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In nature, the root systems of most plants develop intimate symbioses with glomeromy-
cotan fungi that assist in the acquisition of mineral nutrients and water through uptake
from the soil and direct delivery into the root cortex. Root systems are endowed with
a strong, environment-responsive architectural plasticity that also manifests itself during
the establishment of arbuscular mycorrhizal (AM) symbioses, predominantly in lateral root
proliferation. In this review, we collect evidence for the idea that AM-induced root system
remodeling is regulated at several levels: by AM fungal signaling molecules and by changes
in plant nutrient status and distribution within the root system.
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INTRODUCTION
When plants made the transition from freshwater to terrestrial
environments more than 400 million years ago, fundamental mor-
phological changes were needed for the acquisition of mineral
nutrients from the soil instead of from the aqueous substra-
tum. Preceding the development of complex root systems the
alliance with symbiotic fungi such as the Glomeromycetes and
Mucoromycotina is believed to have greatly assisted this transition
(Humphreys et al., 2010; Bidartondo et al., 2012; Field et al., 2012,
and citations therein). The aseptate hyphal network of the glom-
eromycotan fungi functions as a mineral nutrient-transfer pipeline
from the soil-exploring extraradical mycelium to the intracellu-
larly colonized plant cell. Extensively branched tree-like fungal
haustoria, the arbuscules, form within living plant cells and are
the site of mineral nutrient delivery. It is widely accepted that
these hyphal conduits have served mineral nutrient uptake by
ancestral rootless gametophytes and continue to do so on today’s
complexly rooted sporophytes. Liverworts constitute the earli-
est diverging plant lineage known (for recent review, see Jones
and Dolan, 2012), that supports the development of arbuscular
mycorrhizal (AM) symbioses with Glomeromycetes. The fungus
enters via the rhizoid, develops arbuscules within the green thal-
lus parenchyma (Russell and Bulman, 2005; Ligrone et al., 2007;
Hata et al., 2010) and confers nutritional benefit to the plant host
(Humphreys et al., 2010). In higher plants, arbuscules develop in
root cortex cells where they deliver inorganic phosphate to the
plant (Javot et al., 2007a; Yang et al., 2012). The extant ability of
AM fungal species to equivalently colonize thallus parenchyma and
root cortex suggests the genetic repertoire of AM fungi to ascer-
tain a seamless adaption from ancient to newly invented organs
and the two participating plant cell types to represent sufficiently

similar niches for colonization. Within the highly patterned“mod-
ern” root system, arbuscular colonization is restricted to cortex
cells.

Root systems consist of individual modules with different func-
tion: the shoot-born dicotyledon tap roots and monocotyledon
crown roots (CRs) are mainly involved in anchorage and sup-
port whereas lateral roots mediate nutrient uptake (McCully and
Canny, 1988). Root system architecture displays a high devel-
opmental plasticity in response to environmental stimuli such
as nutrient and humidity levels or temperature (Lopez-Bucio
et al., 2003; Osmont et al., 2007; Hodge, 2009). Importantly,
among other biota AM fungi influence root system architecture,
most prominently, by enhancing lateral root formation. In this
review, we summarize current knowledge on the selective col-
onization of root types by AM fungi and its impact on root
architectural changes, which we propose is regulated at multiple
levels.

NON-RANDOM AM COLONIZATION OF ROOT SYSTEMS
In both di- and monocotyledon root systems AM colonization
is not evenly distributed since AM fungi preferentially colonize
lateral roots and rather neglect dicotyledon primary roots or
monocotyledon CRs (Figure 1; Hooker et al., 1992; Gutjahr et al.,
2009a). Intuitively, this might be due to a higher sturdiness and
lignin content in shoot-born roots with anchoring function that
are more challenging to penetrate than the young expanding, and
therefore softer tissue of growing lateral roots (Hepper, 1985;
Amijee et al., 1993). Consistently, rigid CRs of rice are mainly
colonized in patches close to lateral roots or emerging lateral
root primordia (Gutjahr et al., 2009a). However, longer periods
of plant co-cultivation with AM fungi increase the percentage
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FIGURE 1 | Colonization of rice crown roots by Glomus intraradices

upon prolonged co-cultivation. (A) Schematic illustration of the rice
root system with crown roots (CRs), large lateral roots (LLRs) and
fine lateral roots (FLRs). Colonization of the different root types is
indicated by red color. At 6 weeks post-inoculation (wpi), CR show

fungal colonization at the site of lateral root emergence; at 8 wpi, the
CRs are normally colonized. (B) Percent root length colonization of
rice CR, LLR, and FLR was determined at 6 and 8 wpi with Glomus
intraradices. Mean values and SE of four biological replicates are
shown.

of CR length colonized (Figure 1). It has been shown in maize
that phosphate starvation stress leads to an increased transcription
of genes involved in secondary cell wall biosynthesis (Calderon-
Vazquez et al., 2008). Phosphate supply through AM fungi reduces
starvation and might thus contribute to a decrease in secondary
cell wall biosynthesis in CRs, thereby possibly facilitating further
colonization when symbiotic phosphate transfer had conferred
the effect. Also the colonization of the liverwort Conocephalum
conicum leads to the disappearance of thallus cell wall autofluores-
cence at infected sites, indicating a localized decrease in cell wall
phenolics (Ligrone et al., 2007). Similar to rice, also in soybean
colonization was described to be particularly evident at points of
lateral roots emergence. Corresponding spatial expression patterns
of soluble acid invertase and sucrose synthase genes suggested an
enhanced carbohydrate supply to the emerging and elongating lat-
erals to account for this localized fungal root invasion (Blee and
Anderson, 2002). Interestingly, lateral roots exhibit an increased
responsiveness to AM fungal signaling molecules as evidenced
by activation of a pENOD11-GUS transgene in Medicago hairy

roots (Kosuta et al., 2003). Thus they might induce the symbiotic
program more swiftly and promote colonization more readily than
other root types.

An unequal distribution of AM colonization is particularly evi-
dent in rice root systems, that are equipped with two types of
lateral roots, the strongly colonized large lateral roots (LLRs) and
the fine lateral roots (FLRs), which lack cortex tissue (Rebouil-
lat et al., 2009), and are therefore not able to host arbuscules
(Gutjahr et al., 2009a). While absence of arbuscules from FLRs
was predictable, the absence of fungal hyphopodium differen-
tiation is surprising and implies that FLRs are not recognized
by the fungus (Figure 1; Gutjahr et al., 2009a), possibly due to
differences in either their surface composition or exudation of
diffusible signals. Cutin monomers have recently been shown to
induce hyphopodium formation on Medicago truncatula roots
(Wang et al., 2012). Although not yet confirmed for rice, it is
an attractive possibility that FLRs release insufficient amounts of
cutin or related compounds. The chemical composition of the
rhizodermal surface of any plant species is not well described but
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there is evidence from Arabidopsis that it differs among root zones
(Kosma et al., 2012). This is exemplified by rhizoplane bacteria,
that accumulate in species-specific patterns on the Arabidopsis
root surface (Bulgarelli et al., 2012; Lundberg et al., 2012). These
patterns are likely at least in part evoked by localized chemical
surface composition or differential exudation patterns. Strigo-
lactones are constitutively exuded from higher plant roots and
rhizoids of bryophytic gametophytes (Akiyama et al., 2005; Delaux
et al., 2012). They induce the metabolic activity of AM fungi and
provide a directional cue to guide the fungus to colonizable tis-
sue (Parniske, 2005; Besserer et al., 2006). PDR1 (pleiotropic drug
resistance protein 1), a strigolactone ATP-binding cassette (ABC)-
exporter in Petunia is expressed in hypodermal passage cells of
lateral roots only (Kretzschmar et al., 2012). This might explain
– at least for dicotyledons – why AM fungi are firstly attracted
to lateral roots. It remains an intriguing open question whether
an orthologous strigolactone transporter is expressed in outer cell
layers of rice FLRs.

LATERAL ROOT INDUCTION BY AM FUNGI IS REGULATED AT
MULTIPLE LEVELS
Numerous studies report root system changes in response to
arbuscular mycorrhiza leading to an increased root branching
and root system volume (reviewed in Hodge et al., 2009; Sukumar
et al., 2013) but also reductions in root branching and length were
detected (Hetrick, 1991). The basis of the observed differences
is not clear but could be related to the studied plant species or
the varying growth conditions. Diverging AM induced root sys-
tem changes across different maize or soybean cultivars, grown
under the same condition, suggested that at least part of the
response is subject to genetic variation (Zhu et al., 2005; Wang
et al., 2011). Although not systematically investigated an influence
of the fungal genotype on the type and extend of root system
remodeling can also be expected (Veresoglou et al., 2012). Yano
et al. (1996) reported the induction of lateral root formation to be
a highly localized response. AM inoculation of only one half of a
split-root system of peanut and pigeon pea resulted in a higher
number of lateral roots in the inoculated as compared to the
non-inoculated half. However, systemic inhibitory or stimulatory
effects on lateral root proliferation were not examined. The power
of AM colonization over lateral root development was demon-
strated in knock-down Lotus japonicus hairy root cultures of the
putative transcription factor gene meristem and arbuscular mycor-
rhiza induced (LjMAMI) (Volpe et al., 2013). Here, colonization by
AM fungi rescues the reduced lateral root growth phenotype and
restores wild-type root system morphology. However, the most
dramatic influence of AM colonization on root system architec-
ture was found in the maize mutant lateral rootless1 (lrt1) that lacks
embryonic lateral roots (Hochholdinger and Feix, 1998). Inocu-
lation with AM fungi-induced bushy lateral roots even at elevated
phosphate levels (Paszkowski and Boller, 2002). Taken together
these data indicate that AM fungi trigger a signaling pathway that
bypasses the default lateral root developmental control exerted by
MAMI and/or LRT1.

Root system architectural changes in response to AM coloniza-
tion are regulated on at least two levels as evidenced by their
induction prior to or after establishment of AM colonization

(Berta et al., 1990, 1995; Maillet et al., 2011; Mukherjee and Ane,
2011).

ROOT SYSTEM CHANGES IN RESPONSE TO PRE-SYMBIOTIC
SIGNALING
In the legume M. truncatula, germinating AM fungal spores that
were separated from the root by a semipermeable membrane
induced lateral root formation, indicating that diffusible signals
released by these spores activate the lateral root developmental
program (Olah et al., 2005). This is in agreement with the obser-
vation that the recently identified lipochitooligosaccharide Myc
factors (Myc-LCOs) also induce lateral root formation in M. trun-
catula (Figure 2; Maillet et al., 2011). Intra-radical colonization
of angiosperm roots is dependent on a signal transduction path-
way, which includes Ca2+-oscillations as a second messenger and
is also required for nodulation and accommodation of rhizobia
and therefore named the common SYM pathway (for a recent
review, see Singh and Parniske, 2012; Gutjahr and Parniske, 2013;
Venkateshwaran et al., 2013). Lateral root induction by the pres-
ence of AM fungi was dependent only on DMI1 (POLLUX) and
DMI2 (SYMRK), two genes that act upstream of Ca2+-spiking as
part of the common SYM pathway (Olah et al., 2005). By contrast,
Myc-LCO-mediated lateral root induction, additionally required
the third common SYM gene DMI3 (CCamK), that acts down-
stream of Ca2+-spiking (Maillet et al., 2011) and is also required
for rhizobial Nod factor-mediated lateral root induction (Olah
et al., 2005). This raises the question whether germinating spore
exudates (GSEs) also contain diffusible signaling molecules other
than Myc-LCOs that do not require DMI3, but signal through
alternative components downstream of DMI1 and DMI2 to induce
lateral root formation in legumes. Lateral root development might
be sustained by enhanced carbon accumulation that has been
described in GSE-stimulated Lotus japonicus roots to be depen-
dent on CASTOR, another SYM pathway component upstream of
Ca2+-spiking (Gutjahr et al., 2009b).

Remarkably, the monocot rice does not require the common
SYM genes CASTOR, DMI1 (POLLUX), and DMI3 (CCAMK) for
lateral root induction by GSEs (Gutjahr et al., 2009a; Mukherjee
and Ane,2011). It is intriguing whether this is due to a fundamental
genetic difference between monocotyledons and dicotyledons or
whether legumes, due to their specific genetic layout, that grants
the development of nodules, have incorporated the common SYM
pathway into a regulatory network, that directs development of all
root accessory organs. Congruent with the latter hypothesis, the
Lotus japonicus mutant hypernodulation aberrant root formation 1
(har1), that hypernodulates and is hypercolonized by AM fungi,
constitutively forms supernumerary lateral roots (Solaiman et al.,
2000; Wopereis et al., 2000; Nishimura et al., 2002).

Lateral root formation is regulated by auxin in conjunction
with other phytohormone signaling pathways (Nibau et al., 2008).
Impairment of pre-symbiotic lateral root induction in hairy
root culture of the auxin-resistant diageotropica tomato mutant
suggests that Myc factor-dependent lateral root induction is simi-
larly channeled into the auxin-controlled developmental outcome
(Hanlon and Coenen, 2010). Ectomycorrhizal fungi such as Lac-
caria bicolor and Tuber melanosporum trigger the production of
lateral roots prior to colonization through the stimulation of
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FIGURE 2 | Pre-symbiotic induction of lateral root formation in

arbuscular mycorrhiza. Germinating spore exudates (GSE) contain
Myc-LCOs and possibly phytohormone-like compounds. Perception of
Myc-LCOs leads to lateral root induction in Medicago truncatula, which

requires the common symbiosis signaling components DMI1, DMI2, and
DMI3 (brown pathway). The green pathway hypothesizes phytohormone-like
signaling to operate either downstream or independent of common
symbiosis signaling in M. truncatula and rice, respectively.

auxin signaling, likely due to their production and release of
auxin and ethylene or other volatile compounds (Rupp et al., 1989;
Karabaghli-Degron et al., 1998; Ivanchenko et al., 2008; Felten
et al., 2009, Felten et al., 2010; Splivallo et al., 2009; Sukumar et al.,
2013). Likewise it is possible that also AM fungi produce plant hor-
mones such as auxin and ethylene or other volatile compounds in
addition to Myc-LCOs (Figure 2), and this might for example
explain SYM pathway-independent lateral root induction in rice,
while in nodulating legumes common SYM-mediated lateral root
induction might be epistatic to auxin signaling.

ROOT SYSTEM CHANGES IN RESPONSE TO INTRA-RADICAL
COLONIZATION
Arbuscular mycorrhizal colonization preceding alterations in root
system architecture has also been observed, e.g., in Allium porrum
and Prunus cerasifera (Berta et al., 1990, 1995). Enhancement of
lateral root formation after colonization has been related to nutri-
tional effects. AM fungi deliver phosphate and nitrogen directly
into the root cortex where the minerals are taken up by specific
plant ion transporters localized in the peri-arbuscular membrane,
a plant-derived membrane domain that surrounds the arbuscule
branches (Harrison et al., 2002; Javot et al., 2007b; Kobae and
Hata, 2010; Yang et al., 2012). The patchy distribution of AM
colonization must lead to transient local increases of phosphate

and/or nitrogen concentrations in the root, which may serve as
a hallmark of symbiosis (Figure 3; Fitter, 2006). Plants can per-
ceive localized differences in nutrient distribution also within the
surrounding environment and respond with lateral root prolif-
eration into phosphate or nitrogen-rich soil pockets (Figure 3;
Drew, 1975; Linkohr et al., 2002). A nitrate transporter NRT1.1
has been identified in Arabidopsis thaliana, which acts as a nitrate
transporter and sensor and triggers lateral root elongation into
nitrate rich soil pockets (Remans et al., 2006). Besides nitrate it
also facilitates auxin transport away from the lateral root meris-
tem at low nitrogen conditions, leading to reduced lateral root
outgrowth and elongation. In a patch of high nitrate concentra-
tion auxin transport by NRT1.1 is inhibited and auxin accumulates
in lateral root tips leading to increased lateral root growth (Krouk
et al., 2010). Thus NRT1.1 directly influences root system archi-
tecture via an orchestration of nitrate transport, -sensing as well
as auxin transport. It will be highly interesting to determine if
related mechanisms are at play in the regulation of root system
architecture by mycorrhizal nutrient uptake. Mutants perturbed
in mycorrhizal nutrient acquisition, e.g., defective in mycorrhiza-
specific phosphate transporters such as Medicago PT4 or rice PT11
(Javot et al., 2007a; Yang et al., 2012), will provide a first means to
study the impact of AM-mediate phosphate uptake on lateral root
proliferation.
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FIGURE 3 | Induction of lateral root formation in response to locally

high phosphate. (A) Schematic illustration of lateral root induction in high
phosphate fertilized layers of the rhizosphere according to Drew (1975).

(B) Hypothetical induction of lateral roots as a consequence of sensing a
locally high concentration of phosphate within the tissue resulting from
symbiotic phosphate uptake. Pi, inorganic phosphate.

In mycorrhizal roots, the symbiotic phosphate (possibly also
nitrogen) uptake pathway dominates and involves suppression
of the transporter genes involved in epidermal direct uptake
(Smith et al., 2003; Smith and Smith, 2011; Yang and Paszkowski,
2011). It is a currently unexplored but attractive possibility that
some transport proteins belonging to the direct epidermal nutri-
ent uptake pathway are involved in nutrient sensing similar to
NRT1.1 (Krouk et al., 2010). Downregulation of their expression
during the switch from the direct to the mycorrhizal nutrient
uptake pathway, might inhibit sensing of the nutrient status of the
surrounding soil medium, and thus alter the root system archi-
tecture response to the local soil environment thereby enhancing
the influence of mycorrhizal nutrient delivery on root system
architecture.

Lateral root formation can be triggered by carbon supply in
the growth medium, suggesting its dependence on sufficient car-
bon (Jain et al., 2007; MacGregor et al., 2008). There is evidence
that in the AM symbiosis fungus-delivered phosphate is traded
for plant-derived carbon (Kiers et al., 2011). However, the balance
of this trade can depend on the plant–fungus species combina-
tion and competition among plants that are connected via the
common hyphal network (Walder et al., 2012). As long as the
carbon-cost imposed by the fungus is lower than the amount of
sugar transported into a given colonized part of the root system,
this redirection to colonized parts of the root system could perhaps
provide a mechanism by which mycorrhiza-mediated mineral
nutrient uptake promotes lateral root formation (Fitter, 2006;
Yang and Paszkowski, 2011). A second mechanism for liberating
carbon resources might be the putative reduction of secondary cell

wall biosynthesis upon phosphate starvation release (Calderon-
Vazquez et al., 2008). AM colonization has been reported to induce
changes in the amount of phytohormones such as cytokinins, jas-
monic acid (JA), certain auxins, abscisic acid (ABA), ethylene,
salicylic acid (SA), strigolactones in roots (reviewed in Hause et al.,
2007; Foo et al., 2013). These phytohormones are also involved
in the regulation of root system architecture (Nibau et al., 2008;
Fukaki and Tasaka, 2009; Koltai, 2011). It is currently unknown
in how far the changes in phytohormone levels are related to
AM-induced changes in root nutrient status evoked by mineral
nutrient supply via the fungus or by an increase in root carbon
sink strength. Nevertheless changes in phytohormone levels might
contribute to root system remodeling in response to AM colo-
nization either independently or as part of a nutrient signaling
network.

CONCLUSIONS AND PERSPECTIVES
Plant productivity strongly depends on an appropriately adapted
root system architecture for the uptake of nutrients and water
under adverse soil conditions. Thus modulation of the root system
architecture in response to environmental conditions is considered
an important target for genetic crop improvement (de Dorlodot
et al., 2007). AM fungi represent an inherent component of natural
and agricultural ecosystems and influence root system architec-
ture prior and post-colonization. It is therefore of high interest
to enhance knowledge about the molecular mechanisms that
underpin these morphological modulations and to elucidate the
cross-talk between the two regulatory “étappes” of root system
remodeling.
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