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Abiotic stresses such as drought, salinity, and adverse temperatures are major limiting
factors for plant growth and reproduction. Plant responses to these stresses are
coordinated by arrays of regulatory networks including the induction of endogenous
abscisic acid (ABA), a well documented phytohormone for stress responses. However,
whether or how these abiotic stresses affect the endogenous biosynthesis or metabolism
of other phytohormones remains largely unknown. Here, we report the changes of
endogenous indole-3-acetic acid (IAA) and jasmonic acid (JA) levels and expression of
genes related to the biosynthesis or signaling of these hormones in rice under various
abiotic stress conditions. The |IAA content was decreased after drought stress, but it was
significantly increased under cold and heat stresses. And the auxin-regulated gravitropism
of root tip was inhibited by cold stress. Many genes involved in the IAA biosynthesis
and signaling were changed in transcript level under these stresses, and the changes
were essentially in agreement with the change of endogenous IAA level. Interestingly,
the endogenous JA content was increased markedly under drought and cold stresses, but
it was reduced by heat stress. Accordingly, many genes involved in JA biosynthesis and
signaling were induced by drought and cold treatment but these genes were significantly
suppressed by heat stress. We concluded that endogenous levels of IAA and JA were
differentially regulated by abiotic stresses in rice, implying diverse roles of these hormones

in stress responses.
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INTRODUCTION

Plant responses to abiotic stresses are coordinated by arrays of
growth and developmental programs, which involves a variety
of biochemical and physiological mechanisms that allow them
to adapt to adverse conditions throughout the whole life cycle
(Cushman and Bohnert, 2000). In most cases, plants respond
to environmental stresses by changing the levels of endogenous
phytohormones. For example, endogenous ABA level in rice was
dramatically increased (10-50-fold) under drought stress (Du
et al., 2010). ABA is well known for its important roles in facil-
itating the adaptation processes during drought and cold stresses
(Xiong et al., 2002). Other phytohormones such as indole-3-
acetic acid (IAA) and jasmonic acid (JA) have also been suggested
to be involved in responses to abiotic stresses in Arabidopsis
(Wang et al., 2001). However, little is known about the changes
of endogenous levels of the two phytohormones in response to
abiotic stresses in cereal crops.

IAA (or auxin) is a phytohormone well-known for its essen-
tial roles in plant morphogenesis, including tropistic growth, root
patterning, vascular tissue differentiation, auxiliary bud forma-
tion, and flower organ development (Zhao, 2010). Cold stress and
auxin contents are potentially linked since cold stress inhibits the
root gravity response in Arabidopsis (Fukaki et al., 1996; Wyatt
et al., 2002). Recent report suggested that the local auxin con-
centration and auxin distribution may be regulated by changes
in auxin transport in plants under cold stress (Shibasaki et al.,

2009). It was also reported that osmotic stress caused by increased
salinity or drought had an impact on polar auxin transport (Wang
et al., 2009b). In Arabidopsis, activation of the YUCCAG6 (YUCS6)
gene, encoding a flavin monooxygenase and functioning in the
tryptophan-dependent auxin biosynthetic pathway, resulted in
elevated endogenous auxin levels and enhanced drought resis-
tance (Kim et al, 2013). Recent reports imply that the cold-
induced changes in plant growth and development are likely
linked to the intracellular auxin gradient (Shibasaki et al., 2009).
In Arabidopsis, the auxin signaling mutants axrl and tirl, which
showed reduced gravity response, responded to cold treatment
similar to the wild-type, suggesting that cold stress may not affect
auxin signaling (Shibasaki et al., 2009). Additionally, PIN3, an
auxin transporter that has been suggested to mediate the early
phase of the root gravity response, was inhibited by cold stress
(Shibasaki et al., 2009), suggesting that cold stress may affect
auxin transport. In rice, transcript profiling analysis revealed that
many auxin-responsive genes are also responsive to cold stress
(Jain and Khurana, 2009). Furthermore, our study demonstrated
that the OsGH3-2 overexpression rice decreased free IAA content,
and showed increased resistance to cold stress due to the com-
bined effects of IAA and ABA (Du et al., 2012). Most recently, we
found that ABA or carotenoid-deficient mutants had reduced IAA
content and exhibited increased cold resistance (Du et al., 2013).

JA is also an important plant developmental regulator
involved in callus growth, seed germination, primary root
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growth, flowering, fertilization, and senescence (Feussner and
Wasternack, 2002). This hormone is also involved in plant
responses to insect wounding, infection of various pathogens, and
various abiotic stresses (Pauwels et al., 2009). Pathogen attack
stimulated the biosynthesis of endogenous JA, and exogenous
application of JA to plants activated the expression of stress-
related or pathogenesis-related (PR) genes (Moons et al., 1997;
Mei et al., 2006). Compared to the massive studies on the role of
JA in the response to biotic stresses, relatively less has been known
about its role under abiotic stresses. Previous studies showed that
both drought and high salinity caused increased JA levels in the
leaves and roots of rice (Moons et al., 1997; Kiribuchi et al.,
2005). Transgenic rice overexpressing Arabidopsis JA carboxyl
methyltransferase gene (AtJ/MT) showed increased level of methyl
jasmonate (MeJA) in young panicles and inhibition of spikelet
development under drought condition, indicating that plants can
produce MeJA during drought stress, which in turn may stimu-
late the production of ABA, together leading to a loss of grain
yield (Kim et al., 2009). Recently, transgenic rice overexpressing
OsbHLH148, a member of bHLH family gene in rice, showed
increased tolerance to drought stress, and OsbHLH148 was pro-
posed to act in the upstream signaling pathway of JA by forming
an OsbHLH148-OsJAZ1-OsCOI1 signaling module (Seo et al,,
2011), indicating JA signal pathway involved in drought response.

Although the change of JA or IAA under certain abiotic stress
conditions had been documented, the changes of the two hor-
mones have not been compared in the same background under
the same conditions. Here, we compared the changes of the two
hormones in rice under abiotic stresses. In addition, we also
examined the expression levels of all known or predicted genes
functioning in biosynthesis and signaling pathway of IAA and JA
in rice under the stress treatments. The results from this study will
help us understanding the different roles of the two hormones
under abiotic stresses.

RESULTS

ABIOTIC STRESSES MODULATE IAA AND JA HOMEOSTASIS IN RICE
To investigate the influence of abiotic stresses on IAA and JA,
we examined the level of the two hormones in rice under dif-
ferent abiotic stresses. After slight drought stress (day 1 when
some leaves slightly rolled), the IAA level had no significant
change; after moderate drought stress (day 2 when some leaves
completely rolled), TAA level was reduced to about 81% of the
control; and after severe drought stress (day 3 when all leaves
became rolled), the IAA level was reduced to 72% of the control
(Figure 1). However, after cold stress for one day, the IAA level
was increased to 1.2-fold of the control, and it was increased to
1.6-fold on the third day after cold stress (Figure 1). After heat
stress for 1 h, the IAA level was slightly increased (1.1-fold), and it
was increased to about 1.3-fold after 6 h of heat stress (Figure 1).
Interestingly, the IAA level was reduced to the normal level after
heat stress for 12h (Figure1). The JA content was also mea-
sured in the same leaf samples from stress-treated rice plants. JA
level was significantly increased, reaching to 1.5-fold compared
to the control after severe drought stress (Figure 1). After cold
stress, JA level was induced markedly to about 2-fold compared
to the control (Figure 1). Under heat stress for 1 h, no significant
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FIGURE 1 | Quantification of IAA and JA contents in rice. (A)
Quantification of IAA content in the leaves of rice seedling under normal
and stress conditions. (B) Quantification of JA content in the leaves of rice
seedling under normal and stress conditions. DR, drought; CD, cold; HS,
heat stress; d, day; h, hour. * and ** indicate significance (t-test) at P < 0.05
and P < 0.01 level, respectively. Values are means + SD (n = 3).

difference of JA level was detected. However, after heat stress for
6 or 12 h, the JA level was reduced to about 85% of the control.
The results indicated that abiotic stresses, such as drought, cold
and heat, differentially modulate the endogenous levels of IAA
and JA.

EXPRESSION PROFILING ANALYSIS OF IAA BIOSYNTHESIS OR
METABOLISM-RELATED GENES UNDER ABIOTIC STRESS

Since abiotic stresses affected endogenous level of IAA, we exam-
ined the transcript levels of the auxin metabolism related genes in
several rice varieties (see Materials and Methods) after drought,
cold, or heat treatments at seedling stage by Affymetrix microar-
ray and quantitative PCR (qPCR) techniques. After statistical
analysis of the microarray data, we found that many auxin
biosynthesis-related genes including anthranilate synthase (AS)
gene encoding a key enzyme in the synthesis of tryptophan
(Trp), IAA, and indole alkaloids. In rice, OsASA1/OsASA2 and
OsASB1/0OsASB2 encode AS alpha and beta subunit, respectively
(Tozawa et al., 2001). These genes were significantly suppressed
under drought stress (Figure 2A). OsOASBI1 and OsOASB2 were
slightly induced by cold stress, but OsOASAI and OsOASA2
were up-regulated by heat stress (Figure 2A). It is known that
IPA can be further converted by YUCCA (flavin monooxyge-
nase) to produce IAA. Of the seven YUCCA family genes in
rice, six genes (except for OsYUCCA4) were down-regulated
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FIGURE 2 | Expression levels of IAA metabolism-related genes. (A)
Microarray and quantitative PCR analyses of auxin biosynthesis-related
genes under normal or abiotic stress conditions. (B) Microarray and
quantitative PCR analyses of auxin metabolism-related genes under
normal or abiotic stress conditions. Two japonica rice Zhonghua 11
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(ZH11) and Xiushui 11 (XS11), and four indica rice Zhenshan (ZS97),
Minghui 63 (MH63), 9311, and IR64 were used for DNA chips
(Note: varieties were referenced for different stress). ZH11 was used
for quantitative PCR analysis. CK, control; DR, drought; CD, cold;
HS, heat stress.

under drought stress (Figure 2A). However, the transcript levels
of OsYUCCA2, OsYUCCA3, OsYUCCA®6, and OsYUCCA7 were
strongly induced up to 10-fold by the cold stress (Figure 2A).
Under the heat stress, OsYUCCA3, OsYUCCAG6, and OsYUCCA7
were quickly induced (about 5-fold) (Figure2A). The mainte-
nance of IAA homeostasis is also contributed by the conversion
of active TAA to an inactive form via conjugation of TAA with
amino acids (such as Asp, Ala, and Phe), and this conversion is
catalyzed by IAA-amido synthetases belonging to the GH3 family
(Staswick et al., 2005). Of the 13 GH3 members in rice genome,
OsGH3-1, OsGH3-2, OsGH3-8, OsGH3-12, and OsGH3-13 were
markedly induced by the drought stress (Figure 2B). However,
under cold stress, OsGH3-1, OsGH3-2, OsGH3-5, OsGH3-6,
and OsGH3-11 were down-regulated (Figure 2B). Furthermore,
OsGH3-1, OsGH3-2, OsGH3-5, OsGH3-6, OsGH3-7, OsGH3-9,
OsGH3-11, and OsGH3-13 were reduced significantly by heat
stress (Figure 2B). These results suggested that the IAA biosyn-
thesis genes were mainly up-regulated by cold and heat stresses,
but suppressed by drought stress. In addition, the expression
changes of IAA catabolism-related genes such as GH3 fam-
ily were contrary to the changes of IAA biosynthesis genes

under the abiotic stresses. These results further supported the
different changes of IAA level under different stresses. In gen-
eral, the change patterns of these genes were consistent among
the different rice varieties compared, but some genes, such as
OASA1 and YUCCA4 under drought condition, and OASB2,
YUCCA1I, and YUCCA5 under cold condition, showed slight dif-
ference among the rice varieties, indicating a natural variation
in the modulation of endogenous IAA levels at gene expression
level.

EXPRESSION LEVELS OF IAA SIGNALING AND POLAR TRANSPORT
RELATED GENES UNDER ABIOTIC STRESSES

In general, IAA homeostasis is also related to IAA polar trans-
port and signaling pathway. Therefore, we further examined
the reported IAA signaling and polar transport-related genes.
Aux/TAA proteins and auxin response factors (ARFs) have been
well recognized for their roles in auxin signaling. Aux/IAA
proteins are short-lived transcriptional regulators that mediate
auxin responses through interaction with ARFs (Reed, 2001).
Among the 31 OsIAA and 25 OsARF genes, most were sup-
pressed by drought, cold, and/or heat stresses, while some of the
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OsIAA genes (OsIAA6, OsIAAY, OsIAA18, OsIAA19, OsIAA20,
and OsIAA28) and OsARF genes (OsARF4, OsARF11, OsARF13,
OsARF14, OsARF16, OsARF18, and OsARF19) were induced by
at least one of the stresses (Figure 3). It has been reported that
the ubiquitin-ligase complex (Skp1-CULI-F-box[SCF])TR! acts
as an auxin receptor in auxin signaling (Tan et al., 2007). In rice,
OsAFB2, OsTIRI, and OsCULI are putative orthologs in the com-
plex of auxin signal reception (Xia et al., 2012). The transcript
level of OsAFB2 was reduced under cold stress, but the transcript
level of OsTIRI was increased under drought and heat stresses,
and it was decreased under cold stress (Figure 3). Nevertheless,
the expression of OsCULI had no obvious change under these
stresses (Figure 3). Crll (Crown rootlessl) was characterized as a

positive regulator for crown and lateral root formation and its
expression was directly regulated by an ARF in auxin signaling
pathway (Inukai et al., 2005). There are four Cri/I homologs in
rice genome, and their expressions were suppressed by drought,
heat, or cold stresses (Figure 3). Small auxin-up RNAs (SAURs)
are early auxin-responsive genes existing in plants as a large gene
family (Franco et al., 1990), and they act as negative regula-
tors of auxin synthesis and transport in rice (Kant et al., 2009).
Nine OsSAUR genes (OsSAUR3, OsSAURS, OsSAUR7, OsSAURSY,
OsSAURI12, OsSAUR21, OsSAUR31, OsSAURS55, and OsSAUR57)
were significantly decreased under cold stress, but OsSAUR39
and OsSAUR49 were induced by cold stress (Figure3). LAXI,
encoding a bHLH transcription factor in rice and functioning
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FIGURE 3 | Expression levels of IAA signaling-related genes. The rice variety names are the same as indicated in Figure 2. CK, control; DR, drought; CD,
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in the initiation of auxiliary meristem formation by altering
auxin response or transport (Oikawa and Kyozuka, 2009), was
induced by all three treatments (Figure3). However, LAZYI,
a novel grass-specific gene that controls rice shoot gravit-
ropism through negatively regulating polar auxin transport (Li
et al., 2007), was suppressed by the treatments (Figure3).
PIN-FORMED (PIN) proteins are secondary transporters act-
ing in the efflux of auxin from cells (Blakeslee et al., 2005).
There are 12 OsPINs in rice genome (Wang et al, 2009a)
but only 10 OsPINs were detected in the microarray. OsPIN2
and OsPIN5b were induced by drought, heat, and cold stresses
while the others were significantly suppressed by the stresses
(Figure 3). PINOID (PID), a serine threonine protein kinase
in Arabidopsis, was reported for its role in auxin distribu-
tion through a positive control of subcellular localization of
PINs (Robert and Offringa, 2008). Among the PID-like genes
detected in the microarray analysis, OsPID1 and OsPIDLI were
suppressed by drought, heat, and/or cold stresses (Figure 3).
These results together suggested that abiotic stresses also affected
the expressions of IAA signaling and polar transport-related
genes.

EXPRESSION LEVELS OF JA METABOLISM ABD SIGNALING-RELATED
GENES UNDER ABIOTIC STRESS

In rice genome, the reported genes participated in the biosynthe-
sis of JA include OsDADI, OsLOX2, OsAOC, OsAOSI1, OsAOS2,
OsOPR1, and OsOPR7. These genes were induced by drought and
cold stresses, but down-regulated by heat stress (Figure 4). JA can
be conjugated with isoleucine by JARs that belong to GH3 fam-
ily encoding IAA-amino synthetases. Reported examples of these
genes in rice including OsJAR1/OsGH3-5, OsJAR2/OsGH3-3, and

the expression of OsGH3-5 was decreased significantly under
drought, heat, and cold stresses, however, expression of OsGH3-
3 was not significantly changed under these stresses (Figure 4).
Pervious study showed that the SCFC©!! E3 ubiquitin ligase com-
plex acted as JA receptor (Yan et al, 2009). There are three
COI1 homologs (OsCOIla, OsCOIlb, and OsCOI2) in rice.
OsCOlla was reported to form an SCF complex and to regulate
the expression of OsbHLH148 upon coronatine treatment (Seo
etal., 2011). According to the microarray data, both OsbHLHI48
and OsCOlla were up-regulated significantly after drought and
cold stresses, but they were decreased markedly under heat
stress (Figure4). OsCOI1b was suppressed by drought; how-
ever, OsJAZ1 was induced by drought and cold stresses according
to the microarray and qPCR results (Figure4). JAZ proteins
are also involved in JA signaling. There are 12 OsJAZ mem-
bers in rice genome. Most of the OsJAZ genes were strongly
induced by drought stress but were suppressed by heat stress
(Figure 4). These results together suggest that JA metabolism
and signaling pathways are significantly regulated by the abiotic
stresses.

EFFECT OF COLD STRESS ON RICE ROOT GRAVITY RESPONSE

IAA level was increased under cold stress, which prompted us
to investigate if the IAA-related gravity response of rice had
any change under cold condition. Rice seedlings were planted
in MS medium for 3 days and then were vertically oriented
for growth at 4°C and 25°C, respectively. To further elucidate
the effect of cold stress on gravity response of rice root, 5 M
TIBA (2,3,5-triiodobenzoic acid), an auxin transport inhibitor,
was added to MS medium, and the root bending was mea-
sured at the second day after treatment. The result showed
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signal related genes in rice ZH11 under normal or abiotic stress conditions.
CK, control; DR, drought; CD, cold; HS, heat stress.
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that, under the normal conditions, the oriented angle was about
78°. However, the TIBA treatment almost completely inhib-
ited the gravitropism of rice root, with the root tip orientation
angle about 0° (Figure 5). Under the cold stress without TIBA
treatment, the orientation angle was about 45°, suggesting that
cold stress significantly inhibited the gravitropism of root tips.
Upon treatments of 5 M TIBA and cold stress, the orientation
angle was about 8°, significantly different to the root orien-
tation under the normal conditions (Figure5). These results
indicated that gravity response of root tips was inhibited by
cold stress, which may due to the reduced IAA level under cold
stress.

DISCUSSION

THE BIOSYNTHESIS OF IAA WAS INVOVED IN ABIOTIC STRESS

IAA plays important roles in plant development and also in
responses to abiotic stresses. IAA biosynthesis has been inten-
sively studied in Arabidopsis. Several groups found a two-step
conversion of Trp to TAA. In this conversion, Trp is first con-
verted to IPA by amino transferases belonging to TAA family, and
IAA is produced from IPA by the YUCCAs (Mashiguchi et al.,
2011; Won et al,, 2011). YUCCAs are flavin monooxygenases
catalyzing the NADPH-dependent hydroxylation of IPA, which

0uM TIBA
25C

5uM TIBA OuM TIBA 5uM TIBA

4C

100
807
60-
40

*%

20- e

6 -

|

20, Il

| OuM TIBA 5uM TIBA OuM TIBA 5uM TIBA
25C 4C

Root tip orientation (degree)

FIGURE 5 | Performance of the orientation of rice root tip under gravity.
(A) Morphological phenotypes of the orientation of root tip by gravity under
normal or cold (4°C) conditions with or without 5 M TIBA. (B) Statistical
analysis the angle of horizontal orientation of root tip. ** indicates
significance (t-test) at P < 0.01 level. Values are means + SD (n = 3).

is a rate-limiting step in tryptophan-dependent IAA biosynthe-
sis (Zhao et al., 2001; Zhao, 2012). The maintenance of TAA
is also contributed by the conversion of active IAA to inac-
tive form via conjugation of IAA with amino acids (such as
Asp, Ala, and Phe) by IAA-amido synthetases belonging to the
GH3 family. The GH3 proteins are conserved in monocots and
dicots, and there are 13 members in rice (Staswick et al., 2005;
Jain et al., 2006). Plants subjected to oxidative stress exhib-
ited various phenotypic changes that are related to alterations
in auxin level and distribution (Pasternak et al., 2005). In our
recent reports, transgenic rice overexpressing OsGH3-2 showed
decreased free IAA content and different alterations in drought
and cold tolerance (Du et al., 2012); and the carotenoid-deficient
rice mutants with decreased IAA level showed increased resis-
tance to cold stress (Du et al., 2013). These reported results
suggest that the homeostasis of auxin level is closely related to
cold and drought tolerance. In this study, a few AS family genes
were altered under drought, cold, and heat stresses, and many
YUCCA genes were suppressed by drought stress, but some of
YUCCA genes were strongly induced by cold and heat stresses
(Figure 2), indicating that auxin biosynthesis may be activated
by cold or heat stress, but suppressed by drought stress. IAA-
amino synthesizes of GH3 family were reported for their negative
roles in controlling endogenous IAA level in plants more than
two decades ago (Franco et al., 1990). OsGH3-13-overexpression
rice showed enhanced drought tolerance and reduced free IAA
level (Zhang et al., 2009), also demonstrating the importance of
auxin in stress tolerance. Among the OsGH3 family, five mem-
bers (OsGH3-1, OsGH3-2, OsGH3-8, OsGH3-12, and OsGH3-13)
were markedly induced by drought stress. However, five members
(OsGH3-1, OsGH3-2, OsGH3-5, OsGH3-6, and OsGH3-11) were
down-regulated by cold stress (Figure 2B). Many OsGH3 genes
(OsGH3-2, OsGH3-5, OsGH3-6, OsGH3-7, OsGH3-9, OsGH3-11,
and OsGH3-13) were down-regulated by heat stress (Figure 2B).
These expression data are generally in agreement with the differ-
ent changes of endogenous IAA level under drought, cold, and
heat stresses (Figure 1A). Our results suggest that IAA has distinct
roles in the responses of rice to different stresses. Through the
regulation of endogenous auxin biosynthesis, plants may estab-
lish a new accommodative status for adaptation to the adverse
environmental cues.

IAA SIGNALING AND POLAR TRANSPORT MAY BE AFFECTED BY
ABIOTIC STRESS

Although a line of reports provide some clues on the involve-
ment of auxin signaling in stress responses (Hannah et al,
2005; Song et al, 2009), the exact mechanism of auxin-
mediated stress responses remains to be elucidated. Recently,
ABI5-Likel (ABL1), a rice homolog of the ABA signaling com-
ponent ABI5, was proposed for its possible role in modulat-
ing auxin responses by directly regulating the expression of
ABRE-containing genes related to auxin metabolism or sig-
naling (Yang et al, 2011). Many auxin-signaling genes are
responsive to stress responses. In a previous study, the expres-
sion profiles of all rice Aux/IAA genes in different tissues and
under abiotic stresses were examined by qPCR analysis, and
some members showed specific expression while some genes
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had overlapping expression patterns (Jain and Khurana, 2009;
Song et al., 2009). In this study, we found most OsIAA and
OsARF genes were differentially responsive to drought, heat
and cold stresses (Figure 3), indicating an interaction between
plant growth and abiotic stress. OsAFB2, OsTIRI, and OsCULI
described as putative auxin receptor associated genes (Xia et al.,
2012), and these genes were differentially regulated by drought,
cold, and heat stresses (Figure 3), suggesting that the upstream
of auxin signaling process may be also influenced by these
stresses. The different responses of from the OsSAUR fam-
ily genes under the stress treatments (Figure 3) also supported
that auxin-signaling may be differentially regulated by abiotic
stresses.

Abiotic stresses may also affect polar auxin transport, which
is supported by a few studies reporting the altered expression of
PIN genes (Blakeslee et al., 2005) and inhibition of polar auxin
transport by phenolic compounds accumulated in response to
stress exposure (Potters et al.,, 2009). In this study, two OsPIN
genes (OsPIN2 and OsPIN5b) were induced by drought, heat
and cold stresses, however, the other members in rice were sup-
pressed significantly by abiotic stress (Figure3). PID proteins
control auxin distribution through a positive control of subcellu-
lar localization of PIN (Robert and Offringa, 2008). Two PID-like
gene in rice were suppressed by drought, heat, and cold stresses
(Figure 3), indicating that auxin distribution may be also affected
by abiotic stresses. In addition, the experiment of Arabidopsis
root growth and gravity in response to stress suggested that cold
affected the auxin response and the gravity response was regu-
lated partially by the diffidence in auxin distribution and basipetal
movement (Rashotte et al., 2000). Our result also showed that
cold stress inhibited the gravitropism response of rice root tips
(Figure 4).

ABIOTIC STRESS AFFECTS JA BIOSYNTHESIS AND SIGNALING
PATHWAY

The phytohormone jasmonate and its metabolites regulate plant
growth and development processes and responses to environ-
mental stimuli (Turner et al., 2002; Pauwels et al., 2009).
Jasmonates, as well as octadecanoids, which comprise cis-(4)-
12-oxophytodienoic acid (OPDA) and its metabolites, origi-
nate from a-linolenic acid (a-LeA) of chloroplast membranes.
Upon oxygenation by 13-LIPOXYGENASE (13-LOX), an unsta-
ble allene oxide is formed by a 13-ALLENE OXIDE SYNTHASE
(13-A0OS) and subsequently cyclized by an ALLENE OXIDE
CYCLASE (AOC) to cis-(+)-OPDA (Feussner and Wasternack,
2002; Wasternack, 2007; Zerbe et al., 2007). The levels of endoge-
nous jasmonates were reported to be increased upon pathogen
infection (Thomma et al., 1998). However, little is known about
JA in response to abiotic stresses. Previous studies showed that
jasmonate levels were increased upon exposure to drought and
salt stresses (Creelman and Mullet, 1995; Wang et al., 2001). In
rice, both drought and high salinity stresses resulted in increase
of jasmonate levels in the leaves and roots and induction of JA
biosynthesis genes (Moons et al., 1997; Tani et al., 2008). In
this work, we found that the orthologs of JA biosynthesis genes
in rice, including OsDADI, OsLOX2, OsAOC, OsAOS1, OsAOS2,
OsOPR1, and OsOPR7 were remarkably up-regulated by drought

stress (Figure4), and this result agreed with the increased JA
level upon drought. In addition, some genes with putative func-
tions in JA signaling, such as OsJARI, OsbHLH148, and OsCOl1a,
were also differentially regulated by drought, cold stress, and
heat stresses (Figure 4). Previous study showed that overexpres-
sion of OsJAZ6 in rice resulted in improved tolerance to salt
and mannitol stresses (Ye et al., 2009), indicating that JA signal-
ing is also involved in abiotic stress responses in rice. Another
recent study suggested that salt stress response may be modu-
lated by a jasmonate signaling (Ismail et al., 2012). These results
together suggest that JA biosynthesis and signaling differentially
regulate the responses and adaptation of plants to diverse abiotic
stresses.

Drought, cold, and heat stresses often cause different changes
at physiological and molecular levels in plants (Yamaguchi-
Shinozaki and Shinozaki, 2006). Our finding suggests that the
biosynthesis and signaling of JA and IAA are differentially reg-
ulated by different abiotic stresses. We propose that the bal-
ance of JA and IAA homeostasis and signaling are critical for
plant development and stress responses (a schematic model
is shown in Figure 6). Further, investigation of the molecular
mechanisms in modulating the balance of endogenous hor-
mones will help elucidate the basic development programs and
adaptive capacity of plants by integrating the signaling path-
ways of endogenous hormones and exogenous environmental
stimuli.

MATERIALS AND METHODS

PLANT MATERIALS AND GROWTH CONDITION

The materials used for DNA microarray analysis included japon-
ica rice Zhonghua 11 (Oryza sativa subsp. japonica) and Xiushui
11 (XS11) and indica rice Zhenshan 97, (Z2S97), Minghui 63
(MH63), 9311, and IR64. ZH11 was used for qPCR, physiolog-
ical and phenotypic analysis. To examine the transcript levels
of genes under various stresses, Seeds of ZH11 plants were ger-
minated on Murashige and Skoog (MS) medium in a growth
chamber with 14 h light/10 h dark cycle for 4 days, and then the
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FIGURE 6 | A model for the effect of JA and IAA changes under abiotic
stresses.
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seedlings were transplanted into pots, for cold stress rice at the
five-leaf stage were transferred to a growth chamber at 4°C and
sampled at 0, 6, and 12h after the treatment, and at 42°C for
heat stress and sampled at 0 min, 30 min, 3h and 12 h after the
treatment. For drought stress, watering was stopped and leaves
were sampled at the following time points: control, no stress; day
1 (when seedlings showed slight leaf rolling); day 2 (the second
day after time point day 1); day 3 (the third day after time point
day 1).

ROOT BENDING ASSAY

The seeds were sterilized with HgCI2 (0.15%) and germinated and
grown in transparent plastic boxes with 1/2 MS medium (0.6%
agar) in a growth chamber at 25°C or 4°C with a 14 h light/10h
dark cycle. After the seminal root reached a length of 2-3 cm,
boxes were laid down, allowing plants to be turned at an angle
of 90° to the horizontal plane, and grown for 1-2 days before
measurement.

MICROARRAY ANALYSIS

An Affymetrix DNA chip containing all putative genes of the
rice genome was used for investigating expression profile changes.
RNA extracted from leaves of rice under normal and abiotic stress
conditions were used for microarray analysis. Chip hybridiza-
tion and data processing were carried out with Affymetrix cus-
tom service (CapitoBio, China) following the standard proto-
col. The microarray dataset of this research in supplemental
Table S1.

RNA EXTRACTION AND qPCR

Rice RNA was isolated using Trizol reagent (Invitrogen, USA),
for real time PCR, 5 g total RNA was digested using DNase I
and reverse-transcribed using RNase-free Superscript III reverse
transcriptase (Invitrogen, USA) according to the manufacturer’s
instructions. The qPCR was done using SYBR Premix Ex Taq
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