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Phloem sap contains a large repertoire of macromolecules in addition to sugars,
amino acids, growth substances and ions. The transcription profile of melon phloem
sap contains over 1000 mRNA molecules, most of them associated with signal
transduction, transcriptional control, and stress and defense responses. Heterografting
experiments have established the long-distance trafficking of numerous mRNA molecules.
Interestingly, several trafficking transcripts are involved in the auxin response, including
two molecules coding for auxin/indole acetic acid (Aux/IAA). To further explore the
biological role of the melon Aux/IAA transcript CmF-308 in the vascular tissue, a cassette
containing the coding sequence of this gene under a phloem-specific promoter was
introduced into tomato plants. The number of lateral roots was significantly higher in
transgenic plants expressing CmF-308 under the AtSUC2 promoter than in controls. A
similar effect on root development was obtained after transient expression of CmF-308
in source leaves of N. benthamiana plants. An auxin-response assay showed that
CmF-308-transgenic roots are more sensitive to auxin than control roots. In addition to
the altered root development, phloem-specific expression of CmF-308 resulted in shorter
plants, a higher number of lateral shoots and delayed flowering, a phenotype resembling
reduced apical dominance. In contrast to the root response, cotyledons of the transgenic
plants were less sensitive to auxin than control cotyledons. The reduced auxin sensitivity
in the shoot tissue was confirmed by lower relative expression of several Aux/IAA genes
in leaves and an increase in the relative expression of a cytokinin-response regulator,
TRR8/9b. The accumulated data suggest that expression of Aux/IAA in the phloem
modifies auxin sensitivity in a tissue-specific manner, thereby altering plant development.
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INTRODUCTION
It is now evident that phloem sap contains a wide range of
mRNA molecules (Vilaine et al., 2003; Omid et al., 2007; Buhtz
et al., 2008; Zhang et al., 2009). Transcription profiling of the
phloem sap of cucurbit plants has enabled the identification of
thousands of mRNA molecules, as well as tRNAs, and small
and microRNAs. Intuitively, one would think that all of these
phloem-sap molecules are destined for long-distance movement.
However, heterografting experiments indicate that only a small
proportion of these molecules are capable of long-distance move-
ment (Omid et al., 2007). Interestingly, numerous long-distance
trafficking mRNA molecules have been characterized as cod-
ing for proteins involved in signal transduction mediated by
gibberellin (Haywood et al., 2005), gibberellins and cytokinin
(Banerjee et al., 2006) or auxin (Omid et al., 2007; Notaguchi
et al., 2012).

We previously examined the ability of 43 melon phloem sap
mRNA molecules to traffic long distances using melon–pumpkin
heterografting experiments. Interestingly, only six of the exam-
ined melon transcripts were identified in the pumpkin scion
(Omid et al., 2007). Annotation of these transcripts revealed that

two of them were auxin/indole acetic acid (Aux/IAA) and one
was small auxin-up RNA (SAUR), while the other three encoded
“hypothetical proteins” (Omid et al., 2007).

Aux/IAA is a large family of early auxin response genes with
29 and 26 members in Arabidopsis and tomato, respectively
(Overvoorde et al., 2005; Audran-Delalande et al., 2012). These
genes encode transcriptional repressors of auxin response fac-
tor (ARF), thereby preventing transcription of genes controlled
by these ARFs. Interaction of auxin with transport inhibitor
response 1 (TIR1) and auxin F-box protein (AFB) forms part
of the SCF ubiquitin-ligase (SCFTIR1) complex which catalyzes
ubiquitin-mediated degradation of Aux/IAA (Teale et al., 2006).
It has recently been shown that efficient auxin binding requires
assembly of Aux/IAA and TIR1 proteins. The various combina-
tions of TIR1–Aux/IAA complexes interact with auxin with a wide
range of affinities (Calderon Villalobos et al., 2012).

The encoded Aux/IAA proteins are highly conserved in four
distinct domains (Woodward and Bartel, 2005). Domain I is a
transcriptional repressor, domain II is critical for Aux/IAA insta-
bility, and domains III and IV are involved in homodimerization
and heterodimerization with other Aux/IAA proteins or with ARF
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(Reed, 2001). Genetic screens have identified Arabidopsis plants
with mutations in various Aux/IAA genes that result in changed
morphology. Most of these primary mutations were located in
the highly conserved domain II, which is responsible for protein
degradation. Such mutations result in stable proteins and gain-
of-function phenotypes (e.g., insensitivity to auxin). An excellent
example is the solitary root (slr) mutant which has reduced sen-
sitivity to auxin (Fukaki et al., 2002, 2005; Vanneste et al., 2005).
This dominant mutant completely lacks lateral roots and is also
defective in root-hair formation and in gravitropic responses
of its roots and hypocotyls. Map-based cloning and isolation
of an intragenic suppressor mutant revealed that SLR encodes
IAA14, a member of the Aux/IAA protein family (Fukaki et al.,
2002).

Substantial phenotypic changes were also observed in trans-
genic tomato plants into which an antisense form of SlIAA9,
another member of the Aux/IAA protein family, was inserted
under the control of the CaMV-35S promoter (Wang et al.,
2005). Significant reduction in the accumulation of IAA9 tran-
script was associated with altered leaf morphology, increased
number of lateral shoots, parthenocarpic fruit development,
enhanced hypocotyl/stem elongation and increased leaf vas-
cularization. Auxin dose-response assay of cotyledon explants
confirmed that SlIAA9 antisense plants are more sensitive to
exogenous auxin than control plants (Wang et al., 2005).
Interestingly, expression of SlIAA3 was higher in SlIAA9-antisense
than control plants. Consistent with these results, roots of
tomato plants in which SlIAA3 was silenced by expression
of its antisense form were less sensitive to auxin than con-
trol roots (Chaabouni et al., 2009). Nevertheless, these anti-
sense plants were also characterized by a higher number of
lateral shoots.

The effect of Aux/IAA overexpression on plant develop-
ment has been only scarcely examined. Transgenic Arabidopsis
plants expressing the Vitis vinifera IAA9 (Fujita et al., 2012)
or IAA19 (Kohno et al., 2012) grew somewhat faster but
were similar to control plants in terms of morphologi-
cal characteristics. On the other hand, overexpression of
AtIAA20, AtIAA30 or AtIAA31 in transgenic Arabidopsis plants
caused auxin-related aberrant phenotypes including semi-
dwarfism, malformed vasculature and inhibition of primary
root growth (Sato and Yamamoto, 2008). Significant inhibition
of primary root length and increased number of adven-
titious roots were also observed when AtIAA17 was over-
expressed in transgenic Arabidopsis plants (Worley et al.,
2000).

It is important to note that all of these studies included trans-
genic plants expressing the Aux/IAA gene under the control of the
CaMV-35S promoter. To better understand the biological func-
tion of Aux/IAA in the phloem, CmF-308—the long-distance-
trafficking melon Aux/IAA—was expressed in the phloem of
tomato plants under control of the AtSUC2 promoter. The phe-
notype of these plants indicated a modified auxin response while
assays established tissue-specific alterations in auxin sensitivity.
It is therefore concluded that the Aux/IAA gene product can
exert its influence over plant developmental processes while being
expressed in the phloem.

MATERIALS AND METHODS
PLANT MATERIAL
Tomato (Solanum lycopersicum), melon (Cucumis melo)
and Nicotiana benthamiana plants were grown in a
temperature-controlled greenhouse at 25–28/18–20◦C
(day/night, respectively), under natural sunlight. For hydroponic
experiments, N. benthamiana was grown in trays containing
coconut mixture. Two-week-old seedlings were transferred to
containers (390 × 330 × 163 mm) with a nutrient solution con-
taining 6 mM KNO3, 4 mM Ca(NO3)2, 2 mM KH2PO4, 0.03 mM
EDFS [ethylenediamine tetraacetic acid iron (III) sodium salt],
0.5 µM CuSO4, 0.5 µM H2MoO4, 2 µM MnSO4, 50 µM KCl,
2 µM ZnSO4. The seedlings were transplanted into 5-cm plastic
tubes that were fitted into holes drilled into the cover of the
container such that the roots were inside the solution and the
shoots above the cover. The nutrient solution was replaced twice
weekly and was continuously aerated with an aquarium pump.

Transgenic tomato plants containing the pAtSUC2:GFP insert
were employed to verify promoter activity. GFP fluorescent was
visualized using confocal microscopy (CLSM510, Zeiss, Jena
GmBH).

RNA ISOLATION AND RT-PCR
Total RNA was extracted from different tissues of tomato and
melon plants using Tri-reagent (Sigma, http://www.sigmaaldrich.

com/) according to the manufacturer’s protocol. cDNA was pre-
pared from the same amounts of RNA (1 µg) per sample pre-
treated with 1 unit µg−1 of RQ1 DNAse (Promega, http://www.

promega.com), using the Verso cDNA synthesis kit (Thermo
Scientific, http://www.thermoscientific.com). A 2-µl aliquot of
cDNA was taken for PCR amplification. Real-time RT-PCR was
carried out using 0.5 µl of 2.5 pmol of each primer (Table A1),
4 µl cDNA and 5 µl ABsolute™ Blue QPCR SYBR® Green ROX
Mix. PCR conditions were as follows: 95◦C for 10 s, 59◦C for 15 s
and 70◦C for 25 s, repeated 45 times. The obtained cycle tem-
perature (CT) values were analyzed with Rotor-Gene 6000 Series
software by averaging the three independently calculated normal-
ized expression values of the triplicates. The calculated numerical
values were divided by the values obtained for the housekeeping
gene tubulin in each respective sample.

LASER-CAPTURE MICRODISSECTION
Expression of CmF-308 in specific cells of melon plants was deter-
mined using a laser-capture microdissection system according
to Gil et al. (2011). In short, trimmed leaf discs were fixed in
Farmer’s fixative (3:1 v/v ethanol:acetic acid). Fixed tissue was
dehydrated in a graded series of ethanols, after which it was incu-
bated in isopropyl alcohol inside a microwave histoprocessor. Wax
impregnation was performed under vacuum.

Cross sections (12 µm) were cut on a rotary microtome
(Leica RM2245), floated in water at 42◦C to stretch ribbons
and incubated on membrane microscope slides. Prior to laser
microdissection, slides were deparaffinized twice for 10 min each
in 100% Histoclear (Gadot), followed by one wash in 100%
ethanol (2 min) and then air-drying in the hood for 5 min. For
microdissection, a PALM Laser Microbeam Instrument (Zeiss)
was employed. Specific mesophyll and vascular bundle cells were
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isolated separately by the laser microbeam and collected into the
lid of a 0.5-mL reaction tube (Zeiss) filled with 30 µL ethanol, and
placed in a holder located just above the slides.

RNA was extracted and isolated from each reaction tube
using the PicoPure RNA isolation kit according to the man-
ufacturer’s protocol (Arcturus, http://www.moleculardevices.
com/). Isolated samples were treated with the RNase-free DNase
set kit (Qiagene, http://www.qiagen.com/). RNA was amplified
twice and reverse-transcribed using MessageBOOSTER™ whole
transcriptome cDNA synthesis kit (Epicentre, http://www.

EpiBio.com/).

CLONING AND PLANT TRANSFORMATION
The coding sequence plus 18bp of the 5’ untranslated region
(UTR), without the stop codon and the 3’ UTR, of the CmF-
308 mRNA was amplified from melon (Cucumis melo) cDNA
by PCR and then cloned into the pTZ57R vector (Fermentas,
2886 bp) using the T-A ligation protocol. The gene was fur-
ther restricted by Xho1 and Kpn1 and cloned into the pART7
vector upstream of three HA-tag repeats. The fused CmF-
308-3xHA fragment was amplified by PCR, restricted with
Sma1 and Hind3, and then cloned into the pART27 binary
vector (Gleave, 1992) downstream of the AtSuc2 promoter
(Truernit and Sauer, 1995) and upstream of the Ocs termi-
nator. Cotyledon transformation was performed according to
McCormick (1991).

AGRO-INFILTRATION
Agrobacterium tumefaciens (strain GV3101) containing the
pART27 vector was grown overnight at 28◦C in Luria-Bertani
medium containing 50 mg L−1 gentamycin and spectinomycin.
The culture was precipitated by centrifugation for 10 min at
3000 g and then resuspended in inoculation buffer containing
50 mM MES, 0.5% (w/v) glucose, 2 mM Na3PO4, and 200 µM
acetosyringone to an OD600 of 0.5. The bacteria were then infil-
trated into N. benthamiana leaves using a syringe without a
needle. Shoots and roots of the infiltrated plants were collected 14
days after infiltration and dry weight was determined after 4 days
at 65◦C.

AUXIN DOSE-RESPONSE ASSAY
Auxin-response assay was performed according to Wang et al.
(2005). Tomato seeds were sown in sterile ½MS medium contain-
ing 2.2 g L−1 MS and 30 g L−1 sucrose. Cotyledons (9 days old)
were dissected and placed on MS medium containing 4.4 g L−1

MS and 30 g L−1 sucrose with varying concentrations of NAA.
Root development from the cut cotyledons was determined 12
days after dissection.

The root-development response to auxin was analyzed in
developing seedlings. Seeds were sown on germination papers
placed in plastic bags supplemented with tap water. Germinated
seeds were transferred to new germination papers soaked in solu-
tions with varying concentrations of NAA, in plastic bags. The
bags were kept in the dark at a temperature of 25 ± 2/18 ±
2◦C for 10 days, after which the length of the primary root
was measured.

RESULTS
CmF-308 TRANSCRIPT ACCUMULATES IN THE VASCULATURE OF
MELON PLANTS
Following our finding that the melon phloem-sap transcript
CmF-308 is capable of long-distance trafficking, our initial set
of experiments was aimed at identifying its level of accumula-
tion in various tissues of melon plants. Quantitative (q) RT-PCR
analyses revealed highest relative expression of this transcript in
the hypocotyls and stems of young melon seedlings, with signif-
icantly lower relative expression in roots, leaves and shoot apices
(Figure 1A). To further verify that CmF-308 accumulates in tis-
sues enriched with vascular bundles, veins were separated from
young mature leaves. Here again, relative expression of CmF-308
in the veins was three times higher than that in the rest of the leaf
(Figure 1B). Predominant accumulation of CmF-308 in vascular
cells was confirmed by collection of specific cell types using the
laser-capture microdissection system (Figure 1C).

TRANSIENT EXPRESSION OF CmF-308 MODIFIES ROOT DEVELOPMENT
IN N. benthamiana PLANTS
As indicated, F-308 codes for Aux/IAA, one of the auxin-response
regulators. The next set of experiments was aimed at studying the
potential functioning of this gene product in the phloem, as a

FIGURE 1 | Relative expression levels of CmF-308, as determined by

real-time RT-PCR. Relative expression was compared in various melon
plant organs (A), in veins and leaf lamina (B) and in mesophyll and vascular
bundle cells isolated by laser-capture microdissection system (C). Leaf
discs and single cells were collected from the youngest mature source leaf
(no. 4). Data represent means of three to six replications (±SE). Different
letters indicate significant differences between plant organs or cell types at
p < 0.05 by Tukey’s HSD-test.
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component of the auxin response pathway. A cassette harboring
the coding sequence of CmF-308 under the AtSUC2 promoter was
agroinfiltrated into leaves of N. benthamiana plants (Figure 2D).
Presence of the melon transcript in the apices of these N. ben-
thamiana plants 48 h post-infiltration established that this tran-
script is indeed capable of long-distance movement (Figure 2A).
It is important to note that the gfp transcript that served as a con-
trol was absent from the stem and shoot apices, indicating that
long-distance movement of RNA molecules is not a general phe-
nomenon (Figure 2B). PCR analysis failed to detect segments of
the binary plasmid, inserted into the Agrobacterium, outside the
infiltrated leaf, indicating that the bacteria were restricted to this
tissue during the first 48 h post-infiltration (Figure 2C).

Interestingly, root mass of plants infected with the plas-
mid containing CmF-308 was significantly higher than that
of plants into which the control CaMV35S:GFP cassette was
inserted (Figure 3). The enhanced root growth in plants tran-
siently expressing the CmF-308 gene product was evident both
in pot-grown (Figures 3A vs. 3B) and hydroponically grown
(Figure 3C) plants. The higher root weight of plants expressing
the CmF-308 gene product was mainly due to extensive lateral
root development (Figure 3A).

OVEREXPRESSION OF CmF-308 IN THE PHLOEM ALTERS ROOT AND
SHOOT DEVELOPMENT OF TOMATO PLANTS
To further explore the effect of phloem-limited expression of
CmF-308 on plant development, the gene’s coding sequence
was inserted into transgenic tomato plants under the con-
trol of the phloem specific AtSUC2 promoter (Shalit et al.,
2009). Activity of the AtSUC2 promoter, as phloem specific pro-
moter in tomatoes was verified using GFP as a reporter protein
(Figure 4A). In agreement with the activity of AtSUC2 pro-
moter along the vasculature, CmF-308 was expressed in the shoot
apices and roots of the transgenic tomato plants (Figure 4B).

FIGURE 2 | Presence of CmF-308 transcript in the stems and apices of

N. benthamiana plants 48 h after agroinfiltration of source leaves with

plasmid containing the coding sequence of this transcript, indicating

long-distance movement of the transcript (A). Absence of the gfp
transcript from the apices and stems and presence of the transcript in the
agroinfiltrated leaf (B). (C) Presence of the agrobacterium in the infected
leaf 48 h after agroinfiltration. C, negative control RT-PCR with no cDNA
template. (D) Picture of the infiltrated N. benthamiana plant.

Over ten independent homozygous CmF-308-transgenic tomato
plants were generated. Most of them had similar phenotype
and two representative lines were selected for further study.
Similar to the effect observed after transient expression, con-
stitutive expression of CmF-308 in the phloem of tomato
plants caused a significant increase in the number of lat-
eral roots and root weight (Figures 5A–C). Note that shoot
weight was similar in CmF-308 and control tomato plants
(Figure 5D).

In addition to the influence on root development, phloem-
specific expression of CmF-308 significantly affected shoot devel-
opment (Figure 6). Transgenic plants expressing CmF-308 in
the phloem were significantly shorter (Figure 6F) and had a
higher number of axillary shoots than the control tomato vari-
ety. Whereas in the control variety, lateral shoots developed in
about 50% of the nodes, the percent of lateral shoots in the trans-
genic plants was between 70 and 80% (Figure 6E). The axillary

FIGURE 3 | Effect of transient expression of CmF-308 on root mass of

N. benthamiana plants. Roots of pot-grown plants agroinfiltrated with
plamids containing the coding sequence of CmF-308 (A) or gfp (B).
Pictures were taken 14 days after infiltration of the respective plasmids into
the source leaves. (C) Root mass of hydroponically grown N. benthamiana
plants 14 days after infiltration of the CmF-308 or gfp coding sequence into
the source leaves. Data represent means of eight replications ± SE.
Different letters indicate significant differences between plant lines at
p < 0.05 by Student’s t-test.

FIGURE 4 | (A) Activity of AtSUC2 promoter in transgenic tomato plants.
GFP is visualized the vasculature (companion cells) of tomato stem. (B)

Presence of CmF-308 transcript in shoot apices and roots of three
independent transgenic tomato plants expressing the gene under the
AtSUC2 promoter. The commercial variety M-82 served as a control for the
RT-PCR assay.

Frontiers in Plant Science | Plant Physiology August 2013 | Volume 4 | Article 329 | 4

http://www.frontiersin.org/Plant_Physiology
http://www.frontiersin.org/Plant_Physiology
http://www.frontiersin.org/Plant_Physiology/archive


Golan et al. Phloem-specific expression of Aux/IAA

shoots were longer, exhibiting a typical phenotype of reduced
apical dominance (Figures 6A–D). In addition, these transgenic
plants were characterized by delayed flowering.

OVEREXPRESSION OF CmF-308 IN THE PHLOEM AFFECTS AUXIN
SENSITIVITY
The changes in lateral root and axillary shoot development sug-
gested altered sensitivity to auxin in plants expressing CmF-308

FIGURE 5 | Effect of CmF-308 expression in the phloem of tomato

plants on root development. Number of lateral roots (A), root dry weight
(B), and a picture (C) presenting the differences between roots of
transgenic tomato plants expressing CmF-308 under the AtSUC2 promoter
(CmF-308-2) as compared with the control variety M-82. (D) Shoot dry
weight of transgenic tomato plants expressing CmF-308 under the AtSUC2
promoter (CmF-308-2) as compared with the control variety M-82. Lateral
roots were counted in 9-days old seedlings germination on germination
papers (A). Shoot and root weight was measured in 3-week old pot-grown
plants (B–D). Data represent means of six replications ± SE. Different
letters indicate significant differences between the plant lines at p < 0.05
by Student’s t-test.

FIGURE 6 | Effect of CmF-308 expression in the phloem of tomato

plants on shoot development. Control variety M-82 (A,C) as compared
with transgenic plants expressing CmF-308 under the AtSUC2 promoter
(B,D). Pictures were taken 60 days after germination. Plants were stripped
of all their leaflets (C,D) to assist in visualizing the branching phenotype.
Percentage of lateral shoots (E) and stem length (F) of the control tomato
variety M-82 and two transgenic lines expressing CmF-308 under the
AtSUC2 promoter, 30 days after germination. Data represent means of 12
replications ± SE. Different letters indicate significant differences between
the plant lines at p < 0.05 by Student’s t-test.

under a phloem-specific promoter. We therefore examined the
sensitivity of roots and shoots of transgenic and control plants
to auxin. A dose-response assay revealed significant inhibi-
tion of primary root lengthening in CmF-308 plants at a
concentration of 0.5 µM NAA, with no significant effect of
this concentration on root length of control tomato plants
(Figure 7A). This indicated that the roots of plants express-
ing the CmF-308 gene product are more sensitive to exoge-
nous auxin than control roots. Primary root elongation of
both control and CmF-308 plants was significantly inhibited by
1 µM NAA.

Additional assay was aimed to examine the auxin response
in shoot tissue. Cotyledon segments were subjected to vari-
ous NAA concentrations and the number of developing roots
was monitored. Interestingly, substantial rooting was evident in
control cotyledons subjected to 0.1 µM NAA, whereas only a
negligible number of roots developed from cotyledons of CmF-
308-transgenic plants (Figure 7B). Similar differences in rooting
level could be observed when the cotyledons were subjected to
1 µM NAA.

FIGURE 7 | Auxin response of CmF-308-transgenic tomato plants. (A)

Primary root length of CmF-308-2 and control M-82 tomato seedlings
after incubation in various concentrations of NAA. Seedlings were
germinated on filter paper soaked in the auxin solutions in the dark.
Lengths of primary roots were measured 10 days after germination. Data
represent means of eight replications ± SE. Different letters indicate
significant differences between auxin concentration treatments in each
plant line Axillary at p < 0.05 by Tukey’s HSD-test. (B) Auxin
dose-response assay of cotyledon explants showing reduced auxin
sensitivity in CmF308-2 cotyledons as compared to controls. Root
regeneration is promoted by 0.1 µM NAA in the control variety and by 10
times higher concentration (1.0 µM NAA) in the transgenic line
CmF-308-2. Pictures of representative plates were taken 12 days after
placing the cut cotyledons on the various auxin media.
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Collectively, these results indicated that overexpression of
CmF-308 in the phloem of tomato plants causes a decrease in
the shoot segments’ sensitivity to auxin and an increase in roots’
sensitivity.

OVEREXPRESSION OF CmF-308 IN THE PHLOEM AFFECTS
HORMONE-RELATED GENE EXPRESSION
It is logical to assume that tissue-specific alteration in auxin
sensitivity due to overexpression of CmF-308 in the phloem is
associated with changes in related genes’ expression. To fur-
ther explore the mode by which CmF-308 expression affects
auxin sensitivity, relative expression of various Aux/IAA tran-
scripts was analyzed in leaves and roots of CmF-308-transgenic
and control tomato plants. Consistent with reduced sensitiv-
ity to auxin, relative expression of the tomato IAA7, IAA10
and IAA14 was significantly lower in the leaves of CmF-308-
transgenic vs. control plants (Figure 8A). Interestingly, relative
expression of IAA3 was higher in CmF-308 vs. control leaves,
while no significant differences were observed in the relative
expression of IAA8 and IAA9 between leaves of the two tomato
lines.

Relative expression of most examined Aux/IAA transcripts
was similar in the roots of transgenic and control tomato
plants. An exception was IAA3, whose relative expression was
significantly higher in roots of CmF-308 vs. control plants
(Figure 8B).

Further study was aimed at verifying the interaction between
expression of auxin- and cytokinin-responsive genes (Figure 9).
Relative expression of four cytokinin-induced Type A-tomato
response regulators (TRRs) was similar in roots of CmF-308-
transgenic and control plants (Figure 9B). However, relative
expression of TRR8/9b was almost five times higher in leaves

FIGURE 8 | Effect of CmF-308 expression in the phloem of tomato

plants on the expression of auxin-response genes. Expression of
members of the Aux/IAA gene family was determined by qRT-PCR in leaves
(A) and roots (B) of 21-day-old CmF-308-transgenic (gray columns) and
control M-82 (black columns) plants. Data represent means of four
replications ± SE. Different letters indicate significant differences in relative
expression of specific genes between the two plant lines at p < 0.05 by
Student’s t-test.

of CmF-308 vs. control plants (Figure 9A), suggesting a higher
cytokinin response associated with the observed reduced auxin
response.

One of the most pronounced characteristics of CmF-308-
transgenic plants was massive branching, indicating reduced api-
cal dominance. A major regulator of axillary shoot development
is the branching inhibitor strigolactone (Gomez-Roldan et al.,
2008). It is generally assumed that strigolactone is synthesized in
the roots and move via the xylem into the shoots. We therefore,
examined whether expression of genes coding for strigolactone
biosynthesis is altered in the roots of CmF-308-transgenic plants.
Relative expression of CCD7 (carotenoid cleavage dioxygenase), a
gene coding for one of the key enzymes involved in strigolactone
biosynthesis, was significantly (about twofold) higher in the roots
of CmF-308 plants vs. controls (Data not shown). Relative expres-
sion of CCD8 was similar in roots of CmF-308 and control plants.
These results suggested that enhanced branching in CmF-308-
transgenic plants is not associated with inhibition of strigolactone
biosynthesis.

DISCUSSION
A previous study established that two melon Aux/IAA transcripts
are capable of long-distance movement from melon rootstock to
pumpkin scion (Omid et al., 2007). The ability of one melon
Aux/IAA transcript, CmF-308, to move long distances was fur-
ther established here in N. benthamiana plants (Figure 2). The
presence of CmF-308 in the shoot apex 48 h after agroinfiltra-
tion indicated that this transcript has the ability to move from
cell to cell and enter the companion cell–sieve element (CC–SE)
complex. It is logical to assume that such trafficking requires a
chaperoning mechanism, probably as a ribonucleoprotein (RNP)
complex. This notion is supported by the fact that phloem sap

FIGURE 9 | Effect of CmF-308 expression in the phloem of tomato

plants on the expression of cytokinin-response genes. The expression
of members of the tomato response regulator (TRR) gene family was
determined by qRT-PCR in leaves (A) and roots (B) of 21-day-old
CmF-308-transgenic (gray columns) and control M-82 (black columns)
plants. Data represent means of four replications ± SE. Different letters
indicate significant differences in relative expression of specific genes
between the two plant lines at p < 0.05 by Student’s t-test.
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contains numerous RNA-binding proteins (Giavalisco et al., 2006;
Lin et al., 2009), and by the demonstrated in vitro interaction
between phloem sap-specific proteins and RNA molecules (Yoo
et al., 2004; Ham et al., 2009). The absence of gfp transcripts
from tissues outside the infiltrated leaf indicates that cell-to-cell
and long-distance movement of mRNA are characteristic of spe-
cific molecules. Higher accumulation of CmF-308 in the veins
and vascular bundles (Figure 1) suggests that this transcript is
indeed destined for long-distance movement. The biological role
for the long-distance trafficking of Aux/IAA transcript has yet to
be explored.

To further explore the significance of CmF-308 expression
in the vascular tissue, the gene was expressed in transgenic
tomato plants under the AtSUC2 promoter. Various mutations
in Arabidopsis Aux/IAA genes result in minor or no pheno-
typic changes, suggesting functional redundancy among Aux/IAA
members (Overvoorde et al., 2005). However, antisense silenc-
ing of SlIAA9 (Wang et al., 2005) or SlIAA3 (Chaabouni
et al., 2009) affected leaf architecture, root and fruit develop-
ment. One should remember that the above-described Aux/IAA
antisense constructs were inserted into tomato plants under
the CaMV-35S promoter. The substantial phenotypic changes
in tomato plants expressing CmF-308 predominantly in the
phloem indicate that developmental processes are affected by
altered auxin response imposed by the CC–SE complex. In
this respect, it is important to note that we made numer-
ous attempts to insert an antisense construct of CmF-308 into
tomato plants under the AtSUC2 promoter. None of these
attempts enabled regeneration of even one transgenic tomato
plant, suggesting that silencing Aux/IAA in the phloem might be
lethal.

Interestingly, overexpression of CmF-308 under a phloem-
specific promoter resulted in significant modification of both
root and shoot development (Figures 5, 6). Root development
was altered in Arabidopsis and tomato plants in which various
Aux/IAA genes were either mutated or silenced. For example,
dominant Arabidopsis mutants of IAA19 (Tatematsu et al., 2004)
or IAA14 (Fukaki et al., 2002) were characterized by few or com-
plete lack of lateral roots, respectively. Similarly, gain of function
mutations in IAA28 and IAA18 also resulted in defected for-
mation of lateral root (Rogg et al., 2001; Uehara et al., 2008).
However, a dominant IAA7 Arabidopsis mutant, had more lat-
eral roots then control plants (Nagpal et al., 2000). These results
indicate that different Aux/IAA gene products have contrasting
effect on root growth and lateral root formation. A compari-
son of CmF-308 coding sequence and its Arabidopsis and tomato
homologs revealed that the closest Arabidopsis homologs are
IAA14 (1e-98) IAA7 (2e-89), IAA16 (4e-80) and IAA17 (6e-78)
while the closest tomato homologs are IAA14 (5e-128) IAA9
(2e-108) IAA16 (7e -108) and IAA7 (3e-100). Due to the high
degree of similarity between the indicated Aux/IAA genes, one
cannot determine which one is the CmF-308 ortholog. It is pos-
sible that functioning of the CmF-308 gene product resembles
the functioning of AtIAA7, namely enhanced formation of lat-
eral roots. In this respect it is important to note that silencing
SlIAA9 in transgenic tomato plants, expressing the antisense con-
struct, enhanced auxin sensitivity and resulted in higher number

of lateral roots (Wang et al., 2005). Interestingly, this phenotype
was associated with upregulation of SlIAA3 expression predom-
inantly in the vasculature (Chaabouni et al., 2009). Expression
of SlIAA3 was upregulated in roots of our CmF-308 plants, rais-
ing the possibility that overexpression of Cm-F308 in the phloem
exerts an effect on lateral root formation via upregulation of
SlIAA3.

Auxin-response assays confirmed that auxin sensitivity
of CmF-308 plants is altered in a tissue-specific manner
(Figure 7): roots of CmF-308 plants were indeed more
sensitive to auxin than control roots, but auxin sensi-
tivity of CmF-308 shoot tissue (cotyledons) was lower
than that of control plants. These findings suggest that
CmF-308 can both repress and activate auxin responses in
tomato plants.

Auxin responses in Arabidopsis plants expressing either gain-
of-function or loss-of-function mutations in IAA3 indicated
that this gene’s product acts as both a positive and nega-
tive regulator of the auxin response (Tian and Reed, 1999).
Those authors suggested that weak transient auxin signaling
induces a low level of IAA3 in the roots which is sufficient
to promote root growth and lateral root formation. However,
stronger auxin signaling induces a higher level of IAA3, inhibit-
ing these responses. This dual function of Aux/IAA is supported
by previous studies demonstrating that the auxin response is
dose-dependent, with stimulation of root growth by low con-
centrations of exogenous auxin and inhibition of root growth
by higher IAA concentrations (Evans et al., 1994). Similarly,
one can suggest that the CmF-308 gene product accumulates
at higher levels in the shoot apex, resulting in reduced auxin
response, inhibition of apical dominance and enhanced devel-
opment of lateral shoots. In contrast, low levels of CmF-308
in the root cause a slight increase in SlIAA3, thereby enhanc-
ing the auxin response and lateral root formation. The find-
ing that light regulates IAA3 expression (Tian et al., 2002)
suggests a lower expression level of this transcript in root
compared to shoot tissues, resulting in a differential auxin
response.

An additional explanation for the effect of CmF-308 on
plant development might relate to the expression of other
genes mediating responses to growth substances. The expres-
sion of three Aux/IAA genes (IAA7, IAA10 and IAA14) was
lower in leaves of CmF-308 vs. control plants, in line with
the lower auxin response in the former. It is important to
note that in parallel to reduced expression of these three
Aux/IAA genes, expression level of TRR8/9b was significantly
higher in CmF-308 leaves (Figure 8). Expression of TRR8/9b
was upregulated by cytokinin (Shani et al., 2010), suggesting
that the effect of the CmF-308 gene product on apical domi-
nance and shoot branching is via modulation of the cytokinin
response. Reduced expression of IAA7 was recently found
in Arabidopsis plants paralleling an increase in the cytokinin
response (Brenner and Schmülling, 2012); this supports the
notion of cross talk between auxin- and cytokinin-signaling
pathways.

The presented results provide support for Aux/IAA func-
tioning in the phloem. The altered developmental program
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of cells distant from the CC–SE complex suggests an involve-
ment of a phloem borne signal mediating auxin response.
Future study should aim to identify potential interact-
ing proteins (molecules) that might be associated with the
short- or long-distance trafficking of the Aux/IAA gene
product.
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APPENDIX

Table A1 | List of primers used for amplification of the examined genes.

Amplified gene Forward primer (5 ′ → 3′) Reverse primer (5 ′ → 3′)

CmF-308-3XHA GGG CCAAG AATGATAG AC CTA CTG AGCAGCGTA ATCTGG

TRR8/9b AGTATGCCGGAAATGACTGG TGGAACATTTTCCGATGACA

TRR16/17 GGTCTAAGGGCGTTGGAGTA TCCTGGCATGCAATAATCTG

CCD7 TGGGAAGGTGGTGATCCTTA TAGCTGAGCAGCAACATCCA

CCD8 CAATCACAGCGGTAACTCTTCCA GCATCCTGATTCTAAAGCATTT

CmF-308 GACTGGAGTTACCGTCGATCT CGGAGTCAGGGCTCTTTTGA

SlIAA14 CCTGAAGTTCATCTGCACCA GTTCACCTTGATGCCGTTCT

SlIAA9 CAAATACGTGAAGGTAGCAGTTGAC ACACCATTTGTAAGGTCCATAAGCT

SlIAA3 GACTTCTCAAAAGCTTGATCGAGAG TGAAATCTTTCATTCCTTGGACAA

SlIAA7 AGCCACCAACTAAGGCTCAA CCATCCATGGAAACCTTCAC

SlIAA8 CAAATACGTGAAGGTAGCAGTTGAC ACACCATTTGTAAGGTCCATAAGCT

SlIAA10 GACTTCTCAAAAGCTTGATCGAGAG TGAAATCTTTCATTCCTTGGACAA

TRR3/4 CGTCCCCTAAAGCATTCTCA CGTCTTGTTGGTGATGTTGG

TRR8/9a TGCTTAGAAGAAGGGGCAGA GGGGGCTTTTACATTTGGTT

SlTubulin GAAAGCCTACCATGAGCAGC CTTTGGCACAACATCACCAC
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