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Interactions between above- and belowground herbivores have been prominent in the field
of aboveground-belowground ecology from the outset, although little is known about how
climate change affects these organisms when they share the same plant. Additionally, the
interactive effects of multiple factors associated with climate change such as elevated
temperature (eT) and elevated atmospheric carbon dioxide (eCO2) are untested. We
investigated how eT and eCO2 affected larval development of the lucerne weevil (Sitona
discoideus) and colonization by the pea aphid (Acyrthosiphon pisum), on three cultivars of
a common host plant, lucerne (Medicago sativa). Sitona discoideus larvae feed on root
nodules housing N2-fixing rhizobial bacteria, allowing us to test the effects of eT and
eCO2 across trophic levels. Moreover, we assessed the influence of these factors on
plant growth. eT increased plant growth rate initially (6, 8 and 10 weeks after sowing),
with cultivar “Sequel” achieving the greatest height. Inoculation with aphids, however,
reduced plant growth at week 14. eT severely reduced root nodulation by 43%, whereas
eCO2 promoted nodulation by 56%, but only at ambient temperatures. Weevil presence
increased net root biomass and nodulation, by 31 and 45%, respectively, showing an
overcompensatory plant growth response. Effects of eT and eCO2 on root nodulation
were mirrored by weevil larval development; eT and eCO2 reduced and increased larval
development, respectively. Contrary to expectations, aphid colonization was unaffected by
eT or eCO2, but there was a near-significant 10% reduction in colonization rates on plants
with weevils present belowground. The contrasting effects of eT and eCO2 on weevils
potentially occurred through changes in root nodulation patterns.
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INTRODUCTION
Many studies report on plant-mediated interactions between
spatially separated insect herbivores that live above- and below-
ground, yet few studies have considered these interactions in
the context of global climate change. Climate change involves
multiple factors such as warming and rising atmospheric car-
bon dioxide (CO2) concentrations. While the effects of pre-
dicted increases in global average surface temperatures (by 1–4◦C
within this century) and atmospheric CO2 concentrations (from
current levels of 400 to over 550 μmol mol−1 by 2050) on
insect-plant interactions have been characterized separately, only
a handful of studies have considered more than one climate
change variable simultaneously (Robinson et al., 2012; Stevnbak
et al., 2012; Murray et al., 2013). Moreover, the role of plant
microbes, such as mutualistic rhizobial bacteria which form inti-
mate associations with plants, have not yet been investigated.
Combining trophic complexity and multiple climatic factors is
challenging but necessary to provide a more holistic insight
into the mechanisms underpinning insect–plant interactions
(Ryalls et al., 2013).

All legumes form symbioses with rhizobial bacteria that fix
atmospheric nitrogen (N2) and are carried in root nodules (Haag

et al., 2013). Root nodulation is important for the larval devel-
opment of Sitona weevil species (Coleoptera: Curculionidae),
including S. discoideus, which feeds on lucerne root nodules
throughout its larval growth stages (Allen, 1971; Goldson et al.,
1988a; Vink and Phillips, 2007). Sitona discoideus therefore has
the potential to reduce N-fixation in lucerne by damaging root
nodules (Keane and Barlow, 2002). The net effect of S. discoideus
on nodule numbers depends on the ability of the plant to compen-
sate for nodule loss (Quinn and Hall, 1992). The abundance and
size of root nodules can also be influenced by climate change. For
example, it is widely reported that root nodulation (and biological
N-fixation) increases in response to elevated CO2 concentrations
(eCO2; Ryle and Powell, 1992; Lüscher et al., 2000) but decreases
with elevated temperatures (eT; Munns et al., 1979; Zahran, 1999).

Root-feeding organisms can influence the chemical composi-
tion and biomass of aboveground plant parts, which, in turn,
can influence the survival of aboveground insect herbivores (Soler
et al., 2012). A recent meta-analysis (Johnson et al., 2012) con-
firmed that root herbivory by beetle larvae usually had beneficial
effects on aboveground aphids. This potentially arises through
impaired root function and stress-related accumulation of N in
the foliage (Masters et al., 1993). Given that, unlike in most other
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plants, rhizobial nodules underpin N balance in legumes, there
is good reason to hypothesize that the presence of belowground
herbivores that specifically target root nodules (and therefore have
a greater impact on N uptake than generalized root feeders) will
reverse this trend for better aphid performance on plants with root
herbivores.

The net effect on plant growth when subjected to above- and
belowground herbivory under the influence of multiple climatic
factors is unknown and untested. Here we aim to characterize this
in a model legume system that incorporates multiple organisms,
including Rhizobium bacteria, the nodule-feeding lucerne wee-
vil (S. discoideus) and the sap-sucking pea aphid (Acyrthosiphon
pisum; Hemiptera: Aphididae), with both insects feeding on
a common host plant, lucerne (Medicago sativa L.; Fabales:
Fabaceae). Lucerne is the most important and widely grown
temperate forage legume globally (Small, 2011; Bouton, 2012).
Acyrthosiphon pisum is a widespread pest of lucerne and a con-
certed program of incorporating aphid resistance into cultivars
since the introduction of lucerne-feeding aphids, including A.
pisum, to Australia in 1980, has helped to control aphid popu-
lations. Occasional outbreaks, however, driven by environmental
factors including climatic variability and interactions with other
trophic groups (e.g., release from natural enemies), still occur
(Zarrabi et al., 1995; Humphries et al., 2012). Moreover, the sus-
ceptibility of different cultivars to A. pisum can be modified by
such factors (Ryalls et al., 2013), and we therefore included culti-
vars with moderate (“Trifecta”), low (“Sequel”) and no (“Hunter
River”) A. pisum resistance.

We present a novel case study that examines the interactive
effects of temperature (daytime temperature 26 and 30◦C, aT
and eT, respectively) and atmospheric CO2 concentration (400
and 640 ppm, aCO2 and eCO2, respectively) on the interactions
between lucerne cultivars, rhizobial bacteria, a root herbivore and
an aphid. Specifically, we set out to investigate how: (i) aphid
herbivory affects plant growth (height) under eCO2 and eT; (ii)
eCO2 and eT affect root nodulation and the performance of S.
discoideus; (iii) the presence of nodule-feeding S. discoideus affects
the ability of A. pisum to successfully colonize and reproduce on
three cultivars of lucerne of varying resistance to A. pisum under
eCO2 and eT. We hypothesized that: (i) eCO2 and eT would pro-
mote plant growth but aphid herbivory would reduce the rate
of growth; (ii) eCO2 and eT would promote and reduce nodu-
lation, respectively, and S. discoideus would perform better (i.e.,
complete larval development) at lower temperatures and higher
CO2 concentrations; and finally, (iii) nodule-feeding by S. dis-
coideus would have a negative impact on aphid abundance via
impaired root function and decreased plant quality. For the pur-
pose of this case study, weevil emergence refers to the number of
plants with S. discoideus that grew to adulthood and emerged from
the soil.

MATERIALS AND METHODS
GROWTH CONDITIONS AND EXPERIMENTAL DESIGN
Four glasshouse chambers, providing two atmospheric CO2

concentrations (400 and 640 μmol mol−1, aCO2 and eCO2 respec-
tively) and two temperature treatments (daytime temperature 26
and 30◦C, aT and eT, respectively) combined factorially, were used

in this study. aT (maintained at 26/18◦C day/night on a 15L:9D
cycle) represents the daily average temperature data (November
to May) for Richmond, NSW (latitude −33.611098, longitude
150.742368; Australian Bureau of Meteorology) and eT (30/22◦C
day/night) was based on the predicted maximum temperature
increase for this region within this century (CSIRO, Bureau of
Meteorology, 2007). Humidity was controlled at 55%. Photosyn-
thetic active radiation (PAR) was measured every hour between
10 am and 3 pm. PAR ranged from 210 to 580 μmol m−2 s−1;
no significant differences in PAR were observed between cham-
bers overall. As an attempt to compensate for the effects of pseudo
replication (though not excluding them) arising from the lack
of replication of climates (climate-temperature combinations),
we rotated the position of pots randomly within chambers twice
weekly (Quirk et al., 2013; Sherwin et al., 2013). The environmen-
tal conditions within the chambers were logged and monitored
continuously throughout the experiment to maintain temperature
and CO2 differences between chambers and temperature readings
were cross-checked with transportable temperature loggers, as in
Murray et al. (2013).

Lucerne seeds (sourced from Seedmark, Adelaide, South Aus-
tralia) were inoculated with Rhizobium bacteria one hour prior to
planting by submerging in a solution containing 250 g Nodule N
lucerne seed inoculant (New Edge Microbials, Albury, NSW, Aus-
tralia) and 800 mL distilled water. In each chamber, 120 lucerne
seeds (40 of each of the three cultivars) were individually planted
in 70 mm pots filled with sieved (2 mm) local loamy-sand soil
collected from the Hawkesbury Forest Experiment in Richmond,
NSW (Barton et al., 2010). Soil was kept moist by watering daily
(c. 15 mL). Acyrthosiphon pisum cultures, reared from a sin-
gle parthenogenetic adult female collected in Richmond, NSW
were maintained at 22/14◦C day/night on the susceptible cultivar
“Hunter River” until required. Additionally, 20 sexually mature S.
discoideus adults, also collected by sweep-netting in July 2012 from
local lucerne fields in Richmond, NSW, were reared on “Hunter
River” and eggs were collected every 24 h and stored on damp fil-
ter paper at 4◦C until required. Hatching success was assessed and
confirmed (>95% hatched within 5 days) by placing 200 eggs on 10
petri dishes at 25◦C.“Hunter River”was included as an experimen-
tal cultivar to provide a baseline for comparison with the resistant
cultivars.

EXPERIMENTAL PROCEDURE
Plants in each of the four chambers (aCO2 × aT; eCO2 × aT;
aCO2 × eT; eCO2 × eT) were distributed randomly among four
treatments: weevils only (W), aphids only (A), weevils and aphids
(WA) and no insects or control (C), giving 10 replicates of each
treatment per cultivar in each chamber. When plants were six
weeks old, half of the plants (treatments W and WA) were inocu-
lated with 20 S. discoideus eggs per plant. This egg density (6027
eggs per m2) resembles S. discoideus eggs densities recorded in
NSW during June (5185 eggs per m2; Aeschlimann, 1983). Eggs
were placed on top of the soil beside the stem of each plant. After
a further 4 weeks, two teneral adult pea aphids were transferred to
each plant in treatments A and WA. Plants were placed on plastic
plinths within water-filled trays, which acted as moats to prevent
aphid movement between plants. Aphid presence was recorded
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7 and 14 days later and aphids were removed after 21 days. Six
weeks after egg inoculation, plants were checked every 12 h for
emerging adult weevils (i.e., those that had completed larval devel-
opment and emerged from the soil leaving an exit hole). One
week after aphids were removed, roots were separated from the
soil and the numbers of root nodules were counted. Plant heights
(from ground level to the base of the highest leaf) were mea-
sured 6 (weevil egg inoculation period), 8, 10 (aphid inoculation
period) and 14 (harvest period) weeks after planting. Lucerne
height is strongly correlated with biomass (Michalk and Herbert,
1977) so this represents an excellent non-destructive proxy for
plant growth.

STATISTICAL ANALYSES
Plant responses
The effects of CO2 and temperature on lucerne height measure-
ments over 8 weeks were determined using general linear models
within the R statistical interface v2.15.1. The main effect terms
of “CO2,” “temperature,” “cultivar” and “treatment” (i.e., aphid-
and weevil-treated), as well as their associated interactions, were
included. The effects of temperature, CO2, cultivar and weevil
presence on the number of nodules were assessed using multifac-
torial ANOVA in R. The dependent variable “nodule number” was
log-transformed to standardize residuals. Pairs of mean estimated
effects were compared using a Tukey-Kramer post hoc test. ANOVA
was used to compare mean differences in root mass between
weevil-treated and untreated plants. Root mass was square root
transformed to normalise data.

Insect responses
The effects of temperature and CO2 treatment on the propor-
tion of plants containing weevils that reached adulthood and
emerged from the soil were assessed using a generalized linear
model with a binomial error structure and logit link function
within R. The full model included main effect terms for “culti-
var,” “temperature,” “CO2” and “aphid-treatment” (i.e., whether
plants had aphids applied), as well as the interactions between
these terms. The effects of CO2, temperature, cultivar and weevil
presence on aphid success were determined using a generalized
linear model with a binomial error structure and logit link func-
tion, using aphid success (colonization) as the dependent variable.
Models were reduced in a stepwise manner by removing the non-
significant terms in order of least significance and plants that had
died before harvest were not included in analyses.

RESULTS
PLANT RESPONSES
Height
Plant height was significantly greater at higher temperatures at
week 6 (F1,468 = 59.03; P < 0.001), week 8 (F1,468 = 40.11;
P < 0.001) and week 10 (F1,468 = 8.56; P = 0.004), whereas
CO2 did not affect plant height in these weeks (see Figure 1 for
significant effects at week 10). In addition, there were signifi-
cant differences in height between cultivars in these same weeks
(F2,468 = 14.52, P < 0.001; F2,468 = 9.03; P < 0.001; F2,468 = 9.45;
P < 0.001), with Sequel being significantly bigger than the other
two cultivars overall (Table 1). At week 14, aphids reduced plant

FIGURE 1 | Effects of temperature and cultivar (Hunter River, H; Sequel,

S andTrifecta,T) on plant growth (height) 10 weeks after sowing. Mean
values (± standard errors) of significant treatment factors (temperature and
cultivar) in the final model shown.

height (t1,195 = −2.637; P = 0.008) and there was a signifi-
cant interaction between CO2 and temperature (F2,468 = 8.21;
P = 0.004) whereby eCO2 increased plant growth at 26◦C (from
57.5 ± 4.2 mm at aCO2 to 66.4 ± 4.2 mm at eCO2) but not at
30◦C. The presence of weevils also interacted with temperature
effects (F2,468 = 6.94; P = 0.009), with weevils decreasing over-
all plant height at 26◦C (from 66.9 ± 4.4 mm without weevils to
58.1 ± 3.9 mm with weevils) but not at 30◦C (see Figure 2 for all
significant treatment factors).

Nodulation and root mass
Elevated temperature resulted in reduced nodulation (F1,409 =
34.78; P < 0.001) but the interaction between CO2 and temper-
ature also affected root nodulation (F1,417 = 4.11; P = 0.042);
nodulation increased under eCO2 at 26◦C (Tukey HSD; P < 0.01)
but not at 30◦C (Tukey HSD; P = 0.983; Figure 3). Plants with
S. discoideus had a significantly higher number of nodules and
greater root mass than those without (Table 2).

INSECT RESPONSES
Weevils
Elevated temperature had a negative effect on weevil emer-
gence (i.e., the proportion of plants with emerging weevils;
z1,234 = −3.29; P < 0.001), whereas eCO2 positively affected
weevil emergence (z1,234 = 2.00; P = 0.045; Figure 4). Weevil
emergence was not influenced by cultivar type (Table 1). These
responses resembled those seen for nodulation, i.e., negative and
positive effects of eT and eCO2, respectively.

Aphids
Acyrthosiphon pisum was not significantly affected by changes in
temperature and CO2 or the presence of weevils, although there
was a trend for the proportion of plants that were successfully
colonized by A. pisum to be lower in plants inoculated with S.
discoideus eggs [χ2(df = 1) 3.15; P = 0.076].
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Table 1 | Effect of cultivar on plant height, root nodulation, aphid colonization and weevil emergence.

Cultivar Plant height (mm) Number of nodules per plant Plants colonized by aphids (%) Weevil emergence (%)

Hunter River 46.3 ± 2.1 9.8 ± 0.8 27.5 6.3

Sequel 54.8 ± 2.1 12.4 ± 1.1 20.0 13.8

Trifecta 45.6 ± 1.9 7.5 ± 0.9 32.5 8.8

Test results F 2,468 = 3.96; P = 0.020* F 2,409 = 9.585; P < 0.001* χ2(df = 2) 3.324; P = 0.190 χ2(df = 2) 2.899; P = 0.235

Overall means (± standard error) and frequencies shown. *Significance indicated by linear model outputs and ANOVA (χ2) test results.

FIGURE 2 | Height of three lucerne cultivars (Hunter River, H;

Sequel, S and Trifecta, T) 14 weeks after sowing in treatments

with and without aphids and weevils (plants with weevils, W+;

plants without weevils, W-). Graphs (A–D) represent the four

“CO2 × temperature” treatments. Mean values (± standard errors)
of significant treatment factors (cultivar, aphid presence, CO2:
temperature and temperature: weevil presence) in the final model
shown.

DISCUSSION
Our study is first to incorporate the effects of both eT and eCO2 on
a system combining above- and belowground insect herbivores.
The results demonstrate that eT can negate the positive effects
of eCO2 on lucerne nodulation and herbivory belowground,
an important consideration for determining future outcomes of
climate change.

Elevated temperature promoted plant growth initially and
aphid herbivory reduced plant growth at week 14. The reduction
in height of plants with aphids present, however, was facilitated by
root feeding by S. discoideus, indicated by an interaction between
temperature and weevil presence at week 14; the presence of S. dis-
coideus decreased lucerne height at aT but not at eT. Few weevils,
however, emerged at eT, suggesting that they did not account for
the changes in plant growth observed at eT. 30◦C may represent
an upper developmental threshold (i.e., the temperature at which
development rate becomes suboptimal) for S. discoideus. Arbab
et al. (2008) identified 28◦C as the optimum temperature for S.

discoideus development with development time decreasing with
increasing temperatures within the range of 8.5 to 28◦C (from a
hatching rate of 69.01 ± 0.92 days to 8.46 ± 0.14 days, respec-
tively). Additionally, egg development rates at 26◦C matched rates
at 30◦C and they calculated the upper developmental tempera-
ture threshold as 30 to 32.6◦C. Temperature increases toward the
thermal optimum may positively influence the abundance of S. dis-
coideus, whereas temperatures above 30◦C may negatively affect S.
discoideus numbers.

Effects of CO2 on root nodulation mirrored their effects on the
emergence of S. discoideus at 26◦C, suggesting that S. discoideus
performance was influenced by the number of root nodules on
lucerne. eCO2 has been shown to promote nodulation and per-
formance of another Sitona species (S. lepidus) on white clover
(Trifolium repens) (Johnson and McNicol, 2010). In that study,
the effects of temperature were not tested, though the authors
speculated that enhanced nodulation and S. lepidus larval perfor-
mance seen under eCO2 might be tempered by eT. In the present
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FIGURE 3 | Effects of temperature on the number of root nodules per

plant under eCO2 (closed bars) and aCO2 (open bars). Mean values (±
standard errors) shown. Bars with the same letters were not significantly
different (P < 0.05).

Table 2 | Mean (± standard error) numbers of nodules and root mass

between weevil-treated and -untreated plants.

N Number of nodules Root mass (g)

Weevil-treated 209 11.71 ± 0.94 0.093 ± 0.004

Weevil-untreated 209 8.08 ± 0.57 0.071 ± 0.003

Test results F 1,417 = 11.52;

P < 0.001

F 1,417 = 11.55;

P< 0.001

Summary statistical results of tests for differences between the variable means
are provided.

study, we observed that eT negated the positive effects of eCO2 on
nodulation. Such negation of eCO2 effects by eT has also been
found in aboveground insect–plant interactions (Murray et al.,
2013) and further emphasizes the need to consider multiple cli-
mate change factors simultaneously when assessing the effects of
global environmental change.

Modest root herbivory often produces compensatory responses
by the plant which may increase root growth to offset losses due
to herbivory (Andersen, 1987; Brown and Gange, 1990; Blossey
and Hunt-Joshi, 2003). In the present study, we observed even
larger increases in root growth and nodulation in the presence of
S. discoideus above and beyond those observed in plants without
S. discoideus, i.e., overcompensation. Overcompensatory nodula-
tion has also been demonstrated in lucerne in response to Sitona
hispidulus, which, after 10 days of nodule-feeding, increased the
number of nodule units per plant by 89 ± 9% compared to
25 ± 7% in control plants (Quinn and Hall, 1992). Our study used
egg densities (c. 6000 eggs per m2) similar to those seen in the field
in NSW, Australia during June (c. 5000 eggs per m2), see Section
“Experimental Procedure” (Aeschlimann, 1983). Higher egg den-
sities, such as those reported by Aeschlimann and Vitou (1988) of
9500 eggs per m2, however, could result in root herbivory that was
too severe for compensatory growth to occur.

FIGURE 4 | Effects of temperature on the proportion of plants

containing weevils that reached adulthood and emerged from the soil

at aCO2 (open bars) and eCO2 (closed bars). All columns were
significantly different (P < 0.01) from one another.

Few changes were observed in aphids feeding aboveground,
although numbers of aphids that colonized plants (i.e., remained
on the plant and reproduced) were low, making aboveground-
belowground and cultivar interactions difficult to interpret.
Johnson et al. (2012) confirmed that, generally, aboveground
aphids are positively affected by belowground root feeders. Unlike
most other root herbivores, S. discoideus attacks root nodules (and
therefore sites of N acquisition). Negative effects of root herbivory
on aphids could therefore arise through both reduced phloem tur-
gor via impaired root function and lower quality phloem sap from
nodule damage specifically (e.g., Murray et al., 1996). This is sup-
ported by Goldson et al. (1988b), who reported that S. discoideus
reduced the biomass and nitrogen concentration in lucerne as a
direct result of nodule damage. Indeed, there was a trend for aphids
to be less able to colonize plants with weevils present, albeit not at
a 95% confidence interval (P = 0.076). The low number of aphids
at the end of this experiment may have contributed to obscuring
these negative impacts. Alternatively, given that weevils began to
stimulate nodulation the negative impacts of initial nodule dam-
age on aphids may have begun to be reversed, or at least alleviated.
This demonstrates the importance of considering the exact nature
of root herbivory, for instance which parts of the roots are targeted
by root herbivores, the sequence and duration of the attack and
ultimately how these effects change over time (e.g., triggering of
compensatory responses).

Root and nodule feeding also have the potential to affect neigh-
boring plants by altering nitrogen availability in the soil (Murray
and Hatch, 1994; Ayres et al., 2007). This arises because N leaks
out of lacerated nodules and is taken up by co-occurring plants.
Traditionally, studies between belowground and aboveground her-
bivores are conducted on the same shared host plant, but in
this instance it could be envisaged that belowground herbivory
affects aboveground herbivores on neighboring plants of differ-
ent species. Essentially, root herbivory by S. discoideus may reduce
the quality of lucerne while indirectly improving the quality of
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neighboring host plants. Where aphids can feed on both lucerne
and the neighboring plant, this may cause aphids to migrate
between plants.

Results suggest that the contrasting effects of eT and eCO2

on weevils likely occurred through changes in root nodulation
patterns. Further study, including repeated experimental runs to
reduce problems associated with pseudoreplication, should be
undertaken to determine how nodule feeders belowground will
affect aphids feeding aboveground, with potential pest manage-
ment implications for the lucerne industry, as well as other legumes
that are attacked by both insects. Incorporating such trophic
complexity and multiple climatic factors represents a significant
challenge for biologists, yet one that we must address to gain realis-
tic insights into how global climate change will affect insect–plant
interactions.
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