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Cellzilla is a two-dimensional tissue simulation platform for plant modeling utilizing
Cellerator arrows. Cellerator describes biochemical interactions with a simplified
arrow-based notation; all interactions are input as reactions and are automatically
translated to the appropriate differential equations using a computer algebra system. Cells
are represented by a polygonal mesh of well-mixed compartments. Cell constituents can
interact intercellularly via Cellerator reactions utilizing diffusion, transport, and action at a
distance, as well as amongst themselves within a cell. The mesh data structure consists
of vertices, edges (vertex pairs), and cells (and optional intercellular wall compartments) as
ordered collections of edges. Simulations may be either static, in which cell constituents
change with time but cell size and shape remain fixed; or dynamic, where cells can also
grow. Growth is controlled by Hookean springs associated with each mesh edge and an
outward pointing pressure force. Spring rest length grows at a rate proportional to the
extension beyond equilibrium. Cell division occurs when a specified constituent (or cell
mass) passes a (random, normally distributed) threshold. The orientation of new cell walls
is determined either by Errera’s rule, or by a potential model that weighs contributions
due to equalizing daughter areas, minimizing wall length, alignment perpendicular to cell
extension, and alignment perpendicular to actual growth direction.
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INTRODUCTION
In recent years, there has been much interest in accurate multi-
scale models of morphogenesis. Due to the various levels of
complexity and the wide variety of tissue, there has necessarily
been a trade-off between generality and specificity; an excellent
review is given by Koumoutsakos et al. (2011). Of the most inter-
est to plant biologists, perhaps, are platforms that describe the
high-level structure of complete organisms, systems, or organs
such as a meristem or sepal. Very few general purpose tools exist
at all, and even fewer are specific to plants. L-System based tools,
the best known being L-Studio (Karwowski and Prusinkiewicz,
2004), were among the first; they are ideally suited to branch-
ing structures because they are based on formal language theory
(a grammar based on axioms, a short alphabet, strings derived
from that alphabet based on specific production rules that are
tuned to branching). L-system rules have been embedded in
higher level languages such as C [specifically, cpfg, (Prusinkiewicz
and Lindenmayer, 1990)] to allow the encoding of models and
the description of geometrical and topological relationships. The
Virtual Plant’s OpenAlea Platform (Pradal et al., 2008) pro-
vides a general-purpose collection of simulation modules that use
Python as the primary scripting language and allows L-systems to
be incorporated (Boudon et al., 2012).

Outside of plant biology, much of the interest has focused
on grid-based models such as the Cellular Potts Model (CPM)

(Graner and Glazier, 1992), which discretize to the desired sub-
cellular level of detail as collections of entities driven by particle-
particle interactions; and finite element models (FEM) which
instead discretize to a sufficiently fine web-work of straight lines
under the influence of mechanical forces. Because of the molec-
ular level of detail of these methods they are often primarily
stochastic in nature (Gilllespie, 1976). There has been some
effort to provide general purpose platforms; examples include
MCell (Stiles and Bartol, 2001), designed originally to simu-
late the synaptic junction; Smoldyn (Andrews, 2012), primar-
ily emphasizing nano-scale specificity; ChemCell (Plimpton and
Slepoy, 2005), which models protein networks within cells; and
CompuCell3D (Cickovski et al., 2007) which focuses on cellular
function.

Of particular interest is the use of rule-based models, e.g.,
BioNetGen (Faeder et al., 2005, 2009) and NFSIM (Sneddon
et al., 2011). In a rule-based model, molecules are considered
structured objects and their interactions are described by rules
for transforming these objects. Rule based models are inter-
esting because every process that occurs within a biosystem,
such as chemical and physical interactions and growth, devel-
opment, and cell division and death, can be described by rules.
Similarly, Dynamical Grammars (Mjolsness and Yosiphon, 2006;
Yosiphon, 2009; Mjolsness, 2013) define models in terms of oper-
ator algebras of stochastic processes, with simulation algorithms
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derived from the composition and expansion of time-evolution
operators.

At an intermediate level of complexity there are tools that
describe tissue at the multicellular level, treating each cell as a
well-mixed compartment. Cells can be described either as sim-
ple point (or spherical) objects connected by breakable springs
(Jönsson et al., 2004, 2005a,b; Mjolsness, 2006), or at some level
of geometric complexity with springs between polygonal vertices
(Rudge and Haseloff, 2005; Sahlin and Johnsson, 2010), as is
currently done by Cellzilla. The VirtualLeaf (Merks et al., 2011)
provides an interesting hybrid that uses the CPM in combination
with mechanical springs with a Markovian relaxation algorithm
to describe tissue growth. Cellzilla has the distinction among
these software implementations of extending the collection of
Cellerator Arrows to include multicellular interactions (Shapiro
et al., 2003).

MATERIALS AND METHODS
CELLERATOR REACTIONS
Interactions are described in terms of Cellerator arrows (Shapiro
et al., 2003); the basic canonical form is {X → Y, k}. When several
species are interacting the arrow expression is written as

e1X1 + e2X2 + · · · → f1Y1 + f2Y2 + · · · (1)

where the ei and fj are stoichiometries. Each reactant is converted
to a single term in a differential equation according to mass action
kinetics:

dUj

dt
= (fj − ej)kXn1

1 Xe1
1 Xe2

2 · · · (2)

where ej and fj are the stoichiometries of species Uj in the reac-
tion on the left and right hand side of the reaction, respectively,
and k is the rate constant of the reaction. More complex expres-
sions can be built from this canonical form to represent exact
mass action descriptions of multi-species complex enzymatic
reactions, as summarized in Table 1, and numerous regulatory
approximations such as Michaelis-Menten, Hill functions, and
MWC equations, as summarized in Table 2. Furthermore, a large
number of exact enzymatic expansions have been implemented
using the basic canonical form via the KMech toolbox, including
BiBi, BiTer, BiUni, MulS, OrderedBiBi, OrderedBiUni, PingPong,
PingPongTerTerF, PingPongTerTerR, RandomBiBi, TerBi, TerTer,
UniBi, and UniUni reactions (Yang et al., 2005).

Cellzilla is implemented in Mathematica and is invoked using
the standard notebook interface. The details of numerical inte-
gration are normally hidden from the user, e.g., models (such as
(30)–(32)) are submitted to the kernel by the Cellzilla Grow com-
mand and Cellerator run along with a list of simulation control
parameters and initial conditions. These front-end commands
directly invoke Mathematica’s NDSolve. Normally, the default
solver in NDSolve is chosen, unless the user selects otherwise;
any control option for NDSolve may be passed along by Grow
command. For ordinary differential equations, NDSolve switches
between a non-stiff Adams method and a stiff Gear Backward
Differentiation formula. However, users may optionally change
the parameters or choose another solver.

TISSUE DESCRIPTION
Tissues are described by a polygonal lattice, with each lattice cell
representing one biological cell. The Tissue data structure con-
sists of: (1) a vertex list V, where each vertex Vi is an (x, y) pair;
(2) an edge list E, where each edge Ek = (ik, jk) is a pair of integers
giving indices of vertices at the endpoints of the edge; and (3) a
list of cells C, where each cell Ck = {k1, k2, k3, . . . } is an ordered
list of edge indices. Externally the tissues may be saved (either
read or written) as CSV files, either as lists of vertices, edges,
and cells, or in a flattened versions with the edges omitted and
the cells represented as ordered sequences of vertices. Internally
the edges are always reconstructed since it is more efficient com-
putationally to always have the edge information available, but
it is user taste which I/O format is used. It was decided to use
the CSV format for these files because of the wide availability of
parsing tools and the ease of human readability should that be
necessary.

Species in different cells are referenced by an index; e.g., the
reaction X[17] → Y[17] takes place in cell 17. When a reaction
network is expanded in every cell in the system it is not necessary
to repeat this manually, as this is done automatically. Constituents
in different cells can interact in the following ways: (a) diffu-
sion; (b) action at a distance; (c) transport across the cell wall.
Each of these may be specified in the model by one of the addi-
tional Cellzilla Arrow forms listed in Table 3. Such interactions
are allowed to depend on a function f (i, j, k) that depends on the
properties of the constituents of the cells (i = present cell num-
ber, j = connecting cell numbers) and cell wall (k) between cells
i and j. The basic single cell models may be input and output as
SBML files using the Cellerator/MathSBML extensions for SBML
(Hucka et al., 2003; Shapiro et al., 2004).

Table 1 | Examples of Cellerator mass action arrow form expansion,

from the base from A → B.

Arrow form* Expansion

e1X1 + e2X2 + · · · � e1X1 + e2X2 + · · · → f1Y1 + f2Y2 + · · ·
f1Y1 + f2Y2 + · · · f1Y1 + f2Y2 + · · · → e1X1 + e2X2 + · · ·

X
E
� Y X+ E � X_E

X_E � Y+ E

X
E
�
F

Y X
E
� Y and Y

F
� X

X
E� Y X+ E � X_E

X_E � Y_E
Y_E � Y+ E

E
X � Y � Z � · · · X

E
� Y, Y

E
� Z, . . .

E
X � Y � Z · · ·

F
X

E
�
F

Y, Y
E
�
F

Z, . . .

*The complete syntax of an arrow form is {arrowform, k1, . . .} where k1, . . . is

a sequence of numeric or symbolic rate constants. The subscripts ei and fj are

stoichiometries.
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Table 2 | Cellerator user defined, regulatory, and enzymatic arrow forms.

Arrow forma,b Typical ODE Termc

{
e · X ⇒ f · Y, g

(
X

)}
[Xi]′ = −eig

(
X

)
, [Yi]′ = fig

(
X

)
{

X
E�→ Y, Hill[v, n, K , a, T]

}
[Y]′ = v[E] (

a + T · [X])n

Kn + (
a + T · [X])n

{
X

E�→ Y, GRN[v, T, n, h]
}

[Y]′ = v[E]
1 + exp

(−h − T · [X]n)
{

X
E�→ Y, SSystem[τ, C+, C−, n+, n−]

}
[Y]′ = [E]

τ

{
C+

∏
i X

n+
i

i − C−
∏

i X
n−

i
i

}

{
X

E�→ Y, NHCA[v, {T+, T−}, n, m,k]
}

[Y]′ = v[E]∏
i
(
1 + T +

i [X]
ni
i

)m

k
∏

i
(
1 + T −

i [X]
ni
i

)m + ∏
i
(
1 + T +

i [X]
ni
i

)m

{{X, Y} �⇒ rational[a, d, m, n]
}

[Y]′d = a0 + rest (a) · [X]n

d0 + rest
(
d
) · [X]n

{
X �→ Y, USER[v, T, n, h, f]

}
[Y]′ = vf

(
h − T · [X]n

)
{
X

E�⇒ Y,MM[K, v]
}

[Y]′ = −[X]′ = v[E][X]
K + [X]

{
X

E�⇒ Y,MWC[k, n,c, L, K]
}

[Y]′e = −[X]′ = k[E]α (1 + α)n − 1 + Lαc (1 + αc)n − 1

(1 + α)n + L (1 + αc)n − 1

aThe catalyst species E is optional and may be omitted.
bBoldface quantities may be either scalars or vectors. Vectors enclosed by curly brackets. The notation v = pq means a vector v with components vi = pqi

i .
c If the catalyst is omitted replace [E] with 1.
d In rational, rest(x) is the vector x with its first element removed.
eIn MWC, α = [X]/K.

Table 3 | Additional Cellzilla arrow forms not recognized by Cellerator.

Arrow form* Description

{X −→ X,Diffusion[PI ,PO]} Diffusion of X through the tissue. PI is the permeability of internal cell walls; the optional PO is the permeability
of tissue boundary cell walls. Each may be specified as f[i, j,k] where i, j, k are cell and wall indices.

{X −→ X,Transport[fout, fin]} Controlled transport of X across the cell wall.

{X �→ Y,IGRN[v, T, n, h]} [Y[j]]′ = v
1 + exp(−h − T · [X[i]]n)

{cell −→ cell, Grow[ · · ·]} Specification of cell growth parameters: Pressure, growth rate, spring constant.

{cell −→ cell + cell, model[· · · ]} Specification of cell division model and parameters.

*Except for the IGRN the arrows here are longer versions of the right-pointing arrows used by the canonical Cellerator mass-action expansion.

Diffusion across cell boundaries is implemented according to
Fick’s law, so that the flux J through any membrane (e.g., in
molecules/(cm2-s)) with diffusion constant D (e.g., in cm2/s) is

J = −D
∂X

∂x
(3)

Defining the membrane permeability as β = D/δ (e.g., in cm/s),
where δ the membrane (or wall) thickness gives

J = −βδ × �X

δ
= −β�X (4)

where �X is the concentration difference across the membrane.
Let cell i have area Ai and depth d (orthogonal to the simulation);

the the volume of cell j is Vj = Ajd, and the area of the cell wall
between cell i and cell j is �kd where �k is the length of the wall
between the cells. The flux across wall k into cell i is (for constant
area):

J =
(

d[Xi]
dt

× Aid

)
×

(
1

�kd

)
= Ai

�k

d[Xi]
dt

(5)

Therefore

d[Xi]
dt

= β�k

Ai

([Xj] − [Xi]
)

(6)
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Rather than implementing this equation directly, it is imple-
mented as equivalent Cellerator reactions

{
X[i] � ∅,

�k

Ai
f(i,j,k),

�k

Ai
f(i,j,k)X[j]

}
(7)

where f is the input concentration-dependent permeability.
Diffusion is specified to Cellzilla by incorporating arrows of the
following form into the model:

{X −→ X,Diffusion[f[i, j,k]]} (8)

where f is either a Mathematica pure function or a function that
has been defined previously in the simulation.

Action at a distance is technique for describing the way con-
stituents in cell i can affect constituents in another cell j without
specifying any of the intermediate reactions. We restrict action
at a distance to adjacent cells with Cellerator GRN-like reactions
written as {X �→ Y,IGRN[v, β, n, h]} which means that con-
stituent Xi affects constituent Yj in neighboring cell j according
to (Mjolsness et al., 1991)

d[Yj]
dt

= v

1 + e−h−β[Xi] (9)

Facilitated membrane transport from cell j to cell i is described by
the equations

d[Xi]
dt

= �k

Ai

(
fin(i, j, k) − fout(i, j, k) − fin(j, i, k) + fout(j, i, k)

)
(10)

where fout(i, j, k) is the positive outward molecular flux from
i through edge k, to j, and fin(i, j, k) is the positive inward
molecular flux to cell i through edge k, originating from cell
j. In most cases one will only want to specify one of fout

or fin. These are implemented internally via the Cellerator
reactions

{X[i] ⇒ ∅, (�k/Ai)(fout[i,j,k] + fin[j,i,k])} (11)

{∅ ⇒ X[i], (�k/Ai)(fin[i,j,k] + fout[j,i,k])} (12)

Transport reactions of this sort are specified to Cellzilla by includ-
ing arrows of the form

{X −→ X,Transport[fout, fin]} (13)

where the function fout should be set to zero if only fin is
utilized.

GROWTH MODEL
Cellzilla implements two types of time-dependent simulations:
static, and growing. In static simulations the shape of the tissue
and its component parts do not change but its constituents are
allowed to vary as described previously. In a growing tissue, the
shape of the cells are also allowed to evolve with time. Cell growth

is described by associating a Hooke’s law spring potential of the
form

Vij = 1

2

∑
kij

(
δij − �ij

)2
(14)

with the edge connecting vertices xi and xj. Here δij is an equilib-
rium length assigned to the edge, �ij is the actual length, and kij is
a constant. When the wall is under compression (so that δij > �ij)
there will be a force, acting along the length of the edge, push-
ing the two vertices apart; when the wall is extended (δij < �ij),
the force will tend to pull the vertices toward one-another. The
magnitude of this force is equal to the negative gradient of Vij.
In addition, a pressure Pa associated with each cell a is, is applied
outward at each vertex. The net force on each vertex is propor-
tional to each wall incident on that vertex and, and is split evenly
between the vertices. Then equation of motion for vertex xi is then

dxi

dt
= −

∑
j

kijx̂ij(�ij − δij) + 1

2

∑
j, a

Panij, a�ij (15)

where x̂ij is a unit vector pointing from xi to xj. The sum in the
first term is over all the neighbors j of vertex i. In the second term,
nij,a is an outward pointing unit-normal vector from cell a, nor-
mal to edge �ij, and the sum is over all neighbors j of i and and
over all cells a in incident at vertex i. The pressure force will cause
the springs to extend, simulating cell growth. The resting length is
allowed to increase linearly at a rate proportional to the extension
beyond resting length,

dδij

dt
= μij�(�ij − δij) (16)

where

�(x) = 1

2
(x + |x|) =

{
x if x ≥ 0

0 otherwise
(17)

If the spring is not extended, then growth does not occur.
Equations (15) and (16) capture the phenomenological behavior
observed in nature by both plant and animal cells. Pressure drives
cell expansion; as pressure increases, cells expand more quickly.
The growth rate is limited by the spring force. The dynamics of
(15) can be solved exactly for a square cell to give

1

L

dL

dt
= k

(
P

k
− 2�

L

)
(18)

where L is the cell perimeter and � = ∑
i δi is the sum of the rest-

ing lengths. Consequently, when μij = 0 in (16), the sigmoidal
growth pattern of plant cells is observed [e.g., when extensibility
decreases linearly over time and osmotic pressure is held con-
stant, as in Figure 1 of Lockhart (1965)]. Comparing (18) to the
Lockhart equation �′/� = �(P − PE) we see that the k and δ are
parameters that can tuned to fit effective extensibility � and yield
pressure PE; for constant P and k sigmoidal behavior can be tuned
for P < 2k in square cells. Additionally, allowing μ > 0, along
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with the spring force produces a more general growth model
that is more generally applicable, not just in plant tissue, as the
springs can be cut beyond a specified threshold, thereby removing
cell-cell interactions (Shapiro and Mjolsness, 2001).

Let r be the index of the edge connecting vertices i and j, so
that δr and �r are short notations δij and �ij. The spring dynamics
of (16) are implemented internally as

⎧⎨
⎩∅ → x[i,p],

∑
Neighbors(i)

k[r](x[j,p] − x[i,p]) (1− δr/�r)

⎫⎬
⎭

(19)
where x[i,p] is the pth Cartesian component (p = 1, 2 for x or
y) of vertex xi, and k[r] is a spring constant whose value may
depend on the properties (e.g., constituents of) the cells abut-
ting edge r. Similarly, the growth of edge δr described by (16) is
implemented internally as the Cellerator reactions

{∅ → δr,μ[p,q,r](�r − δr)} (20)

where p and q are the indices of the cells that about edge r.
The pressure force in (15) on vertex xi due to cell a on the edge
connecting vertices xi and xj is implemented internally as

{
∅ → x[i,k],

1

2
P[a]n[a,i,j,k]

}
(21)

where k= 1, 2 (to indicate x or y Cartesian component); P[a] is
the pressure in cell a; and n[a,i,j,k] is the kth component of
a unit normal vector to edge �ij pointing outwards from cell a.

Cell growth is specified in a Cellzilla model by a reaction of the
form

{cell −→ cell, Grow[· · · ]} (22)

where the arguments to Grow specify growth parameters such as
the dependence of k, P, and μ on cell constituents (see Table 3).
Chemical concentrations change during growth in each cell occur
even in the absence of reactions. If there are n molecules of X
in volume V then [X]′ = (n/V)′ = (Vn′ − nV ′)/V2 = n′/V −
[X]V ′/V . The second term gives the correction in [X]′ due to
volume changes.

CELL DIVISION
Division occurs when a cell’s area passes a threshold. Upon birth,
each cell is assigned a threshold that is distributed normally (with
the mean μ and standard deviation σ as optional control param-
eters). Chemical concentrations are distributed equally between
the child cells (so that the chemical amounts are proportional to
cell area). A single (linear) near cell wall is placed according to
one of two user-selectable model: the standard modern interpre-
tation of (Errera, 1888) and a potential model. In the modern
interpretation of Errera’s rule, the shortest wall that divides the
two cells in half (by area) is chosen. [Technically, this is not
Errera’s rule, which only defines the shape of the cell wall, once
the endpoints are already know; however, the area-equalization
constraint is typically added to provide this boundary condi-
tion. (Smith, 2001; Besson and Dumais, 2011; Prusinkiewicz and

Runions, 2012)] In the potential model (Shapiro et al., 2010) a
function

V(θ1, θ2) =
∑

i

wiVi(θ1, θ2) (23)

is minimized over the central angles θ1 and θ2. These give the cen-
tral angles of the end points of the new wall measured from the
cell centroid. Here w is a weight vector, and Vi represents each
contributor to cell division, where i ∈ {A, L, e, g}, as described in
the below.

The area potential VA is minimized when the cell divides in
half; if the daughter cells have areas A1 and A2, respectively, then
we define

VA =
(

A1 − A2

A

)2

(24)

The function is squared to improve computational stability near
the minimum (which would otherwise have a non-differentiable
corner there). The disadvantage of this potential is that it does
not have a unique global minimum, i.e., any line of cell divi-
sion will that divides the area in half will give a value of zero.
Thus, the area potential must be tempered by either an addi-
tional potential function (such as the perpendicularity and/or
length potential) or an additional heuristic to select the desired
minimum value that does not require a unique minimum (e.g.,
randomly select division direction from amongst all equivalent
minima).

The length potential VL will be minimized when the new cell
wall is most closely aligned with the shortest possible diameter
dmin that this, the shortest line segment dividing the cell passing
through the cell center. If d is the length of the new cell wall, then
VL is given by

VL = (d − dmin)
2 + εL�

2

(d + dmin)
2

(25)

where � is the shortest distance between the new wall and the cell
center, and εL is a tunable parameter.

For Ve and Vg we define a perpendicularity potential V⊥(v)

that is minimized when the new wall is perpendicular to particu-
lar unit vector v. Let W be a unit vector parallel to the new wall.
Then

V⊥(v) = v · W + ε⊥�

d
(26)

where ε⊥ is a parameter. Letting e be the direction of maximal cell
extension and g be the direction of maximal cell growth, we then
define

Ve = V⊥(e) (27)

Vg = V⊥(g) (28)

so that Ve and Vg are minimized when W is most nearly perpen-
dicular to the directions of maximal extension and maximal cell
growth, respectively. The direction of maximal extension is taken
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as the unit eigenvector corresponding to the larger eigenvalue of
the covariance matrix M = (XTX)/(n − 1) where n is the num-
ber of cell vertices; and X = [ x − xc y − yc ], where x and y are
column vectors of cell vertex coordinates {(x1, y1), . . . , (xn, yn)}
and xc and yc is their mean. The direction of instantaneous max-
imal growth is found in the same manner, using the velocities
of the vertices. The covariance matrix M is calculated using the
Mathematica function Covariance.

Cell division is specified in a Cellzilla model with the arrow

{cell −→ cell + cell, model[· · · ]} (29)

where model is either ErreraModel or Potential, and the
arguments specify the threshold variable, mean, standard devia-
tion, and weight vector (for the potential model). A more gener-
alized version of this notation has been introduced by Yosiphon
(2009).

RESULTS
TEMPLATES AND THE BRUSSELATOR
Cellzilla has variety of shapes that can be used for basic sim-
ulations such as rectangular and hexagonal arrays, as well as
circular, semicircular and parabolic templates that can be pop-
ulated with randomly placed Voronoi centers. Alternatively the
user can supply a template of his or her own consisting either
of cell enters (in which case the walls will be interpolated with a
Voronoi algorithm) or cell walls as described previously. Here we
present the use of several of these templates (hexagonal, Voronoi,
and user-supplied) to implement a common reaction-diffusion
system.

The Brusselator (Prigogine and Lefever, 1968) is frequently
cited in mathematical modeling because it consists of a system of
chemical reactions that in the appropriate parameter regime will
maintain sustained oscillations. When combined with diffusion
such a system can also be used to establish a wide variety of inter-
esting patterns such as stripes, spirals, and central maxima. The
establishment of these different patterns depends on the choice of
system geometry, boundary conditions, and parameter values. A
diffusible Brusselator is easily implemented in Cellzilla with

{{∅ � A,a, β}, {2A + B → 3A, c}, {A → B,b},
{A −→ A,Diffusion[DA,DA]},
{B −→ B,Diffusion[DB,DB]}}

(30)

where a, β, b, c, DA and DB are tunable parameters. As illus-
trated in Figure 1, the ratio of the diffusion constants will change
the number of maxima achieved. In the second row of the figure
we see that the geometry is also significant. While the qualitative
features of each of the results D-F are identical, their symmetry
becomes more and more broken as the symmetry of the template
becomes lost. With the exception of the diffusion constants, all
other parameters were identical through each of these simula-
tions. We are particularly interested in the parameter set shown
in Figure 1A, because it can be used as described in the follow-
ing section to establish an organizing center for simulation of the
WUS/CLV network.

FIGURE 1 | Results of Brusselator simulation showing affect of ratio of

diffusion constant and geometry on simulation. (A–F) The concentration
of species A in the brusselator (30) is shown, with higher concentration
given in dark blue, and zero concentration in white. (A) DA = DB =1; (B)

DA = 0,DB = 0.1; (C) DA = 0, DB = 1; (D–F) all use DA = 0, DB = 0.5 on
different cellular teimplates. (G) Time course of the concentration of
species A for all cells in simulation B (total of 199 cells). Each curve gives
the concentration for different cell. Simulation E uses a Voronoi template of
500 randombly placed centers, and F uses a actual Arabodopsis meristem
L1 segmentation. Parameters: a = 0.1, β = 0.1, c = 0.1.

ESTABLISHMENT OF STEM CELL NICHE
In Jönsson et al. (2005a,b) we presented a predictive model of
feedback interaction between the Wuschel (WUS) and Clavata3
(CLV) signals in the shoot apical meristem. This simplified model
was able both to organize the WUS expression domain and to pre-
dict the reorganization due to the removal of the CLV signal from
the WUS domain as seen in experiments when cells are ablated.
This model uses a reaction-diffusion mechanism to induce WUS;
the pattern is induced by a Brusselator. The original model relies
on a diffusible parameter Y that is produced only in the L1 layer
of a slice. We present an implementation in which our slice has
the L1 layer omitted, and replace this with a boundary condition
in which Y is held fixed, and allowed to diffuse inward. Assuming
the Brusselator is implemented by (30), the Cellzilla network for
the WUS activator is given by

{{{Y, A} �→ W,GRN[v, {TWY,TWA},1,h,sigma]},
{W → ∅,kw}, {Y → ∅,ky}, {A + Y → Y,d},
{Y −→ Y,Diffusion[DY,DY]}}

(31)

where v, TWY, TWA, h, kw, ky and Dy are tunable parame-
ters, and the control word sigma tells Cellerator to replace the
usual logistic control function f (x) = 1/(1 + e−x) with f (x) =
(1 + 1/

√
1 + x2)/2 (in fact, any monotonic increasing saturating

function would work). The results illustrated in Figure 2 show
that both the original central maximum (in wild type) and dual,
smaller maxima result (in the ablation experiment) as modeled
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previously. In addition, we show the steady state distribution of
the constituent Y in Figure 2C, illustrating how it forms a ring in
the outer cells abutting L1 and decreasing inward, as desired.

GROWTH INDUCED BY ORGANIZING CENTER
The Brusselator is a useful mathematical/computational artifice
for establishing patterns that can be otherwise studied but its
biological meaning becomes lost if the variables in the equa-
tions do not have biological analogues that are present in the
actual tissue. It is more meaningful if the organizing tissue can
be established based on specific networks whose constituents
have been observed and whose interactions are believed to be
present, although this may at times be more computationally
intensive. For example, Nikolaev (Nikolaev et al., 2007, 2013)
has shown that a combination of reaction-diffusion and feed-
back in the WUS/CLV network is sufficient to establish a stem
cell niche. In a one dimensional dynamic model including cell
division, Chickarmane et al. (2012) has shown that negative feed-
back between WUS and cytokinin synthesis may be sufficient for
maintenance of this niche as the tissue grows. Here we present
for illustrative purposes of Cellzilla capability a simplified version
of a Chickarmane-inspired model, in which two diffusible species
are used to establish the pattern: U (e.g., that may be part of the
cytokinin network), which is produced only in the cells at the tip
of the meristem; and a second species V that is produced in the
L1 layer (e.g., that may produced as part of the CLV network).
The species that represents the organizing center is called W ; U
and V then activate and repress W , respectively, while W is self-
activating, perhaps through an intermediate. Positive feedback of
W onto V is provided by a third diffusible species X; and the epi-
dermis is impermeable to U , V and W . Finally, the constitutive
degradation of W is slightly enhanced in the L2 layer, but occurs
everywhere. The network is

{{∅ → U,k1TIP[t]}, {U → ∅,k2}, {U −→ U,Diffusion[DU]},
{∅ → V,k3L1[t]}, {V → ∅,k4}, {V −→ V,Diffusion[DV]},
{∅ � Z,k7,k8U[t]}, {X �→ V,GRN[vV,TWV,1,hV]},
{{U,V,W} �→ W,GRN[vW, {TUW,TVW,TWW},1,hW]},
{W → ∅,k6Z[t] + k9L2[t]},

FIGURE 2 | Results of Wuschel simulation using Cellzilla. Species
concentration is illustrated at the end of the simulation time course. The
concentration of Wuschel is shown in blue, and protein Y is shown in
green. Darker colors indicate higher concentrations, and white indicates a
zero concentration. Steady state concentration of (A) Wuschel in wild-type
simulation; (B) Wuschel in ablated meristem; (C) signal protein Y in ablated
meristem. Parameters: v = 0.1, TWY = −25, TWA = 0.5, h = 0, kw = 0.1,
ky = 0.1, d = 0.5, DY = 2, DA = 1.5, DB = 15.

{W �→ X,GRN[vX,TWX,1,hX]}, {X → ∅,k5},
{X −→ X,Diffusion[DX]},
{cell −→ cell,Grow[GrowthRate[μ,fμ ],
Pressure[P,fP ],Spring[k,fk ]},
{cell −→ cell + cell,Errera[cell,μ, σ}} (32)

where k1, k2, k3, k4, k5, k6, k7, k8, k9, hV, hW, vV, vW, TWX,
TUW, TVW, TWW, TWV, DU, DV, and DX are tunable parameters;
L1[t], L2[t], and Tip[t] are built in indicator functions for
these cell locations; and the functions fP and fμ describe pres-
sure and growth feedback; e.g., P[i] = p0 + p1W[i] and μ[j] =
μ0 + μ1(W[i] + W[j]) (where p0, p1, and μ0 are tunable con-
trol parameters). The user would type these function definitions
either in the lines before the model or in line as lambda func-
tions in place of the function references in the model. Simulation
results are shown in Figure 3. As seen in Figures 3A–C, the stem
cell niche is maintained through at least 500 cell divisions.

DISCUSSION
We have illustrated that meaningful quantitative results for plant
morphodynamics can be obtained using a simple polygonal tis-
sue model coupled with a spring growth equations. In particu-
lar, our implementation utilizes and extends an existing arrow-
based computational framework that is easy and intuitive to
use. This framework is built within a standardized computer
algebra system (Mathematica) that is widely available and pro-
vides access to a wide selection of analytical tools. In addition
we believe that our framework is generalizable and extensible
to the wider world or rule-based systems. While more detailed
particle-based or molecular dynamics frameworks will certainly
produce more accurate frameworks their ultimate extensibility
is limited by CPU availability and time constraints. Our imple-
mentation provides a useful platform for rapid model develop-
ment and testing that can easily by transformed to one of the
more detailed frameworks, if desired, once suitable results are
obtained.

Cellzilla can be used for 2D simulations of plant tissues at
the multicellular level. Because models can be rapidly built and

FIGURE 3 | Maintenance of organizing center during growth

simulation. (A) Initial distribution of W ; (B) Distribution after 250 cell
divisions; and (C) Distribution after 500 cell divisions. (D) Cell lineages; each
color shows a different clonal population corresponding to all descendants
of a particular cell in (A). Parameters: k1 = 2, k2 = 0.2, k3 = 1, k4 = 0.25,
k5 = 1, k6 = 0.05, k8 = 1.5, k9 = 0.1, DU = 10, DV = 0.5, DX = 0.5, vX = 1,
vW = 1, vV = 1, hX = 0, hW = 0, hV = 0, TWX = 4, TWV = 4, TUW = 22.5,
TVW = −25, TWW = 27.5, p0 = 0.001, p1 = 0.004, μ0 = 5 × 10−6, μ1 = .004.
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tested it allows one to quickly test developmental models both
in steady-state and during growth. However, several improve-
ments are planned for future versions. In the current version,
only simple transport and diffusion are considered; however, in
many cell types, not just plant cells, osmotic and electrical gradi-
ents are significant. We plan to implement rules to incorporate
both features in future releases. Furthermore, with the addi-
tion of osmotic models and pressure gradients we plan to add
additional plant-specific growth models (Lockhart, 1965; Ortega,
1985; Geitmann and Ortega, 2009). These can be optionally used
in place of the phenomenologically-based spring-based growth
model. Additions to the cell division model will be included. For
example, the constraints used in the Errera implementation of
linear walls and equal areas can be relaxed to quadratic and cir-
cular arcs, and the areas can be randomized in a cloud about
equality.

A three-dimensional model is also planned, although we
expect that this will have significantly greater computational
demands. To avoid mathematically unstable solutions in three
dimensions the spring model will need to be modified or replaced,

most likely with an elastic dynamics model incorporating pres-
sure and stress tensors. An alternative is the use of triangular
springs (Delingette, 2008).

DATA SHARING
All of the software described here is open source Mathematica
(GPL license) and freely downloadable from launchpad at https://
launchpad.net/cellerator. The software is fully documented and
all examples are available at the project website https://www.

cellzilla.info.
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