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Plants interact with a variety of other community members that have the potential to
indirectly influence each other through a shared host plant. Arbuscular mycorrhizal fungi
(AMF) are generally considered plant mutualists because of their generally positive effects
on plant nutrient status and growth. AMF may also have important indirect effects on
plants by altering interactions with other community members. By influencing plant traits,
AMF can modify aboveground interactions with both mutualists, such as pollinators,
and antagonists, such as herbivores. Because herbivory and pollination can dramatically
influence plant fitness, comprehensive assessment of plant–AMF interactions should
include these indirect effects. To determine how AMF affect plant–insect interactions, we
grew Cucumis sativus (Cucurbitaceae) under five AMF inoculum treatments and control.
We measured plant growth, floral production, flower size, and foliar nutrient content of
half the plants, and transferred the other half to a field setting to measure pollinator and
herbivore preference of wild insects. Mycorrhizal treatment had no effect on plant biomass
or floral traits but significantly affected leaf nutrients, pollinator behavior, and herbivore
attack. Although total pollinator visitation did not vary with AMF treatment, pollinators
exhibited taxon-specific responses, with honey bees, bumble bees, and Lepidoptera all
responding differently to AMF treatments. Flower number and size were unaffected by
treatments, suggesting that differences in pollinator preference were driven by other floral
traits. Mycorrhizae influenced leaf K and Na, but these differences in leaf nutrients did not
correspond to variation in herbivore attack. Overall, we found that AMF indirectly influence
both antagonistic and mutualistic insects, but impacts depend on the identity of both
the fungal partner and the interacting insect, underscoring the context-dependency of
plant–AMF interactions.
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INTRODUCTION
Plants interact with a variety of organisms both above and below
the soil surface. Belowground interactions between plants and
other organisms influence, and are influenced by, interactions
aboveground (Bardgett and Wardle, 2003; Wardle et al., 2004; van
der Putten et al., 2009). Among the most abundant and widespread
soil microbes are arbuscular mycorrhizal fungi (AMF), members
of the phylum Glomeromycota that form associations with plant
roots and exchange nutrients, such as phosphorus and nitrogen,
for plant-derived carbon (Smith and Read, 2008). These globally
important fungi interact with 60–80% of terrestrial plant species
(Smith and Smith, 2011) and generally confer growth and fitness
benefits (Smith and Read, 2008). The impacts of AMF on host
plants are usually evaluated based on these direct effects alone.
However, the direct effects of AMF on plants may also alter plant
traits that mediate interactions between plants and insects, such as
pollinators or herbivores, with important consequences for plant

fitness (Wolfe et al., 2005; Koricheva et al., 2009; Vannette and
Rasmann, 2012).

Colonization by AMF can affect floral traits such as flower
number (Schenck and Smith, 1982; Lu and Koide, 1994; Gange
et al., 2005) and size (Gange and Smith, 2005; Kiers et al., 2010;
Varga and Kytöviita, 2010), as well as nectar and floral volatile
characteristics (Gange et al., 2005; Kiers et al., 2010; Becklin et al.,
2011). Although the number of studies measuring AMF effects
on pollinator visitation to plants in the field is very limited, they
have demonstrated that AMF can influence pollinator behavior.
Wolfe et al. (2005) and Gange and Smith (2005) both found
increased visitation to plants inoculated with AMF compared
to non-mycorrhizal plants, and the latter study found that this
pattern was consistent among both hymenopteran and dipteran
pollinators. In another experiment, the preferences of these two
taxonomic groups differed depending on the AMF species used
to inoculate the plant (Varga and Kytöviita, 2010). Thus, the
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direction and magnitude of AMF impacts on plant–pollinator
interactions likely depend on both the pollinator and the AMF
species colonizing the plant (Gehring and Bennett, 2009).

Insect herbivory is also frequently influenced by AMF colo-
nization (Koricheva et al., 2009), and these effects may be due to
mycorrhizal effects on plant biomass, nutrient content, or defenses
(Bennett et al., 2006). For example, increased nutrient content of
mycorrhizal plants may increase their quality as a food source
for herbivores, but the resources made available by this inter-
action may also be allocated toward defense against herbivores
(Vannette and Hunter, 2011). Additionally, AMF may also play
an important role in induced resistance of plants against insects
by priming the jasmonic acid-dependent responses of plants to
herbivory (Pozo and Azcón-Aguilar, 2007; Koricheva et al., 2009;
Jung et al., 2012). Regardless of the underlying mechanisms, AMF
can indirectly affect plant fitness through changes in herbivory.

The effects of AMF on pollination or herbivory are likely to dif-
fer among AMF species or strains. For example, both constitutive
and induced levels of defensive chemicals in Plantago lanceolata
varied among plants inoculated with three different AMF species
(Bennett et al., 2009). In a recent study, performance of herbivores
feeding on Fragaria vesca varied when plants were inoculated with
different strains of the AMF Rhizophagus irregularis (Roger et al.,
2013). These results underscore the importance of examining mul-
tiple species in AMF–plant–insect interactions to understand the
variation in indirect mycorrhizal effects (Gehring and Bennett,
2009). There are additional challenges to studying insect responses
to mycorrhizal variation in a realistic field setting. For example,
most field studies of these interactions have manipulated AMF
by applying fungicide to plots and observing insect responses
(Koricheva et al., 2009). Although this is an effective method of
eliminating AMF from experimental plots, there may be unin-
tended effects by altering non-mycorrhizal fungi and other soil
organisms.

In this study we tested the hypothesis that plant–AMF interac-
tions belowground influence aboveground interactions between
plants, herbivores and pollinators. We used an inoculation experi-
ment to manipulate multiple species/strains of AMF in the roots of
Cucumis sativus (cucumber, Cucurbitaceae). We transferred plants
to an agricultural field setting, measured traits that may affect
plant reproduction directly and indirectly, and determined polli-
nator and herbivore preferences. Although we made no specific
predictions about the impacts of each inoculum on plant–insect
interactions, we hypothesized that AMF-free plants would have
reduced pollinator visitation and based on previous similar stud-
ies (Gange and Smith, 2005; Wolfe et al., 2005). Given the role
of AMF in induced defenses of C. sativus (Barber, 2013), we also
expected greater herbivory on these non-mycorrhizal plants.

MATERIALS AND METHODS
STUDY SYSTEM
Cucumis sativus is a widely cultivated, monoecious annual vining
plant that associates with multiple species of AMF. Mycorrhizae
can influence flowering, fruit production, photosynthesis rates,
and disease resistance in C. sativus (Trimble and Knowles, 1995;
Valentine et al., 2001; Hao et al., 2005; Kiers et al., 2010). Flow-
ers of C. sativus open for a single day and are pollinated by

a variety of generalist pollinators, including honey bees (Apis
mellifera, Apidae), bumble bees (Bombus spp., Apidae), solitary
bees (e.g., Halictidae), butterflies, and hoverflies (Syrphidae; Bar-
ber et al., 2012). All of these pollinators are common in western
Massachusetts, USA, where this study took place. Throughout
much of eastern North America, the most important herbivore
of C. sativus is the specialist Acalymma vittatum (Chrysomelidae),
which accounts for virtually all leaf damage at the study site (Bar-
ber et al., 2012). Acalymma vittatum larvae feed on root tissue of
host plants prior to pupation.

EXPERIMENTAL DESIGN
We surface sterilized C. sativus seeds (Marketmore 76, Johnny’s
Selected Seeds, Winslow, ME, USA) using 5% bleach solution
and germinated them in steam-sterilized potting mix (Fafard
organic mix, Agawam, MA, USA). At transplanting, we inoc-
ulated 192 seedlings with one of six AMF treatments. For our
fungal treatments, we chose three closely related fungal species:
Glomus clarum, G. custos (strain 010 Mycovitro), and R. irregularis
[strain 09 Mycovitro, see Stockinger et al. (2009) for discussion of
G. intraradices reclassification] in the Glomeraceae. These three
species were chosen because they have been shown to differ in the
growth benefits (i.e., P and N benefits) they confer to various host
plants (Kiers et al., 2011; Ortas and Akpinar, 2011; Verbruggen
et al., 2012; Hart et al., 2013). The use of closely related AMF
allowed us to focus on fungal cooperative strategy while excluding
differences associated with radically contrasting life-history traits
(Denison and Kiers, 2011). These fungal species were applied in
liquid form (1 mL inoculum applied directly to seedling roots)
from solubilized in vitro root cultures obtained from Estacion
Experimental del Zaidin, Consejo Superior de Investigaciones
Cientificas, Granada, Spain. Fungal species were applied singly,
but we also included a mixed treatment, which was composed of
equal volumes (333 μL) of these three species together. The inocu-
lum of these three species did not contain significantly different
densities of spores (100 μL samples, n = 5 each, mean ± SE, G.
clarum 11.8 ± 3.1; G. custos 10.6 ± 1.6; R. irregularis 8.2 ± 2.4,
F2,12 = 0.55, P = 0.589).

While these strains are well-characterized laboratory strains,
we were also interested in studying the effects of commercial
inoculum that farmers would apply in the field. Therefore, we
included a commercial inoculum also composed of a R. irreg-
ularis strain (isolate DAOM 197198; hereafter we refer to this
inoculum as “commercial” to distinguish it from the R. irregu-
laris strain 09) produced by Myke Premier Tech Biotechnologies
(Rivière-du-Loup, QC, Canada). The commercial inoculum was
on a perlite mixture that was added into the transplant pot (60 mL,
ca. 120 spores). We also included a non-mycorrhizal control,
in which plants received 1 mL water. The result was six AMF
treatments (three single species, one mixture, one commercial
inoculum, and one control). Both liquid and perlite inocula also
contained colonized root fragments and mycorrhizal hyphae as
well as spores. Although perlite from the commercial treatment
represented only about 2.4% of the total volume of soil in the pot,
it could potentially influence plants through changes in soil struc-
ture and increased drainage. However, perlite does not influence
soil cation exchange capacity and has little effect on soil nutrients.

Frontiers in Plant Science | Plant-Microbe Interaction September 2013 | Volume 4 | Article 338 | 2

http://www.frontiersin.org/Plant-Microbe_Interaction/
http://www.frontiersin.org/Plant-Microbe_Interaction/archive


“fpls-04-00338” — 2013/9/3 — 21:22 — page 3 — #3

Barber et al. Arbuscular mycorrhizae and plant–insect interactions

To create a common soil growing medium for all plants, we
mixed soil from an agricultural field at the study site with an equal
volume of sand and autoclaved the mixture to sterilize it; charac-
teristics of this soil mixture are presented in Table 1. We filled 2.5 L
bleach-sterilized pots, lined with bleach-sterilized plastic mesh,
with the sterile soil mixture and transplanted inoculated seedlings
on 1–2 June 2011. We transferred half of the plants to an agri-
cultural field at the UMass Agricultural Research Center (South
Deerfield, MA, USA) on 6 June to determine how AMF treatments
affected leaf nutrient content in a field setting. We arranged plants
in 16 blocks (rows) of six plants each (one plant/treatment/block,
all plants spaced 2.5 m apart). We placed each pot into a black
plastic tray filled with sand to create a barrier between the pot
and AMF in the field soil. We allowed plants to grow under field
conditions for 22 days, after which leaf tissues were collected and
dried for nutrient analysis. We watered plants daily unless there
was rainfall in the past 24 h.

The remaining 96 plants were maintained in a greenhouse
with natural light and locations rotated on greenhouse benches
weekly. On 1 July we transported these plants to the same field
and arranged the blocks in 16 rows. Although it is possible fungal
spores could enter pots of both groups through the air, we expect
these effects to be minimal given the short duration plants were in
the field (22–25 days). Keeping these plants in the greenhouse prior
to transferring them to the field prevented early season herbivory,
which affects interactions with AMF, herbivores, and pollinators
(Barber et al., 2011, 2012). This ensured that responses were due
to AMF treatments and not interactions between AMF and early
season herbivores. All responses other than leaf nutrient content
were measured in this second group of plants.

Table 1 | Characteristics of sterilized soil mixture (mean ± 1 SE, n = 2).

Soil characteristic

pH 7.15 ± 0.15

nitrate 3.0 ± 0.0

% organic matter 0.9 ± 0.1

CEC 3.65 ± 0.55

P 22.5 ± 6.5

K 69.0 ± 0.0

Ca 918 ± 134

Mg 38.5 ± 0.5

Al 19.0 ± 1.0

B 0.1 ± 0.0

Mn 21.8 ± 5.8

Zn 1.2 ± 0.7

Cu 0.9 ± 0.0

Fe 2.0 ± 0.1

S 34.0 ± 10.8

Pb 2.95 ± 0.5

CEC = cation exchange capacity; all measurements (other than pH, % organic
matter, and CEC) are ppm.

PLANT MEASUREMENTS
Dried leaf tissue from the first set of plants was ground and ana-
lyzed by the UMass Soil and Plant Tissue Testing Laboratory to
determine nutrient content (leaf N, P, K, and Na). On the second
set of plants, we counted flowers daily 5 days/week and measured
flower petal length and width on the first two male flowers pro-
duced by each plant. A single plant produced its first flower in the
greenhouse, prior to transportation, but we measured all other
flowers in the field. On 25–26 July, we harvested all plants in the
second set, separating root and shoot tissues. We dried plants at
60◦C and measured root and shoot mass of each plant. We froze
a small sample of roots collected prior to drying from each plant
in four blocks. We stained these frozen root samples with try-
pan blue and quantified AMF colonization using the magnified
gridline intersect method (McGonigle et al., 1990).

POLLINATION
We surveyed pollinator visitation to plants on 14 days from 5 to
22 July for a total of 63.25 person-hours of observation. We per-
formed all surveys between 0930 and 1400, when pollinators were
most active at the site. We followed individual pollinators within
the experimental plot and used handheld digital voice recorders
to record pollinator taxon and plants visited, number of flowers
probed per visit, and time spent per flower in seconds. Individual
pollinators were followed as long as possible or until they left the
plot. We calculated the proportion of flowers probed per visit as
the observed flower probes divided by the total number of open
flowers. We analyzed number of visits and proportion of flowers
probed for all pollinators combined and for the five most common
pollinator taxa independently: honey bees (Apis mellifera), bumble
bees (Bombus spp.), small bees (family Halictidae), Lepidoptera,
and hoverflies (family Syrphidae).

HERBIVORY
We surveyed herbivory on 5 and 12 July. On each plant, we used
clear plastic grids to measure the area consumed on the three
most recent fully expanded leaves. Because total leaf damage was
low during the surveys (three quarters of the plants had <5%
herbivory in the first survey, and nearly all in the second survey),
leaves were categorized as damaged and undamaged and analyzed
using a binomial model (see Analysis).

ANALYSIS
We used generalized linear mixed models (GLMM) to determine if
AMF inoculum affected plant characteristics and interactions with
herbivores and pollinators. We fit random intercepts models using
lmer() in the lme4 package for Poisson and binomial models (Bates
et al., 2012) and lme() in the nlme package for Gaussian models
(Pinheiro et al., 2010) of R 2.15.0 (R Development Core Team,
2012), treating block as a random effect and AMF treatment as a
fixed effect. For count data (flower number, pollinator visits, and
pollinator probes) we used Poisson errors and log link function
and individual-level random effects to account for overdispersion
(Agresti, 2002). We analyzed both herbivore survey dates together
by including date as a fixed factor and plant as a random factor (in
addition to block). Binomial data were presence/absence of dam-
age on each of the three leaves examined on each date. For each
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survey date, there were four possible responses (0, 1, 2, or 3 out of
3 leaves damaged). This is equivalent to a repeated measures anal-
ysis, but in a binomial linear model framework. For continuous
response variables (flower size, aboveground and belowground
plant growth, proportion flowers probed), we used Gaussian errors
and identity link.

The goal of this experiment was to determine whether AMF
inoculum influenced plant traits and plant–insect interactions; we
did not have specific predictions about how individual inocula
might differ compared to each other. We used likelihood ratio
tests to compare models with and without AMF treatment, which
compare likelihood ratios to a χ2 distribution. When this test
was significant at P < 0.05, we compared each single species
inoculum (G. clarum, G. custos, R. irregularis, and commercial)
to the AMF-free control. We also tested one additional a pri-
ori hypothesis contrasting the mixture treatment of G. clarum,
G. custos, and R. irregularis with the three independent treat-
ments of these species combined. This tests if these AMF species
have additive or interactive effects when combined; a signifi-
cant contrast indicates that the species in combination interact
to produce a response different from average responses to single
species colonizations. We used the multcomp package (Hothorn
et al., 2008) to perform contrasts, adjusting P-values for multiple
comparisons using the Westfall method, a resampling procedure
that can be applied to Gaussian, binomial, and Poisson mod-
els (Westfall, 1997), as implemented in the glht() function of
multcomp.

RESULTS
PLANT MEASUREMENTS
Colonization varied significantly among the inoculation treat-
ments (χ2 = 46.51, df = 5, P < 0.001), with the mix inoculum
treatment showing the highest colonization levels. No AMF struc-
tures were observed in control plants (Figure 1). AMF inoculation
treatment did not affect total plant biomass (χ2 = 7.59, df = 5,
P = 0.181) or root:shoot ratio (χ2 = 4.46, df = 5, P = 0.486). There
were also no differences in total flower number (χ2 = 4.40, df = 5,
P = 0.492) or flower petal size (χ2 = 3.34, df = 5, P = 0.634).
AMF treatments did affect leaf nutrient content, with a significant
effect on leaf K and Na and a marginally significant effect on leaf
P (Table 2). Leaf K and Na were significantly increased by com-
mercial AMF compared to control (Table 2, Figure 2); no other
treatments were significantly different from the control.

POLLINATION
We observed 2,498 plant visits by pollinators and 4,254 individ-
ual flower probes. Although AMF treatments did not influence
total pollinator visitation, visitation of several pollinator taxa var-
ied with AMF inoculum (Table 3). There was a significant effect
of AMF treatment on visitation by bumble bees (Figure 3A)
and Lepidoptera (Figure 3B) and a marginally significant effect
on honey bee visitation. Bumble bee visitation was greatest to
plants inoculated with R. irregularis; this difference was marginally
significant after controlling for multiple comparisons. Similarly,
although AMF affected Lepidoptera visits overall, visits to par-
ticular treatments did not differ in any individual contrasts
(Table 3).

FIGURE 1 | Effects of AMF inoculation treatments on percent AMF

colonization. Values are fitted means ± 1 SE.

Arbuscular mycorrhizal fungi treatments also did not affect the
proportion of flowers probed per plant by pollinators in total but
did affect the proportion probed by honey bees and by Lepidoptera
(Table 3). Honey bees probed a significantly lower proportion of
flowers on plants inoculated with each of the single species inoc-
ula compared to AMF-free control plants, and honey bee probes
were no more likely on mixture plants than single species plants
(Figure 3C). Lepidoptera tended to probe a higher proportion of

Table 2 | Results of GLMM analyses of AMF treatment effects on leaf

nutrient content.

χ2/Wald z P

Leaf N 2.49 0.778

Leaf P 9.56 0.089

Leaf K 12.97 0.024

Control vs. G. clarum 1.32 0.313

Control vs. G. custos 1.55 0.283

Control vs. R. irregularis 1.08 0.313

Control vs. commercial 2.92 0.017

Mixture vs. single 2.30 0.076

Leaf Na 19.35 0.002

Control vs. G. clarum 1.16 0.514

Control vs. G. custos 0.79 0.643

Control vs. R. irregularis 0.02 0.986

Control vs. commercial 3.51 0.002

Mixture vs. single 2.08 0.127

Tests of overall effect of AMF treatment are χ2 tests; when significant, contrasts
used Wald z tests with P-values adjusted for multiple comparisons using the
Westfall method (see Analysis).
Notes: d.f. = 5 for χ2 test, d.f. = 1 for all Wald z tests.
Bold indicates results with P < 0.05.
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FIGURE 2 | Effects of AMF inoculation treatments on (A) leaf Na content and (B) leaf K content. Values are fitted means expressed in parts per million ± 1
SE for Na and parts per thousand ± 1 SE for K. Asterisk indicates significant difference from non-mycorrhizal control.

Table 3 | Results of GLMM analyses of AMF treatment effects on total number of pollinator visits per plant and proportion of flowers probed, by

pollinator taxa.

Total pollinator visits Proportion flowers probed

χ2/Wald z P χ2/Wald z P

All pollinators 2.00 0.850 6.57 0.255

Honey bees (Apis mellifera) 9.70 0.084 14.37 0.013

Control vs. G. clarum – – 2.51 0.035

Control vs. G. custos – – 3.31 0.004

Control vs. R. irregularis – – 3.18 0.006

Control vs. commercial – – 1.62 0.201

Mixture vs. single – – 0.22 0.828

Bumble bees (Bombus spp.) 11.20 0.048 1.18 0.947

Control vs. G. clarum 0.53 0.720 – –

Control vs. G. custos 0.94 0.720 – –

Control vs. R. irregularis 2.36 0.075 – –

Control vs. commercial 0.94 0.720 – –

Mixture vs. single 1.01 0.720 – –

Lepidoptera 13.52 0.019 24.17 <0.001

Control vs. G. clarum 1.98 0.144 2.14 0.105

Control vs. G. custos 0.00 1.000 0.13 0.900

Control vs. R. irregularis 0.72 0.701 0.79 0.706

Control vs. commercial 1.15 0.515 0.88 0.706

Mixture vs. single 2.12 0.135 4.01 <0.001

Halictidae 5.79 0.327 9.13 0.104

Syrphidae 2.45 0.784 2.93 0.711

Tests of overall effect of AMF treatment are χ2 tests; when significant, contrasts used Wald z tests with P-values adjusted for multiple comparisons using the Westfall
method (see Analysis). Notes: d.f. = 5 for all χ2 tests, d.f. = 1 for all Wald z tests.
Bold indicates results with P < 0.05.
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FIGURE 3 | Effects of AMF inoculation treatments on (A) bumble bee

visits per plant, (B) Lepidoptera visits per plant, (C) honey bee probes

per flower, and (D) Lepidoptera probes per flower. Values are fitted
means ± 1 SE. Asterisks indicates significant differences based on a priori

contrasts between non-mycorrhizal control and each single species inoculum
(G. clarum, G. custos, R. irregularis, and commercial). Double dagger
indicates significant difference based on a priori contrast between the mixed
inoculum and its component single-species inocula.

flowers on plants inoculated with G. clarum or the three species
mixture, although only the mixture vs. single species contrast was
significant (Figure 3D).

HERBIVORY
Arbuscular mycorrhizal fungi significantly affected herbivore
damage (Table 4, Figure 4), a result that was likely driven by
higher probability of damage to mixed inoculum and commercial
inoculum plants. Date was also significant (χ2 = 96.00, P < 0.001),
because herbivore damage was much more prevalent on the earlier
survey date. However, after adjusting for multiple comparisons, no
AMF treatment contrasts were significant.

DISCUSSION
Species interactions can be very context-dependent, and out-
comes will vary depending on various biotic and abiotic factors.
This is evident in natural systems as well as in agroecosystems
(Tscharntke et al., 2008). In agricultural fields, mycorrhizal and
other symbioses may modify a range of plant traits that alter the

Table 4 | Results of GLMM analyses of AMF treatment effects on

herbivory.

χ2/Wald z P

Herbivory 12.49 0.029

Control vs. G. clarum 0.53 0.820

Control vs. G. custos 1.62 0.247

Control vs. R. irregularis 0.13 0.896

Control vs. commercial 1.95 0.158

Mixture vs. single 2.23 0.107

Notes: d.f. = 5 for χ2 test, d.f. = 1 for all Wald z tests.
Bold indicates results with P < 0.05.

nature or frequency of plant–insect interactions important for
plant reproduction. This can happen via direct effects on plant
growth, nutrition, and other traits. Here, we found that asso-
ciations between plants and AMF influenced aboveground plant
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FIGURE 4 | Effects of AMF inoculation treatments on probability of

herbivore attack. Values are fitted means ± 1 SE, transformed from logits
to probability for ease of interpretation.

interactions with both pollinators and herbivores and that these
effects differed among both AMF and insect species, highlighting
the context-dependent nature of these interactions.

Colonization varied significantly among AMF treatments, with
the highest colonization (fungal structures present in >34% of
root length on average) by the mix treatment containing three
AMF species. This level is greater than the average colonization
by any of the component species alone and greater than the sum
of these single species, suggesting there may be synergistic inter-
actions that benefit the fungi when multiple species are present.
The lowest colonization, other than the AMF-free control, was by
R. irregularis. This was much lower than the commercial inocu-
lum, also a strain of R. irregularis, illustrating the wide variation
in colonization potential possible among even taxa categorized as
conspecific (Stockinger et al., 2009; Roger et al., 2013).

POLLINATION
Inoculation by different AMF species influenced the behavior
of several taxonomic groups of insect pollinators. Honey bees,
bumble bees, and Lepidoptera behavior varied with inoculation
treatment, and the patterns of visitation and flower probing dif-
fered among these groups. Differences in visitation to plants
by bumble bees was driven by apparent greater preference for
plants inoculated with R. irregularis, although this contrast was
marginally significant after adjustment. Similarly, there was a
trend toward greater preference by Lepidoptera for plants inoc-
ulated with G. clarum. While the decision to begin foraging on a
plant (i.e., a plant visit) may be determined by long- and short-
range cues, the proportion of flowers probed may be a better
indicator of pollinator assessment of floral quality (Mitchell and
Waser, 1992). Pollinators are expected to probe a greater num-
ber of flowers on a high-reward plant. Conversely, a visit to a
less-rewarding plant may be terminated before all flowers have
been visited.

We found that the proportion of flowers probed by both honey
bees and Lepidoptera varied with AMF inoculation treatment.
Honey bee flower probing rates were significantly reduced on
plants that had been inoculated with single species of AMF
compared to non-mycorrhizal controls; this is surprising given
that AMF usually increase floral reward and pollinator prefer-
ence (Gange and Smith, 2005; Gange et al., 2005; Aguilar-Chama
and Guevara, 2012). Lepidoptera flower probes were significantly
greater for mixture plants than single species inocula plants com-
bined, suggesting that the three AMF had interactive effects on
floral traits that increased Lepidoptera preference.

Previous studies have found that the effects of AMF on pol-
linator behavior differ among plant species and pollinator taxa.
Gange and Smith (2005) compared pollinator visitation to myc-
orrhizal and non-mycorrhizal individuals of three plant species.
Although AMF generally increased visitation the effect differed
with specific combinations of pollinator taxa and plant species,
with increased Hymenoptera visitation to two species and Diptera
visitation to the other species. Similarly, we show that visitation
or flower probes varied by taxa (bumble bees, honey bees, and
Lepidoptera) and inoculum type. This suggests that AMF species
or strains alter plant traits in different ways, and that these polli-
nator taxa differ in their response to these traits. In a study that
manipulated two AMF species, including R. irregularis, pollina-
tor visitation increased with both AMF, although only a subset of
the pollinator community was examined (Wolfe et al., 2005). Of
the few prior experiments on AMF effects on pollinator behav-
ior, only one (Varga and Kytöviita, 2010) both manipulated AMF
species identity and examined multiple pollinator taxa, as we
did here. Interestingly, they found reduced Syrphidae visitation
to female Geranium sylvaticum (Geraniaceae) when plants were
inoculated with one species of AMF, compared to control and the
other AMF species. They also showed reduced visitation by small
Hymenoptera to plants inoculated with the other species. Syrphi-
dae and small Hymenoptera (here, Halictidae) were also common
visitors in our experiment, but we found no effects of AMF inoc-
ula on visitation or flowers probed. Taken together, these results
indicate that different AMF species likely have distinct effects on
floral traits and that pollinators have taxa-specific responses to
these trait changes.

Pollinators responded to AMF treatments, despite the lack of
treatment effects on the floral traits we measured. Gange and
Smith (2005) attributed increased pollinator visitation on myc-
orrhizal plants to greater inflorescence number or size for two
Asteraceae species. However, our AMF treatments did not affect
flower number or size, which contrasts with many studies that
find increased flower production in plants associating with AMF
(Bryla and Koide, 1990; Perner et al., 2007; Varga and Kytöviita,
2010). In previous work R. irregularis increased male flower pro-
duction and flower diameter in C. sativus, although the effect on
flower size was eliminated by addition of methyl jasmonate (Kiers
et al., 2010). Herbivore attack triggers jasmonic acid responses in
plants (Farmer et al., 2003), so insect herbivory on our plants in
the field may have erased any positive effects of AMF on floral
traits. However, herbivore attack was not significantly correlated
with total flower production or male flower size (data not shown).
Nectar production and composition and floral volatiles can also
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have profound effects on pollinator behavior (Schemske and Brad-
shaw, 1999; Dudareva and Pichersky, 2006; Adler, 2007), but were
not measured in this study. Effects of AMF on nectar quantity
and quality vary among plant species (Gange and Smith, 2005;
Becklin et al., 2011), and AMF use of plant photosynthates may
reduce plant carbohydrate availability for nectar (Laird and Addi-
cott, 2007). Nectar production in C. sativus, like flower size, was
also reduced by methyl jasmonate application (Kiers et al., 2010),
so herbivory may interact with mycorrhizal status to affect nectar.
Floral scent from volatile production affects pollinator attrac-
tion, and experimental elimination of soil fungal communities
altered volatile production in Polemonium viscosum (Becklin et al.,
2011). However, inoculation with commercial AMF or farm AMF
communities had no effect on C. sativus volatiles compared with
non-mycorrhizal controls (Barber et al. unpublished data), sug-
gesting that this trait may not explain the indirect effects of AMF
on pollinators observed here.

HERBIVORY
Mycorrhizal treatment significantly affected the probability of her-
bivore damage to leaves, with probability of attack varying from
0.3 in plants inoculated with G. clarum to nearly 0.6 in plants with
a mixture of AMF species. Control plant herbivory was interme-
diate, so individual treatments did not differ significantly from
control (Figure 4). Inoculation affected leaf nutrient content, but
surprisingly not P or N, the nutrients that are most frequently stud-
ied in plant–AMF research. Rather, commercial AMF inoculum
significantly increased leaf K and Na content relative to non-
mycorrhizal plants, although the increase in K was modest. Recent
work has emphasized the potential importance of less-studied ele-
ments that exist in both organic molecules and ionic forms, but are
essential to herbivores (Behmer and Joern, 2012; Joern et al., 2012).
Sodium can be limiting for insect herbivores because it occurs in
low concentration in plant tissues (Kaspari et al.,2008; Behmer and
Joern, 2012; Chavarria Pizarro et al., 2012), and potassium was also
identified as a predictor of insect herbivore abundance (Joern et al.,
2012). If AMF alter plant concentrations of these elements (in
organic or inorganic forms) that are important to insect nutrition,
it may provide an additional mechanism of indirect mycorrhizal
effects on insect herbivore preference and performance. Future
work could address whether the magnitudes of these differences
in elemental content (20–50 ppm Na, 1–2 ppt K) are sufficient to
influence insect herbivore preference or performance.

Treatment effects on herbivory could also be caused by AMF
influences on plant defenses. Colonization of plant roots by AMF is
thought to induce both local and systemic responses that allow the
plant to respond more rapidly or efficiently to attack by herbivores
or pathogens (Jung et al., 2012). Mycorrhization increased induced
defenses against a generalist herbivore (Spodoptera exigua) in C.
sativus, with herbivores consuming more leaf tissue on induced

mycorrhizal plants without increasing their biomass (Barber,
2013). Given this finding, we would expect reduced herbivory on
inoculated plants compared to control plants in this experiment,
but instead we found lower herbivory on control plants (Figure 4).
This may in part be explained by the dominant wild herbivore in
this agroecosystem, Acalymma vittatum (striped cucumber beetle),
a specialist that responds positively to cucurbitacins, the primary
defensive chemicals in Cucumis and its relatives (Metcalf et al.,
1980). The role of AMF in inducing plant defenses may be more
important for generalist herbivores than specialists. This hypothe-
sis is supported by a meta-analysis of AMF–herbivore experiments
that found more negative effects of mycorrhizae on generalist
chewing herbivores than on specialists (Koricheva et al., 2009).

CONCLUSION
The outcomes of plant–AMF interactions have historically focused
on the direct effects of the fungi on plants, such as plant growth
or nutrient content. However, plant growth and fitness are also
influenced by community members, whose interactions may be
modified by AMF-driven changes in plant traits. Here we show
that colonization by different AMF species has consequences for
pollinator visitation and herbivory in an agroecosystem, but these
effects vary with both AMF and insect identity. For AMF–plant–
pollinator interactions, future work should focus on the multiple
floral traits that can mediate pollination, including how differ-
ent AMF species (or AMF communities from different ecological
contexts) influence floral traits like visual cues, nectar production
and composition, and floral scent. A more detailed understanding
of AMF effects on these flower traits will allow better predictions
of pollinator responses based on the floral signals used by dif-
ferent pollinator taxa. Similarly, understanding AMF effects on
herbivory will require experiments that measure plant nutrients
and chemical defenses in a field setting or controlled, but eco-
logically realistic, laboratory conditions. Our results demonstrate
the potential for above- and belowground communities to inter-
act in complex ways via species-specific responses of insects and
their effects on plant fitness. Thus, even in relatively simple agroe-
cosystems, diversity may provide an important buffer maintaining
critical species interactions.
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