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Nitric oxide (NO) emerged as one of the major signaling molecules operating during plant
development and plant responses to its environment. Beyond the identification of the direct
molecular targets of NO, a series of studies considered its interplay with other actors of
signal transduction and the integration of NO into complex signaling networks. Beside the
close relationships between NO and calcium or phosphatidic acid signaling pathways that
are now well-established, recent reports paved the way for interplays between NO and
sphingolipids (SLs). This mini-review summarizes our current knowledge of the influence
NO and SLs might exert on each other in plant physiology. Based on comparisons with
examples from the animal field, it further indicates that, although SL–NO interplays are
common features in signaling networks of eukaryotic cells, the underlying mechanisms
and molecular targets significantly differ.
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INTRODUCTION

Nitric oxide (NO) is a pleiotropic actor of signaling cascades in
eukaryotes (Baudouin, 2011; Martínez-Ruiz et al., 2011). The last
15 years have provided a plethora of examples for the involvement
of NO essentially at all stages of plant development or in response
to most environmental cues (Baudouin, 2011; Mur et al., 2013).
De facto cardinal questions such as the origin, mode of action,
or integration of NO signal into regulatory networks became of
broad interest for plant biologists (Besson-Bard et al., 2008; Mur
et al., 2013). The complex chemistry of NO enables its reactivity
toward an array of biological molecules including proteins, DNA,
and lipids (Calcerrada et al., 2011). In particular specific protein
targets that undergo NO-based post-translational modifications
(PTM; such as S-nitrosylation and/or nitration, that implicate
cysteine and tyrosine residues, respectively) are crucial to con-
vert NO signal into proper physiological responses (Jacques et al.,
2013; Kovacs and Lindermayr, 2013). This aspect of NO signaling
has been paid much attention in plants in the recent years and led
to the identification of hundreds of proteins undergoing such NO-
based PTM, and, in a few cases, to a further characterization of
the targeted proteins (Kovacs and Lindermayr, 2013). Beyond this
direct modus operandi, increasing evidence shed light on the intri-
cate relationships between NO and other intracellular signals such
as Ca2+, cGMP, phosphatidic acid (PtdOH), or reactive oxygen
species (ROS), that trigger, mediate and/or modulate NO signal in
response to specific stimuli (Gaupels et al., 2011). A recent review
addressed this concern with the example of NO/Ca2+ interactions

and illustrated some molecular mechanisms through which NO
and Ca2+ signaling could regulate each other (Jeandroz et al.,
2013). Although the underlying mechanisms are less documented,
interplays have also been evidenced between NO and the lipid
signal PtdOH (Laxalt et al., 2007; Distéfano et al., 2012).

Recently, sphingolipids (SLs), another class of well-known sig-
naling lipids in mammal cells, were ascribed important signaling
functions in plants (Berkey and Xiao, 2012; Markham et al., 2013).
Numerous examples evidenced crosstalks between SL and NO
during (patho)physiological processes in animals (Perrotta et al.,
2008). Seminal reports suggest that some interactions could also
operate in plants. This mini-review presents our current knowl-
edge of the interactions existing between NO and SL signaling in
plants, and put it in perspective with well-documented examples
from the animal field.

SPHINGOLIPID SYNTHESIS AND SIGNALING IN PLANTS
The generic term SLs designate both membrane-located complex
SL (glycosylceramides, inositol-phosphoceramides, and glycosyl-
inositol-phosphorylceramides in plants) and their metabolic pre-
cursors, i.e., long chain bases (LCB) and ceramides (Cer; Pata
et al., 2010). They therefore constitute a diverse family of hun-
dreds of molecular entities (Cacas et al., 2012). Adding to this
complexity, a subset of LCB and Cer can get phosphorylated by
specific LCB and Cer kinases, respectively. Finally the relative
amount of the different SL species is not steady, but might undergo
fluctuations due to the regulation of SL synthesis, degradation,
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and/or phosphorylation/dephosphorylation leading to an over-
representation of specific SL (Kihara et al., 2007). Therefore, far
away from the early picture of SL being static constitutive entities,
the sphingolipidome now emerges as dynamic, possibly modified
in response to inside and outside signals and thereafter prompting
a range of physiological responses (Markham et al., 2013).

Parallel to the decoding of sphingolipidome, studies con-
ducted during the last decade brought tangible evidences for SL
function in signaling networks operating during plant develop-
ment and responses to environmental cues (Berkey and Xiao,
2012; Markham et al., 2013). Best documented are signaling func-
tions for the precursors of complex SL, i.e., LCB and Cer. For
instance LCB and Cer participate in the induction and/or con-
trol of plant cell death as illustrated by several studies in which
LCB/Cer content was modified by exogenous treatments or the
disruption of key genes of SL metabolism (Liang et al., 2003;
Lachaud et al., 2010; Saucedo-Garcia et al., 2011; Ternes et al.,
2011). The biological relevance of LCB/Cer-triggered cell death
has been assumed for plant–pathogen interactions as (i) transient
increases of LCB content are observed upon pathogen infection
and (ii) pathogen-induced cell death is altered in mutants of SL
metabolism (Brodersen et al., 2002; Liang et al., 2003; Peer et al.,
2010). Noteworthy complex membrane-located SL also participate
in pathogen-triggered cell death (Wang et al., 2008). Further-
more, whereas LCB/Cer promote cell death, phosphorylated LCB
(LCB-P) and Cer (Cer-P) prevent cell death (Liang et al., 2003;
Shi et al., 2007; Alden et al., 2011). As in mammal cells, the tight
control of LCB/LCB-P and Cer/Cer-P equilibrium, and more gen-
erally of SL metabolism, is therefore a crucial aspect of plant cell
homeostasis keeping it alive or bringing it to death. Whereas the
function of Cer/Cer-P has only been investigated in relation with
cell death, the role of LCB/LCB-P likely exceeds this limited con-
text. Indeed, mutants of LCB/LCB-P metabolism present altered
responses to abiotic stresses unrelated to cell viability. For instance
LCB-P have been implicated in a abscisic acid (ABA)-dependent
pathway regulating stomatal aperture and drought stress toler-
ance (Ng et al., 2001; Coursol et al., 2003; Worrall et al., 2008).
LCB-P have also been implicated in cold, salt, and oxidative stress
responses (Dutilleul et al., 2012; Zhang et al., 2012). These studies
have identified several upstream and downstream elements of the
SL signaling cascade including Ca2+, heterotrimeric G proteins,
ROS, and the MAP kinase AtMPK6. Recent data also suggest that
PtdOH signaling can act in a coordinated way with SL (Guo et al.,
2011, 2012). Whether these signals are ubiquitous elements of SL
signaling is currently unknown.

Less documented in plants are the signaling functions
of SL related to their particular location within membrane
microdomains (rafts). Rafts are not only enriched in SL and
sterols, but also present a particular protein composition (Simon-
Plas et al., 2011; Cacas et al., 2012). Indeed, plant membrane rafts
are rich in signaling-related proteins (Morel et al., 2006; Lefeb-
vre et al., 2007). Such signaling proteins might not be permanent
raft residents but rather temporarily recruited following stimulus
perception (Minami et al., 2009; Li et al., 2011). Therefore, rafts
emerged as potent signaling platforms and the dynamic modifi-
cation of membrane structure/composition is probably involved
in signal transduction during plant development and response

to environmental cues. For instance alterations of membrane
integrity via defects in SL composition led to strong developmen-
tal phenotypes due to auxin carrier mislocalization (Roudier et al.,
2010; Markham et al., 2011). Moreover analysis of the SL and raft
abundance and the raft lipid/protein composition during plant
acclimation to cold evidenced a close correlation between SL and
raft dynamics (Minami et al., 2010). Although the mechanisms
underlying the remodeling of rafts is far from being solved, SL
have been demonstrated as key components for raft formation in
animal membranes (Filippov et al., 2006). As proposed by Cacas
et al. (2012), this function of membrane SL is likely conserved in
plants, therefore outlining a possible link between SL-based regula-
tion of raft formation and/or structure and SL-triggered signaling
events.

INTERPLAYS BETWEEN SL AND NO SIGNALING: SOME
LESSONS FROM MAMMAL CELLS
Studies in the animal field initiated in the late 1990s brought to
light interconnections between SL and NO signaling in (patho-)
physiological situations (reviewed in Huwiler and Pfeilschifter,
2003; Igarashi and Michel, 2008; Perrotta and Clementi, 2010).
The models hypothesized from these studies principally implicate
Cer and sphingosine 1-P (S1P), the major LCB signal in animal
cells (Figures 1A,B). First, NO can regulate sphingomyelinases
(SMase) that generate the formation of Cer from sphingomyelin
(SM), a major membrane SL in mammal cells (Figure 1A; Perrotta
et al., 2008). Interestingly NO might regulate SMase activities in
a different way, depending on the intracellular NO level. On the
one hand low physiological concentrations of NO lead to the inhi-
bition of SMases, thereby preventing cell death in a large range
of (patho)physiological models by reducing the intracellular Cer
concentration (Falcone et al., 2004; Perrotta et al., 2007). On the
other hand high levels of NO lead to the increase of Cer concentra-
tion, thereby driving cells to apoptosis (Takeda et al., 1999; Pilane
and LaBelle, 2004). In this last case (Figure 1A), NO promotes
(i) the activation of SMases that generate Cer and (ii) represses Cer
degradation via the inhibition of ceramidase activities (Huwiler
et al., 1999; Franzen et al., 2002). How NO up-regulates SMases
and down-regulates ceramidases under such conditions is cur-
rently unknown. A SMase isoform has been recently identified as
S-nitrosylated in mouse, thus providing a possible mechanism for
SMase regulation by high NO concentration (Kohr et al., 2011).
Under low NO concentrations SMase inhibition is likely indi-
rect and involves a cGMP/PKG-dependent pathway, possibly in
relation with the regulation of SMase intracellular localization
(Falcone et al., 2004; Perrotta and Clementi, 2010).

A second model is illustrated by the regulation of NO forma-
tion by the endothelial NO synthase (eNOS) mediated by S1P
(Figure 1B; Igarashi and Michel, 2008). At least two mechanisms
are at play in this process. Firstly the association of eNOS with
and its inhibition by caveolin, a transmembrane protein located in
the raft-related caveolae microdomains, is reverted by a Ca2+-
dependent mechanism mediated by S1P (Igarashi and Michel,
2008). Secondly S1P via its binding to S1P receptors activates a
signaling cascade involving AMP-activated protein kinase, Rac1
G protein, PI3 kinase, and Akt kinase, ending up at eNOS phos-
phorylation and activation (Levine et al., 2007). Strikingly most
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FIGURE 1 | Examples of interplays between SL and NO signaling in

animal (A,B) and plant cells (C,D). (A) NO regulates Cer formation from
sphingomyelin in a dose-dependent process. Low NO concentrations inhibit
sphingomyelinase activity (SMase) leading to low Cer levels that are further
degraded to sphingosine (Sph) by ceramidases. High NO concentrations
stimulate SMase activities while inhibiting ceramidases, therefore leading to
high Cer levels. This differential control of SMases by NO participates in
Cer-dependent cell survival or death. (B) Cer formation indirectly triggers
endothelial NOS (eNOS) activation and NO formation. Sphingosine-1P
(S1P) is formed from Cer degradation and subsequent phosphorylation of
Sph. S1P is externalized and perceived on the outer cell surface by specific

S1P receptors (S1PR). Activated S1PR trigger eNOS activation via an
increase of cytosolic Ca2+ concentration and/or via the regulation of the
PI3K/Akt signaling pathway. eNOS-evoked NO eventually down-regulates
Cer-activated signaling pathways. (C) Complex SL (fungal cerebrosides), SL
precursors (LCB), or SL analogs (AAL fungal toxin) act as potent inducers of
NO formation. Such NO production might participate in specific aspects of
SL-triggered cell death or defense responses. (D) Plant exposure to cold
triggers the formation of NO that down-regulates the synthesis of
phospho-SL (i.e., Cer-P and LCB-P). In addition, NO participates in the
modification of membrane SL content resulting from low temperature
exposure.

of these proteins are located within caveolae, in close vicinity
with eNOS. Such common location also accounts when con-
sidering the origin of S1P. As exemplified in TNFα-stimulated
HeLa cells, S1P originates from Cer released from SM by a spe-
cific SMase isoform (Barsacchi et al., 2003). Cer are subsequently

deacylated by ceramidases into sphingosine that gets phospho-
rylated to S1P. Noteworthy the SMase isoform involved in this
model is also located in caveolae together with eNOS (Perrotta
and Clementi, 2010). Ultimately eNOS-evoked NO counteracts
the apoptotic effects of Cer by inhibiting Cer signaling pathway.
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These examples point out the intricate network involving NO
and SL in mammal cells. Part of this complexity resides in the
diverse isoforms of SMases and ceramidases that undergo differ-
ent NO-based regulations. Thereby, NO might contribute as an
enhancer or a down-regulator of Cer signaling. These examples
finally underline that the interplay between NO and SL signaling
is not unidirectional, but can also involve bi-directional signaling
according to the cellular response examined.

INTERPLAYS BETWEEN SL AND NO SIGNALING IN PLANTS:
PROMISES FROM DAWN
At first glance, the models depicted above seem not transposable
to plants as most of the molecular actors mentioned are absent
from plant cells (e.g., SM, SMases, S1P receptors, eNOS). Never-
theless, several lines of evidence indicate the existence of similar
interplays between SL and NO signaling in plants. First, studies
have reported the capacity of SL-related molecules to trigger NO
synthesis (Figure 1C). Wang et al. (2007, 2009) evidenced that
treatments with cerebrosides from the fungal pathogen Fusar-
ium sp IFB-121 induce NO formation in Taxus yunnanensis
and Artemisia annua. Cerebrosides are complex membrane SL
widely found in soilborne fungi and are considered as pathogen-
associated molecular patterns (PAMP; Umemura et al., 2004). In
this context, cerebroside-evoked NO triggers the synthesis of sec-
ondary metabolites, i.e., taxol and artemisin (Wang et al., 2007,
2009). In addition to SL-related elicitors, some pathogenic fungi
produce toxins structurally analogous to LCB, such as AAL toxin
from Alternaria alternata f.sp. lycopersici or fumonisin B1 (FB1)
from Fusarium moniliforme. Although the formation of NO in
response to these toxins has not been directly evidenced, AAL-
triggered cell death was blocked by an inhibitor of mammalian
NOS suggesting that NO was required for AAL response (Gechev
et al., 2004). Being LCB analogs, AAL and FB1 toxins block Cer
synthesis and provoke free LCB accumulation (Abbas et al., 1994).
Interestingly, Da Silva et al. (2011) recently showed that exogenous
treatments with LCB triggered NO formation in tobacco cells.
Nevertheless the biological outcome of LCB-stimulated NO pro-
duction remains obscure as NO was not required for LCB-induced
cell death. Although seminal, these studies require further inves-
tigations to establish the biological relevance of SL-triggered NO
formation. For instance, one has to establish if specific SL struc-
tural features are required to trigger NO production, as reported
for H2O2 synthesis (Shi et al., 2007). As plants lack bona fide NOS,
the source of SL-evoked NO should be hunted, together with the
mechanisms underlying its activation by SL. Finally it is notewor-
thy that the data available rely on exogenous treatment of plant
material with SL-related molecules. One has therefore to examine
if and how endogenous modifications of SL homeostasis might
induce NO production.

Conversely to the regulation of NO formation by SL, recent
data indicate that NO regulates specific aspects of SL metabolism
in plants (Figure 1D). In particular it may participate in the
fine-tuning of the equilibrium between LCB/Cer and LCB-P/Cer-
P. This was evidenced for Arabidopsis response to cold where
two phosphorylated SL species (i.e., the LCB phytosphingosine-
phosphate and a putative Cer-P) are rapidly and transiently
formed (Cantrel et al., 2011; Dutilleul et al., 2012). In this context

cold-evoked NO functions as a negative regulator of phospho-SL
formation (Cantrel et al., 2011). How NO regulates phospho-SL
formation during cold-stress response remains unclear. Firstly NO
could impact the activity of kinases or phosphatases metabolizing
LCB-P and Cer-P. For instance sphingosine kinase 1 (SPHK1) is
regulated by NO in human endothelial cells (Schwalm et al., 2010).
So far only S1P lyase, which catalyses the degradation of LCB-P,
has been identified as a target for NO-based PTM and the bio-
logical significance of this modification remains to be established
(Zhan and Desiderio, 2009). The regulation of LCB-metabolizing
enzymes has been poorly studied in plants and further investiga-
tions are therefore required to decipher if NO can directly regulate
these enzymes. Secondly NO might modify the availability of
LCB/Cer kinase substrates. Supporting this possibility, Guillas
et al. (2013) evidenced that an Arabidopsis mutant line over-
expressing a non-symbiotic hemoglobin, and thereby exhibiting
low NO levels, over-accumulates phytosphingosine. The levels of
phytosphingosine were further increased after cold exposure and
might afford for the highest rate of phytosphingosine-P forma-
tion observed in this mutant (Cantrel et al., 2011). Interestingly,
the analysis revealed another facet of the SL response affected in
this mutant. Indeed, whereas the overall amount of LCB was
strongly lowered by cold exposure in WT plants, it was dras-
tically increased in the mutant line (Guillas et al., 2013). These
data therefore suggest that NO might participate in the regulation
of more complex sphingolipidome modifications associated with
cold response.

As for SL-triggered NO formation, the example presented above
questions about the ubiquity of SL–NO interplay in diverse physio-
logical contexts and the underlying mechanisms at work. Although
direct connections have not been established yet, it is likely that
SL–NO crosstalks participate in ABA signaling (Zhang et al., 2009;
Guo and Wang, 2012). In this framework PtdOH metabolism and
signaling could be crucial to interlink SL and NO signaling. Indeed
ABA activates phospholipase Dα1 (PLDα1) to synthesize PtdOH
and thereby triggers NO formation (Zhang et al., 2009; Uraji et al.,
2012). Strikingly PLDα1 is also a target for LCB-P that stimulate
PtdOH synthesis (Guo and Wang, 2012). This apparent simplicity
turns to complexity when considering that (i) PtdOH generated
by PLDα1 interacts with and further stimulates the LCB kinase
SPHK1 (Guo et al., 2012) and (ii) that a ABA-triggered NO pro-
duction is also required for the activation of Phospholipase Dδ

and PtdOH synthesis (Distéfano et al., 2012). In this intricate
signaling network, further investigations should now examine
the consequences of alterations of NO or SL signaling on each
other to clearly establish possible direct NO–SL crosstalks. The
interaction between Arabidopsis and the phytopathogenic bacteria
Pseudomonas syringae is another context where NO–SL interac-
tions are likely. On the one hand studies carried out on this
pathosystem led to the pioneering demonstration of NO as a signal
in plants (Delledonne et al., 1998). On the other hand it provided
the first example of dynamic changes of LCB level triggered by
biotic stress in plants (Peer et al., 2010). Although the interplay of
NO and LCB has not been addressed yet in this system, it opens the
possibility that NO regulates LCB metabolism as suggested above
for cold stress, and/or that LCB trigger NO production as reported
for ROS (Peer et al., 2011). Besides interacting within signaling
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networks or interfering with each other metabolism, NO and SL
might interfere at the level of protein trafficking toward mem-
branes. In the case of auxin bioactivity, defects in either SL
or NO metabolism lead to misaddressing or degradation of the
auxin efflux transporter PIN1 and thereby to altered develop-
ment of root system (Fernández-Marcos et al., 2011; Markham
et al., 2011; Yang et al., 2013). Due to the recent involvement
of NO in vesicle trafficking in roots (Lombardo and Lamattina,
2012), further analysis of its interplay with SL in this con-
text might shed light on unexplored roles for NO in plant cell
biology.

CONCLUSION
Increasing evidence plead for functional interplays between NO
and lipid signaling and indirectly bring to forestage the role of
biological membranes in NO biology. As exemplified in mam-
mals and plants, SL signals generated by the catabolism or as
intermediates of the synthesis of complex membrane SL, con-
stitute new elements of the NO signaling network in a variety of

physiological processes. The rising interest for SL and NO signal-
ing in plants will undoubtedly provide soon new examples of this
interplay. Future investigations should help unravel the mecha-
nisms underlying such NO–SL signaling crosstalks. In particular a
direct regulation of enzymes of the NO and SL pathway by SL and
NO, respectively should be evaluated. As observed in mammals,
this might include modulation of activity but also regulation of
protein targeting. Finally it is likely that NO, which is liposoluble,
does not only interplay with SL signaling within the cytosol, but
also within the biological membranes. As it might deeply affect
the activity and/or targeting of membrane-located proteins and
the overall membrane structure, attention should now be paid to
NO signaling within the lipid phase.
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