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INTRODUCTION

Genetically encoded fluorescent biosensors are increasingly used
as the preferred method to visualize and analyse ion fluxes, signal-
ing components, and metabolites, covering an expanding palette
of cellular processes. While fluorescent proteins as such are mainly
used for localization and expression studies, genetically encoded
fluorescent biosensors in addition allow real time studies of cell
metabolism with a similar high spatial and temporal resolution.
Cell-specific promoters allow biosensor expression in the target
cell of choice in contrast to chemical probes that are inherently
dependent on efficient delivery into the cells.

The huge interest and progress in the field is reflected in
a large number of recent reviews on fluorescent proteins and
genetically encoded sensors, e.g., (Fehr et al., 2004; Lalonde
et al., 2005; VanEngelenburg and Palmer, 2008; Frommer et al.,
2009; Chudakov et al., 2010; Okumoto, 2010; Mehta and Zhang,
2011; Miyawaki, 2011; Newman et al., 2011; Palmer et al., 2011;
Okumoto et al., 2012). Several reviews describe plant specific
uses, e.g., (Dixit et al., 2006; Frommer et al., 2009; Swanson et al.,
2011; Choi et al., 2012; Ehrhardt and Frommer, 2012; Okumoto,
2012; Okumoto et al., 2012). In addition, http://biosensor.dpb.
carnegiescience.edu/ provides a database of selected available
biosensors.

In the present context, the term genetically encoded fluo-
rescent biosensors refers to fluorescent proteins coupled with a
sensing mechanism that causes a change in fluorescence inten-
sity upon ligand binding. Most sensors can be grouped within
two major types of fluorescent biosensors: (1) single fluorescent
protein sensors, which can carry the sensing mechanism within
the fluorescent protein, such as e.g., pHluorins, or where sens-
ing is coupled to a ligand binding domain. Other options using
single fluorescent proteins include protein-protein interactions
reported by fluorescent protein reconstitution (biFC) or detection
of protein translocation. One notable exception of specific plant
relevance is the DII-Venus auxin sensor, where degradation of the

Genetically encoded fluorescent biosensors have long proven to be excellent tools for
quantitative live imaging, but sensor applications in plants have been lacking behind those
in mammalian systems with respect to the variety of sensors and tissue types used.
How can this be improved, and what can be expected for the use of genetically encoded
fluorescent biosensors in plants in the future? In this review, we present a table of
successful physiological experiments in plant tissue using fluorescent biosensors, and
draw some conclusions about the specific challenges plant cell biologists are faced with
and some of the ways they have been overcome so far.
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fluorescent protein is utilized as sensing mechanism. (2) FRET-
based sensors, where ligand binding causes a conformational
change of the sensor leading to a change in FRET ratio between
two fluorescent proteins, usually CFP/YFP variants. Within these
groups many sensor platform designs are possible, which are
described in detail elsewhere, see e.g., (Okumoto et al., 2012).

There is general consensus that the field is expanding and
far from saturated with respect to sensor targets, the quality
and variety of the fluorescent proteins, spatiotemporal resolu-
tion, compartmentation, and to imaging techniques. This paper
discusses the perspectives for using genetically encoded fluores-
cent biosensors in plants, summarizing the specific challenges
plant cell biologists are faced with and the ways they have been
overcome so far. Although, due to space restrictions, this review
focuses on fluorescent biosensors, the aspects discussed apply to
luminescent biosensors as well. What are the expectations for
fluorescent biosensors in plants in the future? Can they help in
assigning a function to the many orphan receptor-like kinases or
create complete flux maps of metabolite and ions in Arabidopsis
and other model organisms as suggested by (Okumoto et al,
2012)? We will point to some challenges that need to be addressed,
if biosensors are to be used more widely.

WHY ARE GENETICALLY ENCODED FLUORESCENT
BIOSENSORS LESS USED IN PLANTS THAN IN
MAMMALIAN CELLS?
The variety of genetically encoded fluorescent sensors is explored
primarily in mammalian systems. Although these sensors offer
highly attractive advantages for plant cell imaging, reports on
physiological measurements in plants have been comparatively
few, which might indicate that using these tools for live physio-
logical experiments in plants is not trivial.

Table 1 below is a compilation of genetically encoded fluores-
cent sensors used for physiological experiments in plants. Several
important insights into plant cell biology have been gained from
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their use. Notably, applications of the Ca?*-sensing Cameleons
have given substantial insight into the role of calcium in stom-
atal opening (Allen et al., 1999a,b) as well as the role of calcium
gradients in growing pollen tubes (Michard et al., 2008), root
hairs of Arabidopsis (Monshausen et al., 2007), Nod factor-
induced nuclear calcium transients in M. truncatula root hair
cells (Capoen et al., 2011) and visualization of Ca2+—dynamics in
response to auxin during root gravitropism (Monshausen et al.,
2011). Also pH sensors have been useful in plants. The pHluorin
sensors have been used to document in detail cytosolic pH gra-
dients and oscillations in growing pollen tubes (Michard et al.,
2008), and cell wall pH has been measured by use of pHluorins
(Gao et al.,, 2004) or apo-pHusion (Gjetting et al., 2012) secreted
to the apoplast.

Looking closer at these experiments, some obvious similarities
are seen. It can be argued that successful experiments are often
carried out in single cell systems, such as guard cells, root hairs
and pollen tubes, where complex cell-to-cell communication is
limited. These experiments are all studies of ion signaling, that
can be directly correlated with a growth or turgor response, mak-
ing them attractive experimental setups. Although this is a trend,
indeed, several experiments have been successfully carried out in
intact tissue, very often in roots, (Fasano et al., 2001; Rincon-
Zachary et al., 2010; Monshausen et al., 2011; Gjetting et al.,
2012) where autofluorescence is negligible and access is not hin-
dered by the waxy cuticle. Sensors that were successfully used for
physiological measurements in intact tissue were often developed
specifically for use in plants (e.g., the auxin sensor, DII-Venus,
and the apoplastic pH-sensor apo-pHusion). Secondly, it is noted
that overall only few sensor platforms and targets were used, again
reflecting the fact that many sensors are originally designed for
mammalian purposes. Thirdly, sensors were most often expressed
in the cytosol, which is the default expression if not specifically
targeted to other compartments, and finally most experiments
were carried out in Arabidopsis or tobacco, which may not be
surprising, since these are easy to manipulate. These observations
emphasize some specific challenges that have to be addressed in
order to broaden the palette of successful sensor applications in
plants.

PLANT-SPECIFIC FEATURES THAT LIMIT THE APPLICABILITY
OF GENETICALLY ENCODED FLUORESCENT SENSORS

AUTOFLUORESCENCE FROM CHLOROPLASTS AND CELL WALLS

Plants are complex, multicellular organisms to work with, and
fluorescent probes do not always penetrate multiple cell lay-
ers, largely due to the barrier formed by the waxy cuticle and
the cell wall. Therefore, genetically encoded sensors are ide-
ally suited for plant cell imaging. However, in plants autoflu-
orescence is a major challenge, particularly in photosynthesiz-
ing tissue (chlorophyll ex. 420-460 nm/em. 600-700 nm) and
from the cell wall (various components are excited by UV to
blue wavelengths, emitting mainly blue light), which can be
addressed by the choice of fluorophores in sensor design, or
may be circumvented, when lower photon counts/densities can
be tolerated, by the use of bioluminescent proteins, such as
Aequorin (Mehlmer et al., 2012), where excitation is caused by

Genetically encoded fluorescent biosensors in plants

a chemical reaction instead of light, thus avoiding excitation of
autofluorescence.

PRECAUTIONS FOR MOUNTING PROCEDURES AND STUDYING
EXTERNALLY APPLIED CHEMICAL STIMULI

Genetically encoded sensors as such are non-invasive, but their
application to study cellular responses to chemical stimuli
requires a perfusion setup and immobilization for microscopy,
which can potentially harm the cells. The cuticle covering aerial
tissues is an entrance barrier for many compounds, and some-
times even for the ligand itself, making in vivo calibrations
difficult when using such sensors. Efficient immobilization meth-
ods ensure that no movement of the specimen takes place, while
at the same time allowing for perfusion of the chemical stim-
ulus and plant growth. It was, however, recently shown that
the commonly used method to immobilize Arabidopsis tissue
with a medical adhesive severely impairs cell viability of root
cells (Gjetting et al., 2012), making alternative methods nec-
essary. An alternative could be the newly developed root chip
(Grossmann et al., 2011) or more simply mounting roots on
agarose (Gjetting et al., 2012). Another common method used
e.g., for cross-fixing pollen tubes on polylysine slides (Michard
et al., 2008) was also shown to disrupt Arabidopsis root cells.
In general, the act of handling living tissue under a microscope
will inevitably cause disturbance of the tissue and induce various
stress responses and tropisms. This of course affects live imag-
ing methods of genetically encoded fluorescent sensors as well as
other methods.

GENE SILENCING MAY BE CAUSED BY CHOICE OF PROMOTER OR
TANDEM FLUORESCENT PROTEINS

Gene silencing has often been mentioned as a particular problem
for plant expression of genetically encoded fluorescent biosensors,
particularly when used in tandem repeats, or driven by the 35S
promoter (Miyawaki et al., 1997; Deuschle et al., 2006; Krebs et al.,
2012). This problem was solved in one case by replacing the 35S-
promoter of viral origin with the plant-derived UBQ10 promoter
in Arabidopsis (Krebs et al., 2012), or by expressing the sensor
in transgene silencing mutants (Deuschle et al., 2006). The use
of silencing mutants however, is not optimal, since their general
growth pattern is changed, and may influence the measurements
in unpredictable ways. In our lab, the 35S-promoter did not pro-
voke inhibitory gene silencing when driving the expression of
either FRET-based sensors or ratiometric pH sensors (Gjetting
et al., 2012 and unpublished results). Transgene silencing in root
tips and seedlings was reported to cause a reduction in fluores-
cence intensity and thus undetectable FRET changes after 10-15
days of growth (Deuschle et al., 2006; Chaudhuri et al., 2011). In
contrast, we were able to monitor pH changes in leaves of 1-2
months old plants which were not subject to silencing (Gjetting
et al.,, 2012).

THE APOPLAST

This plant-specific extracellular compartment plays a major role
in transport regulation, but obviously only plant scientists are
interested in developing tools to study its dynamics. Sensors
for apoplastic measurements must deal with the low pH values,
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which are disruptive to many fluorescent proteins, and also be
able to measure large differences in ion or solute concentra-
tion in the much less buffered apoplast. Apoplastic pH sensors
have been used to measure salt stress (Schulte et al., 2006) and
the effect of externally applied auxin (Gjetting et al., 2012),
but the targeting of sensor protein to the apoplast results in
accumulation in the ER, which should be taken into account
when measuring the ratio. However, this accumulated protein
could potentially be used as an internal pH reference or even
as a tool to study pH in the endomembrane system as well.
Another issue with apoplastic measurements relate to the struc-
ture of GFP in that an oxidizing environment, such as the cell
wall and ER can impair proper folding of the fluorescent pro-
tein. The use of superfolder GFP (sftGFP) variants may in time
be helpful in plants for solving this problem (Aronson et al.,
2011).

IMPROVEMENT OF SENSOR APPLICATIONS IN PLANTS
INCREASING SENSOR TARGET RANGE TO INCLUDE, E.G., HORMONES
AND KINASES

There are many possibilities to expand the range of sensor targets
in plants. Developing sensors for central, plant-specific signaling
events, like hormone action or activity of plant-specific receptor-
like kinases would be major landmarks. An example is a recently
developed auxin sensor, which is a fusion of the YFP variant
Venus to the Aux/TAA auxin-interaction domain DII (Brunoud
et al., 2012), targeted to the nucleus. Using this sensor, auxin dis-
tribution was mapped during gravity sensing and lateral shoot
formation in Arabidopsis. For mammalian cells, e.g., a variety of
GFP-based biosensors exist for kinases, GTPases, phosphatidyli-
nositols (PtdIns) (Kimber et al., 2002; Yoshizaki et al., 2006;
Zhang and Allen, 2007). Such sensors (PtdIns) have only recently
emerged in the plant community (Munnik and Nielsen, 2011),
probably because plants use different signaling components that
cannot be targeted by sensors developed for mammalian sys-
tems.

pH MEASUREMENTS IN ACIDIC COMPARTMENTS

Sensors in plants have so far mainly been expressed in the cytosol,
although several other compartments have also been explored
(see Table 1). Indeed, targeted sensors are desirable, e.g., to study
cell wall pH-dynamics (Gao et al., 2004; Gjetting et al., 2012).
Sensor secretion to the apoplast involves accumulation of protein
in transit in the endomembrane system, which is a problem to be
considered carefully. This may be the reason that some researchers
prefer pH-sensitive, small molecular weight fluorescent probes for
surface pH measurements in Arabidopsis (Bibikova et al., 1998;
Monshausen et al., 2011; Geilfus and Muhling, 2012). However,
an apoplastic sensor, stably expressed in cells throughout the tis-
sue, and not just the surface is preferable e.g., in roots to study
details of the extracellular pH signature of gravitropic responses
and auxin signaling (Swarup et al., 2005). The localization of
pH sensors in the acidic compartment of the apoplast or vac-
uole is also hindered by the sensitivity of GFP to acidity (Tsien,
1998). The pH sensor ptGFP, derived from the Orange Seapen,
Ptilosarcus gurneyi showed increased acid stability compared with

Genetically encoded fluorescent biosensors in plants

avGFP derived pHluorins. PtGFP fluorescence could be fully
restored after exposure to pH 3.5, and partially restored down
to pH 2.5 and may therefore be more suitable for acidic mea-
surements. In contrast, pHluorins were completely denatured at
pH 3.5 (Schulte et al., 2006). Recently, a pHluorin-derived sen-
sor, based on a solubility-modified GFP (sm-GFP) was targeted
to the vacuole, and to other endomembrane compartments and
used to determine pH of the different compartments (Shen et al.,
2013).

VARIETY OF FPs AND TECHNOLOGY

Expanding the variety of sensor fluorescent proteins, e.g., by
the development of different FRET donor/acceptors would facil-
itate the study of several ions/metabolites simultaneously, e.g.,
the commonly linked signaling cascade of intracellular cal-
cium/apoplastic pH, as well as same ion fluxes in several com-
partments or complex protein-protein interactions. Multiplexed
FRET (Piljic and Schultz, 2008) and fluorescence lifetime imag-
ing (FLIM)-FRET (Grant et al., 2008) are becoming more feasible
as the variety of spectral variants increases. In N. benthamiana
leaves a FRET-FLIM assay was used to detect known protein
interactions using a FRET pair of the GFP variant TSapphire
as donor, and mOrange as acceptor (Bayle et al., 2008). A
similar approach was used to detect a flavonoid metabolon in
Arabidopsis protoplasts (Crosby et al., 2011). These examples
are not using genetically encoded sensors as such, and are based
on transient expression in single cell systems, but further illus-
trate the possibilities of using fluorescent protein technology
in plants and may be useful for sensor construction at a later
stage.

IDENTIFICATION OF NEW GENES AND GENE FUNCTION

Genetically encoded sensors may also be used to identify the role
of genes of unknown function. A new class of glucose efflux trans-
porters, SWEETs was identified by FRET-based glucose sensors
(Chen et al., 2010), and repeated with a sucrose sensor, identify-
ing a subclade of SWEET efflux transporters involved in sucrose
transport, indicating a role in phloem loading (Chen et al., 2011).
Another promising sensor application known from animal sys-
tems, addressed the functional identification of unknown signal-
ing components. This idea was elegantly adapted to Arabidopsis,
where the luminescent calcium sensor Aequorin was used to
identify an extracellular signaling peptide, AtRALF1, (rapid alka-
linization factor) by its ability to induce a cytosolic Ca®*-increase
(Haruta et al., 2008). The effect of this peptide was subsequently
analysed in detail in Arabidopsis roots expressing the Cameleon
sensor YC3.6.

CONCLUDING REMARKS

The use of genetically encoded sensors in plants faces some spe-
cific challenges not shared with the mammalian world, which
need to be addressed by plant scientists. Nevertheless, the contin-
uous development and refinement of fluorescent proteins, sensor
design and bioimaging techniques make genetically encoded sen-
sors very promising tools for elucidating metabolic networks and
signaling events in plant cells in the future.
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