROIs on
the elemental images and the corresponding X-ray spectra were
extracted. Associated RBS and STIM spectra and images were
used to assess thickness and matrix composition of the differ-
ent ROIs using SIMNRA (Mayer, 1999) and a modified version
of RISMIN software. Finally, all elemental quantifications were
obtained by processing the extracted data using SIMNRA and
GUPIX (Campbell et al., 2000) softwares. Concentrations of the
elements present in the selected ROIs (whole seed section, Fe-
and Mn-enriched areas) are presented, either as elemental con-
centrations of one representative sample (Table 2), or as average
elemental concentrations of three to four representative samples
(Figures 5A,B).

DATA ANALYSES

Average elemental concentrations presented in (Figures 5A,B)
as well as elemental fractions presented in Table 3, were anal-
ysed by a Kruskal-Wallis test followed by a Tukey post-hoc test
for multiple comparisons (p < 0.05). For both dry and imbibed
seeds, fractions of Fe and Mn that accumulate in their respec-
tive enriched areas compared to the whole seed section element
content were calculated as followed: [element concentration in
enriched area-area of enriched areal/[element concentration in
whole seed section-area of whole seed section].

RESULTS

SAMPLE PREPARATION FOR ANALYSES

Seed samples were prepared as recommended in Mesjasz-
Przybylowicz and Przybylowicz (2002) and described in Materials
and Methods. The chosen section thickness was 30 pLm to obtain
the best compromise between 3 requirements: (1) analysing a
sufficient amount of matter by wPIXE to obtain accurate quan-
tification, (2) the ability to record RBS and STIM complementary
signals, and (3) to resolve Arabidopsis seed morphology (30 pm

corresponds to circa 2 cell layers). A cryogenic approach was
used to prevent element leakage or redistribution within the
sample sections (Mesjasz-Przybylowicz and Przybylowicz, 2002).
Due to Arabidopsis seed small size, high-pressure freezing was
used. In order to confirm that cryosectioning did not alter seed
structure, some sections were put aside and directly observed
under light microscopy after being rapidly brought back to RT.
In agreement with previous reports, Arabidopsis dry seed mor-
phological structure could be clearly defined for 30 um thick
longitudinal and transversal sections (Figurel) (e.g., Vaughan
and Whitehouse, 1971). After high-pressure freezing, samples
could be either freeze-dried or freeze-substituted as no module
for frozen-hydrated state specimen analysis was available (Tylko
et al., 2007). Freeze-drying technique has been demonstrated to
be neither suitable for observations at the cellular level since it
may alter the morphology of the samples, nor for metal speciation
since water extraction induces metal speciation artifacts (Sarret
et al., 2009). However, freeze-drying is appropriate for elemen-
tal mapping, in particular for Fe, at the tissue level and thus, was
used in this research (Schneider et al., 2002; Sarret et al., 2013).
Furthermore, preliminary tests showed that the substitution of
vitrified water by EPOXY resin lead to partial to complete leakage
of some elements (data not shown).

ARABIDOPSIS SEED ELEMENTAL DISTRIBUTION USING .PIXE
TECHNIQUE

Freeze-dried 30 pwm thick sections of Arabidopsis thaliana dry and
imbibed seeds were analysed by Particle-Induced X-ray Emission
induced by a focused ion beam (WPIXE) and elemental images
were generated (Figure 2). Some macroelements, such as K, and
microelements such as Zn are apparently evenly distributed over
the dry seed section (Figure Al). Mapping of Ca, which is evenly
distributed in the embryo and accumulates to a higher level in

FIGURE 1 | Arabidopsis thaliana dry seed structure. Light microscopy
images of transversal (A) and longitudinal (B) sections with respective
schematic representations (C,D). Thirty micrometer sections were obtained
at —30°C using a cryomicrotome. Scale bar: 100 um; asm, apical shoot
meristem; cot, cotyledon; end, endodermis; hyp, hypocotyl; rad, radicle; sc,
seed coat.
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FIGURE 2 | LPIXE elemental reconstituted image of Arabidopsis
thaliana dry seed section. Total X-ray spectra of areas scanned with 3
MeV proton beam were collected. Specific distributions of Fe, Mn, and Ca
in a 30 wm thick longitudinal section of Arabidopsis dry seed are shown
overlaid (large image) and separately (small images). False color images and
reconstitution were obtained using ImageJ free software. Scale bar:

100 um; red, Fe; blue, Mn; yellow, Ca.

the seed coat, allows the visualization of general seed morphol-
ogy, recalling the light microscopy image (compare Figures 1B, 2,
Ca inset). Other elements, such as Fe and Mn, exhibited more
specific localization in particular structures, organs or tissues.
The elemental map of Fe highlighted the provascular tissue in
the cotyledons, hypocotyl and radicle while the Mn elemental
map showed concentration on the abaxial (lower) side of the
cotyledons (Figure 2, Fe and Mn insets). Subsequently, elemen-
tal images were used to select regions specifically enriched in Fe
or Mn within sections (regions of interest, ROIs; Figure 3) to
determine the element concentrations within ROIs.

SEED ELEMENTAL CONTENT ANALYSES

Dry seed bulk sample analyses of Arabidopsis WT, nramp3nramp4
and vitl-1 were performed by atomic absorption spectroscopy
(AAS) to determine seed concentrations of various macro- and
microelements (Table 1). As previously reported, for all quan-
tified elements, no notable differences were observed between
seeds of the different genotypes (Lanquar et al., 2005; Kim et al.,
2006; Young et al., 2006). Some seeds of the analysed batches
were set aside and analysed by pPIXE to determine elemen-
tal concentration in the ROI corresponding to the whole seed
section (Table1). In general, seed element average concentra-
tions obtained by WPIXE for each genotype were in the same
range of concentrations but usually higher when compared to
AAS analyses (Table 1). This difference can be partly explained
by the huge difference in the sample sizes used for each tech-
nique. AAS elemental content analyses of circa 1800 Arabidopsis
dry seeds (20 mg aliquots) are compared with pPIXE analyses of
few 30 pm-thick seed sections (approximately 2 cell layers). Single
seed elemental variability, seed cell heterogeneity as well as low
replicate number inherent to the technique have a larger impact
on the seed elemental content measured by wPIXE.

FIGURE 3 | Regions of interest for 1PIXE elemental quantification.
Element distribution maps allowed selection of regions of interest (ROI).
Arabidopsis thaliana whole seed (A), Fe- (B), and Mn- (C) ROls are shown
using the Ca distribution map as background. The associated STIM image
(D) shows the local mass of the sample which is necessary for
quantification. Scale bar: 100 um.

Elemental images obtained for the three genotypes showed
that Fe distribution is strongly perturbed in vitl-1 mutant
whereas it is not affected in nramp3nramp4 dry seed at the
same stage (Figure4). Similar elemental distribution patterns
were obtained using SXRF microtomography (Kim et al., 2006;
Donner et al., 2012). ROIs corresponding to whole seed sec-
tion, Fe- or Mn-enriched areas were selected on the images
of each genotype and the corresponding PIXE, RBS, and
STIM extracted spectra were analysed (Table2). In WT and
nramp3nramp4 dry seed sections, element quantification within
the ROIs confirmed the accumulation of Fe around the provas-
cular tissues of the radicle and cotyledons (from 159 pug-g~!
dry weight (DW) in the whole section, up to 751 ug-g~' pw
in Fe-enriched area) and of Mn at the abaxial side of cotyle-
dons (from 44 ug-g~! pw up to 386g-g~! pw). Surprisingly,
slight accumulation of Zn also occurred in the Fe-enriched
area (from 141 ug-g~' pw up to 311 ng-g ' pw). In vitl-1 dry
seed, Fe (up to 360 ug-g_1 pw) and Mn (up to 172 ug-g_1 pw)
concentrated in a single Fe- and Mn-enriched area at the
abaxial side of the cotyledons, while no Fe accumulation
around provascular tissues was observed. Here also, Zn (up to
224 ng-g~ ! pw) exhibited a slight accumulation within the com-
bined enriched area.

The concentrations of Fe, Mn, and Zn in whole longitudi-
nal and transversal seed sections as well as Fe- and Mn-enriched
areas from dry and imbibed samples of WT and nramp3nramp4
were measured. Statistical analyses of the results did not reveal
any significant difference between WT and nramp3nramp4 in any
of the ROIs analysed. Figure 5 shows the average concentrations
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Table 1| AAS analysis and pPIXE quantification of various elements in three different Arabidopsis thaliana seed genotypes.

AAS —dry seed wPIXE—seed section
El. WT nr3nr4 vit1-1 WT nr3nr4 vit1-1
ng 97" pw ng 97" pw ng- 97" pw LOD ng- 97" pw LoD ng- 97" pw LOD ng- 97" pw LoD

K 11881 + 188 11272 + 463 11909 + 663 0.008 17648 36 19989 30 27274 52
Ca 4200 + 208 4590 4+ 288 4445 + 329 0.001 9165 85 11223 82 9757 77
Mn 32+4 34+3 33+3 0.001 44 4 58 4 65 8

Fe 78 +5 7341 80+ 13 0.006 159 3 189 3 157 8

Cu 10+1 12+1 11+0 0.001 10 2 20 2 68 3
Zn 58+5 59 +7 62+5 0.001 141 2 197 2 169 6

AAS of bulk samples. Values are means + SE (n= 3—4 dry seed batches for each genotypes). X-ray and RBS spectra of the whole seed section were selected using

RISMIN software and analysed using SIMNRA and GUPIX softwares. Concentrations of one representative measured sample are presented; LOD, limit of detection

1

of the measurements (ug-9~ ' pw).

FIGURE 4 | Transversal sections of Arabidopsis thaliana dry and imbibed seeds. Specific distributions of Fe, Mn, and Ca in section of WT (A) and nr3nr4
(B) imbibed seeds and vit1-1 (C) dry seeds are shown overlaid (large image) and separately (small images). Scale bar: 100 wm; red, Fe; blue, Mn; yellow, Ca.

of Fe, Mn, and Zn in the whole seed section, Fe- and Mn- DISCUSSION
enriched areas from dry and imbibed samples. In both sample Images of Arabidopsis dry seed sections obtained by WPIXE con-
types, Fe (751 & 134 ug-g~! pw and 910 + 74 ug-g~' pw) signif-  firmed Fe, Mn, and Zn distribution patterns observed previously
icantly accumulated in Fe-enriched provascular area as expected  in WT, nramp3nramp4 and vitl-1 mutant dry seeds. In addi-
(Figures 5A,B). As already indicated in Table 2, Zn average con-  tion, valuable information about local metal concentrations could
centrations were also signiﬁcantly hlgher in Fe-enriched areas be obtained from the analyses of the different types of spectra
of both dry and imbibed seeds (298 & 9j1g-g™! pw and 284 £ collected at the microprobe installation.
18 ug-g~! pw). Mn accumulated at significantly higher concen-
tration in the Mn-enriched area at the abaxial side of the cotyle- wPIXE COMPLEMENTS OTHER TECHNIQUES FOR ELEMENTAL
dons of both dry and imbibed seeds (Figures 2, 4, 5 and Table 2).  IMAGING OF SEEDS
Interestingly, after 48 h of imbibition, Fe (577 + 61ug-g ! pw) Fe distribution in Arabidopsis seeds has been already reported
and Zn (268 + 14 |1g-g~! pw) were also significantly more con-  using different imaging techniques: EDX microanalysis on a
centrated within Mn-enriched area at the abaxial side of the transmission electron microscope (Lanquar et al., 2005), Fe his-
cotyledons. These changes were not detectable visually on the tochemical localization using Perls staining with DAB enhancing
elemental maps. (Roschzttardtz et al., 2009) and SXRF microtomography (Kim
Finally, combining the relative areas of Fe- and Mn-enriched et al., 2006; Chu et al., 2010; Donner et al., 2012). The respec-
areas and the metal concentration within these areas, we calcu-  tive advantages and limitations of these different approaches have
lated the fractions of Fe and Mn accumulated in their correspond-  been recently discussed in several reviews (Deves et al., 2005;
ing enriched areas, namely the provascular tissue region for Fe  Lobinski et al., 2006; Ortega et al., 2009; Punshon et al., 2009,
and the abaxial side of the cotyledons for Mn (Table 3). These 2012; Donner et al., 2012; Sarret et al., 2013).
calculations revealed that at most 69 and 54% of Fe and Mn, Combined together, the information about Fe localization
respectively, were localized within these areas. A significant frac- obtained by EDX, histochemical staining and SXRF techniques
tion of seed Fe and Mn stores is thus localized outside the areas indicate that in Arabidopsis dry seed, Fe is concentrated in
where these metals are the most concentrated. the endodermal cells of the embryo and, at subcellular level,
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Table 2 | nPIXE quantification of various elements in three different Arabidopsis thaliana seed genotypes with emphasis on Fe- and

Mn-enriched areas.

El. Seed section Fe-enriched area Mn-enriched area

ng-g " pw LOD ng -9 pw LOD ng -9 pw LOD
WT
K 17648 36 21393 71 15851 121
Ca 9165 85 7509 140 9060 155
Mn 44 4 22 12 386 13
Fe 159 3 751 5 90 20
Cu 10 2 9 7 n.d. n.d.
Zn 141 2 31 1 156 15
nr3nr4
K 19989 30 19443 81 15582 57
Ca 11223 82 10672 128 10315 90
Mn 58 4 85 13 106 7
Fe 189 3 520 11 218 6
Cu 20 2 24 7 9 5
Zn 197 2 281 1 200 5
El. Seed section Fe- and Mn-enriched area

ng-9 " pw LOD ng -9 " pw LOD
vit1-1
K 27274 25 22519 52
Ca 9757 63 8826 77
Mn 65 3 172 8
Fe 157 3 360 8
Cu 68 2 60 3
Zn 169 1 224 6

Concentrations of one representative measured sample of dry seed are presented; LOD, limit of detection of the measurements (wg-g~' pw); n.d., not detected.

A B
_E 10009 _& 1000-
‘> ®
2 800 S 800
3 =5
= 600- = 600-
o b b o
£ 4004 a| |, a a £ 400-
o aa o
S 200- S 200-
© ©
3 ol 3 ol
T T T
= Fe Mn Zn E
FIGURE 5 | Metal content in Arabidopsis thaliana dry (A) and imbibed
(B) seed. Fe, Mn, and Zn contents in whole seed section (black bars) as well
as in selected Fe- (white bars) and Mn- (gray bars) enriched areas were
quantified. Dry seeds were cryofixed directly (A) or after 48 h imbibition (B).

¢ B sced whole section
1 Fe-enriched area
b T Mn-enriched area
a b b
a
abb
L i_:—l_’—l L
Fe Mn Zn

Values are means + SE (n = 3-4 scanned sections). Different letters denote
statistically significant differences based on Kruskal-Wallis test followed by
Tukey post-hoc test comparing values of dry and imbibed seeds for each
metal (P < 0.05).

is associated with vacuolar globoids (Lanquar et al., 2005; Kim
et al., 2006; Roschzttardtz et al., 2009). Fe concentrations close to
1000 g-g~! pw in provascular tissues were quantified by wPIXE
(Table 2 and Figure 5). As globoids represent no more than 10%
of the cell volume but constitute the main site for Fe storage in

seed cells (Lanquar et al., 2005), endodermal vacuole globoids
possibly contain close to 1% Fe. Besides, it has been hypothe-
sized that Fe in the vacuole is mainly stored as Fe>* but this still
remains to be demonstrated using XAS (Pich et al., 2001; Otegui
et al., 2002). Based on analyses of mutant phenotypes and metal
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Table 3 | Fractions of Fe and Mn in Arabidopsis thaliana dry and
imbibed seed.

El. Dry Imbibed

% metal % area % metal % area
Fe 50.7 £ 11.2 1834 +54 68.9+58 171 +£15
Mn 30.3+£70 8.3+£6.0 54.4 + 2.8*% 224 +£73

The fractions of Fe and Mn quantified in their corresponding enriched areas rel-
ative to the whole seed section element content were calculated for dry and
imbibed seed. Proportion of each enriched area was also calculated. Values are
means + SE (n= 3—4 scanned sections). Asterisk denotes statistically significant
differences based on Mann-\Whitney U test (p < 0.05).

localization, a mechanism of Fe loading into seed endodermal
vacuoles mediated by VIT1 and its release into vasculature cells
by NRAMP3 and NRAMP4 during germination has been sug-
gested (Morrissey and Guerinot, 2009; Roschzttardtz et al., 2009).
Accordingly, recent data indicated that no more than 5% of total
seed Fe is associated with the plastidial ferritin in Arabidopsis seed
(Ravet et al., 2009a). Concentration of Fe in endodermal vac-
uoles in the vicinity of the provascular strand cells allows rapid
and easy mobilization of Fe to the growing parts of the seedling
during germination. Nevertheless, our determination of Fe frac-
tions in dry seed sections by WPIXE revealed that only about
50% of this metal is actually stored around the seed embryo
provascular tissue (Table 3). This result indicates that Arabidopsis
seeds likely contain two pools of Fe: a pool of concentrated Fe
associated to endodermal vacuoles, previously identified by sev-
eral imaging techniques (Kim et al., 2006; Roschzttardtz et al.,
2009), and a less concentrated pool spread in all seed tissues,
which have so far been overseen. This finding does not contra-
dict the previous assessments about the central role of vacuoles in
Fe storage in Arabidopsis (Roschzttardtz et al., 2009). However,
it points to the existence of significant Fe stores outside of the
endodermal cells that have to be taken into account in seed
Fe storage models. Moreover, our results suggest that, besides
VIT1, which is expressed near the vasculature, other vacuolar Fe
uptake systems drive Fe accumulation into the vacuoles of other
embryo cells.

Imaging techniques also showed heterogeneous distribution of
Mn and Zn in plant seeds (Kim et al., 2006; Vogel-Mikus et al.,
2007; Takahashi et al., 2009; Cvitanich et al., 2011). Our anal-
yses by WPIXE showed that up to 30% of the Mn present in
Arabidopsis dry seed is stored in subepidermal cells. Until now,
the transporters which mediate Mn accumulation in those partic-
ular cells remain unknown. In the case of Zn, our quantification
of Zn in seed sections by WPIXE indicated that Zn is slightly more
concentrated in the embryo provascular tissue. This is in agree-
ment with SXRF microtomography of Arabidopsis seeds (Kim
et al., 2006) and WPIXE analysis of Phaseolus seeds (Cvitanich
etal., 2011).

METAL REDISTRIBUTION IN ARABIDOPSIS SEED DURING
GERMINATION MONITORED BY wPIXE

During germination, seed undergoes drastic morphological and
biological changes, necessarily inducing a redistribution of

macro- and micronutrients (Bewley, 1997; Bolte et al., 2011).
Whereas mature dry seed is an excellent plant sample stage for
imaging by SXRF or wPIXE due to its natural dehydration state,
monitoring of seed germination by X-ray imaging techniques
remains challenging. Here, a WPIXE analysis of Arabidopsis WT
and nramp3nramp4 mutant after seed imbibition was undertaken.
Whereas EDX microanalyses revealed nramp3nramp4 mutant
defect in Fe remobilization from globoids in 2-day old seedling,
WPIXE failed to detect any qualitative or quantitative modifica-
tion of the Fe pattern between the two genotypes at the same
stage (Lanquar et al., 2005). As a matter of fact, elemental maps
obtained on dry seeds or after imbibitions did not show any obvi-
ous difference. Two hypotheses may account for this apparent
discrepancy: (1) even though the experiment was performed after
2 days in both case, seedling development may have been slower
in the case of the WPIXE experiment, due to differences in the
conditions or seed age. Attempts to analyse sections of WT and
mutant seeds at later stage were hampered by difficulties to obtain
intact sections; (2) after 2 days, Fe may have been remobilized
from the globoids, preventing its detection by EDX, but may have
remained in the same tissues explaining why no change could be
detected at the pum resolution of the pPIXE analysis.

Nevertheless, quantification of Fe, Mn, and Zn in seed sec-
tions by WPIXE indicates significant distribution modifications
after 48 h of imbibition. During imbibition, Fe and Zn concentra-
tions increase in subepidermal cells of cotyledons, corresponding
to the Mn-enriched area, while the fraction of Mn accumulating
in those cells significantly increases from 30 to more than 50%
of total Mn content. Although the origin of the metals could not
be identified as no significant decrease of Fe, Mn, or Zn occurs
in other areas, it is likely that during seed imbibition metals are
already beginning to be redistributed toward the future photosyn-
thetic cell layers. As the Fe concentration in the endodermal area
is unchanged after imbibition, it is tempting to speculate that the
Fe that accumulates in the sub epidermal area originates from the
“diluted pool” spread in all seed tissues, which would therefore
represent a more loosely bound Fe pool. The endodermal pool
would be released at later stages of germination.

In conclusion, our study using WPIXE complemented other
approaches to analyse metal distribution in Arabidopsis seeds.
This fully quantitative approach revealed unsuspected important
Fe stores outside the endodermal cells. Analysis after seed imbibi-
tion provided a first glimpse at the rapid metal redistribution that
occurs during germination.
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APPENDIX
FIGURE A1 | nPIXE elemental reconstituted image of Arabidopsis and Zn in a 30 pm thick longitudinal section of Arabidopsis dry seed are
thaliana dry seed section. Total X-ray spectra of areas scanned with 3 separately. The associated STIM image shows the local mass of the
MeV proton beam were collected. Specific distributions of Ca, K, Fe, Mn, sample. Scale bar: 100 pm.
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