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As sessile organisms, plants have to be able to adapt to a continuously changing
environment. Plants that perceive some of these changes as stress signals activate
signaling pathways to modulate their development and to enable them to survive. The
complex responses to environmental cues are to a large extent mediated by plant hormones
that together orchestrate the final plant response. The phytohormone cytokinin is involved
in many plant developmental processes. Recently, it has been established that cytokinin
plays an important role in stress responses, but does not act alone. Indeed, the hormonal
control of plant development and stress adaptation is the outcome of a complex network
of multiple synergistic and antagonistic interactions between various hormones. Here, we
review the recent findings on the cytokinin function as part of this hormonal network.
We focus on the importance of the crosstalk between cytokinin and other hormones,
such as abscisic acid, jasmonate, salicylic acid, ethylene, and auxin in the modulation of
plant development and stress adaptation. Finally, the impact of the current research in the
biotechnological industry will be discussed.

Keywords: cytokinin, stress, hormonal crosstalk, salicylic acid, abscisic acid

INTRODUCTION
During their lifespan, plants are exposed to continuously changing
environmental conditions and pathogen threats. Various abiotic
and biotic stresses, such as heat, cold, drought, high salinity, or
pathogen attacks, can severely affect plant development, growth,
fertility, and productivity. To survive, plants must be able to
react rapidly to various stress signals, activate efficient defense
responses, and adapt to new conditions. Plant hormones are key
components of these defense and adaptation mechanisms. To
mediate the responses and adaptations to stresses, different hor-
monal pathways are upregulated or downregulated. Modifications
in the hormonal abundance and signaling will usually impact on
the degree of resistance or susceptibility to the various stresses.

HORMONES AND ABIOTIC STRESSES
Plants can perceive and respond to environmental changes. For
instance, seasonal variations in day/night length or in temperature
might directly affect the reproductive cycle, flowering, and fruit set.
However, unpredicted changes, such as flooding, extreme temper-
ature, heavy metals, drought, or high salt levels, will be perceived
as stress conditions and might have a strongly negative impact on
grain yield, grain weight, and plant biomass. Likewise, the root sys-
tem architecture will adapt in terms of growth and branching as a
reaction to different stresses. Among the various stress conditions,
salinity and drought are currently the major problems. Saline soils
represent a total of 323 million hectares worldwide (Brinkman,
1980), whereas drought affects 1–3% of the land surface and is
predicted to increase to up to 30% by 2090 (Burke et al., 2006).
To cope with these stresses, plants modify the levels of the differ-
ent phytohormones directly or indirectly. This altered hormonal

balance also affects the plant development, with a direct impact on
seed development, seed germination, dormancy, and overall plant
growth (Finkelstein et al., 2002).

ABSCISIC ACID –THE ABIOTIC STRESS HORMONE
In response to abiotic stresses, such as drought and salinity,
endogenous abscisic acid (ABA) levels increase rapidly, activating
specific signaling pathways and modifying gene expression levels
(Seki et al., 2002; Rabbani et al., 2003; Kilian et al., 2007; Goda et al.,
2008; Zeller et al., 2009). In fact, up to 10% of protein-encoding
genes are transcriptionally regulated by ABA (Nemhauser et al.,
2006).

Abscisic acid is one of the most studied phytohormone because
of its rapid response and prominent role in plant adaptation
to abiotic stresses. In the meantime, the key components of
the ABA signaling pathway have been characterized (Sreeniva-
sulu et al., 2007; Cutler et al., 2010; Hirayama and Shinozaki,
2010; Raghavendra et al., 2010; Debnath et al., 2011; Fujita
et al., 2011). In Arabidopsis thaliana, the pyrabactin resistance1
(PYR1)/PYR1-LIKE (PYL)/regulatory components of ABA recep-
tor (RCAR) proteins have been proposed as the main intracellular
ABA receptors (Ma et al., 2009; Park et al., 2009; Santiago et al.,
2009a; Nishimura et al., 2010). Multiple ABA receptor loss-of-
function mutants, such as pyr1/pyl1/pyl4, pyr1/pyl1/pyl2/pyl4, and
pyr1/pyl1/pyl2/pyl4/pyl5/pyl8 are insensitive to ABA, even at con-
centrations as high as 100 μM (Park et al.,2009; Gonzalez-Guzman
et al., 2012). Particularly, the quadruple and sextuple mutants were
less sensitive to the ABA-mediated inhibition of seed germination,
root growth, stomata closure, and expression of ABA responsive
genes (Park et al., 2009; Nishimura et al., 2010; Gonzalez-Guzman
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et al., 2012). Accordingly, PYL5 overexpression resulted in high
drought resistance and an enhanced response to ABA (Santiago
et al., 2009b).

In the presence of ABA, the PYR/PYL/RCAR proteins form a
ternary complex that via direct interaction inhibit clade A pro-
tein phosphatase 2C (PP2C), including ABA-INSENSITIVE 1
(ABI1), ABI2, and hypersensitive to ABA 1 (HAB1) (Nishimura
et al., 2007; Santiago et al., 2009a; Szostkiewicz et al., 2010). Sim-
ilarly to the receptor mutants, mutants in the PP2C activity,
such as abi1-1, are also insensitive to ABA (Fujii and Zhu,
2009; Cutler et al., 2010). PP2C repression activates downstream
targets, such as the protein kinases belonging to the sucrose
non-fermenting 1-related subfamily2 SnRK2.2/D, SnRK2.3/I, and
SnRK2.6/OST1/E, which trigger ABA-dependent gene expression
and signaling (Umezawa et al.,2009; Vlad et al.,2009). Accordingly,
the snrk2.2/snrk2.3/snrk2.6 triple mutant is highly insensitive to
ABA and severely affects plant growth and seed yield (Fujii and
Zhu, 2009).

CYTOKININ IN ABIOTIC STRESS RESPONSES
Besides ABA, other hormonal pathways, including cytokinin (CK),
are activated when a plant is exposed to stress. The CK-dependent
modulation of stress responses has been studied at various lev-
els. The alteration of endogenous CK levels in reaction to stress
suggests that this hormone is involved in stress responses. For
instance, in response to drought, the in planta concentration and
transport of trans-zeatin riboside decreases drastically, whereas
the ABA levels increase (Hansen and Dörffling, 2003; Davies et al.,
2005). Interestingly, when the partial root zone-drying approach
was applied, the CK concentration decreased, not only in roots,
but also in leaves, buds, and shoot tips, along with increased ABA
levels (Stoll et al., 2000; Kudoyarova et al., 2007). These observa-
tions demonstrate that the local stress exerted on the root might
trigger changes in the CK levels in various plant organs, including
the shoot, and, consequently, in developmental processes, such as
the apical dominance (Hansen and Dörffling, 2003; Schachtman
and Goodger, 2008). Typically, reduced CK levels would enhance
the apical dominance, which, together with the ABA regulation of
the stomatal aperture, aids to adapt to drought stress.

The negative CK-regulatory function in plants exposed to
drought has been demonstrated in genetic studies in which the
endogenous CK levels were modified, either by loss of the biosyn-
thesis genes isopentyl transferase (IPT) or by overexpression of
cytokinin oxidase (CKX)-encoding degradation genes (Werner
et al., 2010; Nishiyama et al., 2011; Wang et al., 2011b). A reduced
CK content in the ipt1/ipt3/ipt5/ipt7 quadruple and ipt8 single
mutants or overexpression of CKX1 and its homologs correlates
with an increased resistance to both salt and drought stresses.

In agreement with the increased abiotic stress resistance at
low CK levels, mutants lacking the functional CK receptors are
more resistant to abiotic stresses (Tran et al., 2007; Jeon et al.,
2010; Kang et al., 2012). For example, the Arabidopsis histidine
kinase (AHK) loss-of-function mutants ahk2/ahk3 and ahk3/ahk4
were significantly more resistant to freezing temperatures than the
wild type (Jeon et al., 2010). Similarly, all ahk single and multiple
mutants, with the exception of ahk4, showed an enhanced resis-
tance to dehydration (Kang et al., 2012). Furthermore, like the

CK-metabolic mutants ipt1/ipt3/ipt5/ipt7, ipt8, and the CKX1-
overexpressing plants, the ahk mutants affected dramatically the
ABA sensitivity (Tran et al., 2007) and were hypersensitive to ABA
treatments.

Downstream of the AHK receptors, the Arabidopsis histidine
phosphotransfer (AHP) proteins mediate stress signaling (Hwang
and Sheen, 2001; Hutchison et al., 2006; To and Kieber, 2008;
Hwang et al., 2012). AHP proteins translocate into the nucleus
and activate the type-B Arabidopsis response regulator (ARR) fac-
tors that trigger the transcription of specific genes in response to
CK. A negative feedback loop is provided by type-A ARRs that
inhibit the activity of type-B ARRs by a still unknown mechanism
(Figure 1). Of all ARRs, type-A ARRs are the only ones of which
the expression is altered under stress, e.g., ARR5, ARR6, ARR7,
and ARR15 are upregulated upon cold stress (Jeon et al., 2010;
Jeon and Kim, 2013); ARR5, ARR7, ARR15, and type-C ARR22 are
upregulated in response to dehydration (Kang et al., 2012); and
ARR5 expression increases in response to salt stress (Mason et al.,
2010). Stimulation of ARR5, ARR6, ARR7, and ARR15 expression
in response to cold stress requires the activity of several compo-
nents of the CK signaling pathway, including AHP2, AHP3, and
AHP5, and also ARR1 (Jeon and Kim, 2013). Likewise, in response
to salt stress, ARR5 upregulation depends on ARR1 and ARR12
(Mason et al., 2010). Furthermore, the negative regulatory role of
AHP2, AHP3, and AHP5 during drought stress has been described
recently (Nishiyama et al., 2013).

Despite the clear indications that CK and the CK signaling
components function in stress responses (Hwang et al., 2012), the
high degree of redundancy in the CK signaling pathway, includ-
ing three CK receptors, six AHPs, 10 type-A ARRs, and 11 type-B
ARRs, makes it difficult to dissect the role of each specific com-
ponent (Hwang et al., 2012). Interestingly, although CK levels are
reduced, the type-A ARRs that belong to the early CK-responsive
genes are upregulated (Jeon et al., 2010; Mason et al., 2010; Kang
et al., 2012; Jeon and Kim, 2013). Furthermore, a quadruple type-
A ARR loss-of-function mutant arr3/arr4/arr5/arr6 is resistant
to salt stress, which is unexpected because to type-A ARRs act
as CK signaling repressors (Mason et al., 2010). These observa-
tions imply that in stress responses the role played by the CK
signaling pathway is more complex. In this context, AHKs might
function as stress sensors that would activate the CK signaling
pathway independently of CK levels (Urao et al., 1999; Tran et al.,
2007; Jeon et al., 2010). In fact, another member of the histidine
kinase family, AHK1, is able to sense and transduce changes in
osmolarity to trigger downstream signaling pathways (Urao et al.,
1999; Tran et al., 2007). However, unlike the CK receptors AHK2,
AHK3, and AHK4, AHK1 positively regulates stress responses.
Thus, it remains to be elucidated whether AHK2, AHK3, or AHK4
can sense abiotic stresses independently of CK, or whether AHK1
might crosstalk with a downstream CK signaling cascade.

Besides core components of the CK transduction cascade,
downstream targets in stress responses have been disclosed as
well. The cytokinin response factor (CRF) transcription factors
of the APETALA2 (AP2) family have been identified as early
CK response genes of which the expression is rapidly induced
after CK application (Rashotte et al., 2006). Interestingly, the
CRF6 homolog is also highly responsive to various abiotic stress
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FIGURE 1 | CK and crosstalks during abiotic stress responses. Under
non-stress conditions, CK activates signaling mediated through AHK
receptors, AHPs, and type-B response regulators ARRs. Type-B ARRs
stimulate the expression of the early CK response genes, including type-A
ARR genes that provide a negative feedback loop of the CK signaling.
Besides this negative feedback loop, type-A ARRs also repress the
expression of ABI5 and interfere with the ABA signaling, through the
physical interaction with ABI5. In response to stress, ABA levels increase
and, simultaneously, CK levels decrease. The recognition of ABA by the

receptors PYR/PYL/RCAR promotes the interaction with PP2C proteins that
will activate downstream responses through signaling components
including ABI5 and ABI4. At the same time, ABA interferes with the activity
of CK and auxin and via ABI4 attenuates the expression of the PIN1 auxin
efflux carrier and enhances the transcription of the CK signaling repressor
ARR5. Interestingly, type-A ARRs, such as ARR5, are upregulated, despite
the low CK levels, probably because of the indirect activation of the CK
signaling pathway by alternative receptors of the histidine kinase family,
such as AHK1.

treatments (Zwack et al., 2013) and, recently, its regulatory role has
been characterized in leaf senescence control (Zwack et al., 2013).

HORMONAL CROSSTALKS AND ABIOTIC STRESS RESPONSES
The altered ABA sensitivity in plants with modified CK levels and
signaling (Tran et al., 2007; Werner et al., 2010; Nishiyama et al.,
2011; Wang et al., 2011b) hints at a crosstalk between ABA and
CK. Interestingly, ARR4, ARR5, and ARR6 have been found to
interact with ABI5 and also to regulate its expression levels. ABI5
is a basic leucine zipper protein that positively regulates the ABA
signaling. The interaction with type-A ARRs attenuates the ABI5
activity and suppresses the ABA signaling (Figure 1; Wang et al.,
2011b). Thus, type-A ARRs might, in addition to their regulation
of the CK signaling, also control ABA signaling.

New insights into the ABA-CK crosstalk have been gained
from the functional analysis of ABI4 (Shkolnik-Inbar and Bar-
Zvi, 2010), that belong to the AP2 family of transcription factors.
Similar to ABI5, ABI4 is also a positive regulator of the ABA sig-
naling (Wind et al., 2013) and of the type-A ARR5 expression

that represses the CK signaling. Simultaneously, ABI4 atten-
uates the expression of the PIN-FORMED 1 (PIN1) gene, an
auxin efflux carrier that is an essential component of the polar
auxin transport machinery (Shkolnik-Inbar and Bar-Zvi, 2010).
Thus, ABI4 might represent an important crosstalk point on
the interface of ABA, CK, and auxin pathways (Figure 1), in
agreement with observations demonstrating that both the lev-
els of CK and auxin, as well as of the PIN3 and PIN7 auxin
efflux carriers, are suppressed when the ABA level increases
(Hwang and Sheen, 2001; Wang et al., 2011a). Altogether, the
strong impact of stress on plant development might result from
the combined activities of several hormonal pathways, such
as ABA and development-related hormones, such as CK and
auxin.

The hormonal pathway of ethylene (ET) contributes also
to the complexity of the hormonal network underlying plant
responses to stresses. ET has been studied both in a develop-
mental and stress context (Cary et al., 1995; Chae et al., 2003;
Dietz et al., 2010; Kushwah et al., 2011; Beguerisse-Díaz et al., 2012;
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Vanstraelen and Benková, 2012; Zhai et al., 2013) and, recently, its
role as a negative regulator of freezing tolerance has been demon-
strated (Shi et al., 2012). The ET activity in stress responses is
mediated by the downstream transcription factor of the ET sig-
naling cascade, ethylene-insensitive 3 (EIN3). EIN3 suppresses the
expression of the C-repeat/dehydration response element-binding
factor 1 (CBF1), CBF2, and CBF3 genes, which mediate the
response to cold stress, and also of the CK signaling repressors
ARR5, ARR7, and ARR15 by direct binding to their promoters
(Shi et al., 2012). Although ET interferes with the CK signaling
output, its pathway is also affected by CK. Indeed, CK stabi-
lizes 1-aminocyclopropane-1-carboxylate synthase 5 (ACS5) and
ACS9 (Vogel et al., 1998; Chae et al., 2003; Hansen et al., 2009)
that convert S-adenosyl-methionine to 1-aminocyclopropane-1-
carboxylic acid (ACC), the rate-limiting step in the ET biosyn-
thesis. This stabilization might lead to an ET accumulation and,
consequently, affect plant growth processes, such as root growth
(Cary et al., 1995; Růžička et al., 2007). The complexity of the hor-
monal regulatory network underlying stress responses has been
suggested (Lehotai et al., 2012) by the activation of both CK and
ET signaling in response to selenite-induced stress by means of the
ARR5 and ACS8 markers and decrease in the auxin levels.

Interestingly, the CK-ET and CK-ABA interactions exhibit
tissue-specific features. CK treatments have been demonstrated to
promote the ABA accumulation in shoots, but not in roots, in con-
trast to ET that accumulates predominantly in roots in response
to high CK levels (Žd’árská et al., 2013).

PLANT HORMONES IN RESPONSES TO BIOTIC STRESSES
Hormones also tightly regulate plant responses against pathogens.
The networks that control the immune responses in plants are
highly complex and have been extensively reviewed (Feys and
Parker, 2000; Broekaert et al., 2006; Robert-Seilaniantz et al.,
2007; Nishimura and Dangl, 2010). The best characterized hor-
mones that play a role in pathogen response/defense are salicylic
acid (SA), jasmonate (JA), and ET. Depending on the lifestyle
of the pathogens, a different response will be triggered by the
plant. Against biotrophic pathogens, the resistance largely depends
on SA-mediated responses and the principal defense strategy is
programmed cell death (apoptosis) that restricts the biotrophic
pathogen to the infection site, preventing its proliferation, and
further spreading in the plant (Dangl and Jones, 2001; Jones and
Dangl, 2006; Nishimura and Dangl, 2010; An and Mou, 2011). In
contrast, for necrotrophic pathogens that feed on death tissue only,
cell death is beneficial. These pathogens induce defense responses
that depend on JA and ET to prevent cell death and that trigger the
secretion of antimicrobial compounds and the accumulation of
proteins with antimicrobial and antifungal activity, such as plant
defensins (Overmyer et al., 2000; Andi et al., 2001; Alonso and
Stepanova, 2004; Broekaert et al., 2006; Balbi and Devoto, 2008;
Fonseca et al., 2009; Gfeller et al., 2010). Because of their difference
in the nature of the defense strategy, the JA–ET interaction tends
to antagonize the SA responses (Peña-Cortés et al., 1993; Doares
et al., 1995; Petersen et al., 2000; Kloek et al., 2001), so that the
stress-activated JA–ET signaling might suppress the SA-mediated
resistance and vice versa. However, these two pathways might syn-
ergistically interact and be considered a fine-tuning mechanism to

respond to biotic stresses (Cui et al., 2005; Mur et al., 2006; Truman
et al., 2007).

Once the pathogens or microbes have gained access to the plant
tissues, they are sensed in each cell by pattern recognition receptors
present in the plasma membrane of the host plant cells and bind to
microbe-associated molecular patterns (MAMPs; Gómez-Gómez,
2004; Zipfel et al., 2006), the mechanism designated basal resis-
tance or MAMP-triggered immunity (MTI). To overcome MTI,
pathogens secrete effectors into the plant cytosol. In this man-
ner, these proteins interfere with the plant immune responses
(Chisholm et al., 2006) and modify the host proteins to evade
detection and, hence, enhance their virulence, which is referred
to as effector-triggered susceptibility. However, the coevolution of
plants and microbes has led to the acquisition of the R proteins
that specifically recognize these pathogen effectors or avirulence
(avr) proteins in a characterized response known as gene-for-gene
resistance or effector-triggered immunity (ETI) (Flor, 1971). This
specific resistance response is noticeable by localized cell death
at the infection site and is known as the hypersensitive response
(Hammond-Kosack and Jones, 1996; Greenberg and Yao, 2004).

SALICYLIC ACID IN BIOTIC STRESSES
During the hypersensitive response, different signal transduc-
tion pathways are activated. Tissues distal from the infection
site develop an enhanced broad-spectrum resistance to secondary
infections that is the systemic acquired resistance (SAR; Yarwood,
1960; Ross, 1961). Before SAR is triggered in remote leaves, SA,
which is crucial for this defense strategy, accumulates (Malamy
et al., 1990). When transgenic Arabidopsis plants express the bac-
terial SA hydroxylase gene nahG that disables the SA accumulation
because of its fast turnover to catechol, they cannot develop
SAR and induce the pathogen resistance (PR) gene expression
(Gaffney et al., 1993; Delaney et al., 1994). Furthermore, lipid
transfer proteins and SA-binding proteins might be involved in the
SA accumulation-triggering signaling in SAR (Park et al., 2007).
The non-expresser PR1 (NPR1) protein acts downstream of SA
and transduces the signal to promote the PR gene expression
(Durrant and Dong, 2004). During SAR induction, an oxidative
burst occurs, followed by an increase in antioxidants to neutral-
ize the harmful effects of reactive oxygen species. This reducing
environment can then convert NPR1 from its inactive oligomeric
form into its activated monomeric form that can be transported
from the cytosol to the nucleus and activate transcription factors
(Kanzaki et al., 2003; Mou et al., 2003), via protein-protein inter-
actions between NPR1 and the TGACG sequence-specific (TGA)
transcription factors (Zhang et al., 1999).

JASMONIC ACID AND ETHYLENE IN BIOTIC STRESSES
The defense response to an attack by necrotrophic pathogens and
chewing insects is mediated through the JA pathway that com-
monly acts together with ET to mount a coordinated defense
response. One of the best characterized components of the JA
signaling pathway is the coronatine insensitive (COI1) recep-
tor (Devoto et al., 2002; Xu et al., 2002). COI1 is part of the
Skp1/Cullin/F-box (SCF) E3 ubiquitin-ligase protein degrada-
tion complex SCFCOI1. High JA levels promote the interaction
of the SCFCOI1 complex with the JA ZIM (JAZ) domain repressors
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and activate the transcription of JA-responsive genes. The coi1
mutants that lack the functional JA receptor are more suscep-
tible to infections by insects and necrotrophic pathogens, such
as Botrytis cinerea, Pythium irregulare, or Alternaria brassicicola
(van Wees et al., 2003; Adie et al., 2007; Ferrari et al., 2007; Ye
et al., 2012). Likewise, mutations that stabilize the JAZ proteins
(JAZ1�3A) increase the susceptibility against herbivores, such as
Spodoptera exigua (Chung et al., 2008), further supporting the sig-
nificance of a functional JA signaling pathway in plant defense
responses.

The JA-mediated responses against pathogens is strengthened
by the ET activity. Ethylene is perceived in plants by the receptors
ethylene resistant1 (ETR1), ETR2, ethylene-insensitive4 (EIN4),
ethylene response sensor1 (ERS1), and (ERS2) that belong to a his-
tidine kinase family (Bleecker et al., 1988; Chang et al., 1993; Hua
et al., 1995, 1998; Sakai et al., 1998). Mutations in these receptors
not only confer ET insensitivity, but also increase susceptibility to
necrotrophic pathogens (Geraats et al., 2003). Downstream from
these receptors, the Raf-like kinase constitutive triple response 1
(CTR1) is active, which is a negative ET response regulator. In
the presence of ET, the CTR1 repression activates EIN2 (Guzmán
and Ecker, 1990; Kieber et al., 1993; Chao et al., 1997) and, subse-
quently, stimulates the EIN3/EIL-like (EIL) transcription factors,
whereas mutations in EIN2 confer ET insensitivity, in addition
to an increased susceptibility to necrotrophic pathogens (Geraats
et al., 2003).

Although both JA and ET contribute jointly to the plant’s
fight against pathogen attacks, the molecular mechanisms of their
crosstalk are not well understood, but new insights into the molec-
ular mechanisms underlying their interactions have been provided
(Zhu et al., 2011). The JAZ repressors of the JA signaling interact
physically with the EIN3/EIL1 transcription factors and attenuate
their ability to activate genes (Zhu et al., 2011). This interaction
has a striking developmental impact, because it enables JA to con-
tribute to the ET response regulation. Thus, besides the classical
mechanism in which ET induces the EIN3/EIL1 stabilization (Guo
and Ecker, 2003; Potuschak et al., 2003), EIN3/EIL1 is released
from repression by JA through JAZ degradation, thereby triggering
ET responses (Zhu et al., 2011).

The hormonal interplay between pathways that depend on
JA–ET and SA is particularly important when plants are exposed
to multiple pathogens of both biotrophic and necrotrophic types.
Under such conditions, an effective defense requires only one of
these pathways, but still they need to be tightly balanced with each
other. This very complex crosstalk between JA and SA has been
reviewed thoroughly (see Beckers and Spoel, 2006; Thaler et al.,
2012).

CYTOKININ AND ITS CROSSTALK WITH SALICYLIC ACID
One of the first indications on the involvement of CK in biotic
stress came from tobacco (Nicotiana tabacum) plants in which the
S-adenosyl-homocysteine hydrolases (SAHHs) were downregu-
lated. Originally, SAHHs have been studied in mammals because
of their role in the regulation of transmethylation and mRNA
5′ capping during viral replication (De Clercq, 1998). Interest-
ingly, the tobacco plants with low SAHH expression not only
exhibited an enhanced resistance against the tobacco mosaic virus

(TMV), cucumber mosaic virus, potato virus X, and potato virus Y
(Masuta et al., 1995), but also increased CK levels and CK-related
developmental defects.

In attacked plants, the CK levels are coregulated with the SA
levels (Kamada et al., 1992; Sano et al., 1994, 1996; Masuta et al.,
1995). Tobacco plants that overexpressed the Ras-related small
GTP-binding protein 1 (RGP1)-encoding gene exhibited higher
levels of SA and of the acidic pathogenesis-related 1 (PR-1a) gene
than those of wild-type plants, in correlation with an enhanced
resistance against TMV infection. Interestingly, these transgenic
plants also showed phenotypes typical for a high endogenous
CK activity, such as reduced apical dominance and increased
tillering (Kamada et al., 1992), as was, indeed, confirmed later
(Sano et al., 1994, 1996). Furthermore, in both wild-type and
RGP1-overexpressing plants, the CK perception inhibited by the
use of the competitive inhibitor 2-chloro-4-cyclohexylamino-6-
ethylamino-s-triazine interfered with the expression of the SA-
dependent PR-1a and the basic JA-dependent PR-1 after wounding
(Sano et al., 1996), thereby suggesting that CK contributes to the
defense responses mediated by SA and JA.

As mentioned, the recognition of the pathogen Avr effector
proteins by the resistance (R) proteins is an important part in
plant defense responses. This interaction triggers ETI, which is
characterized by the production of SA and the subsequent induc-
tion of PR genes and SAR. A dominant-positive mutant of the
coiled-coil nucleotide-binding leucine-rich-repeat (CC-NB-LRR)
protein UNI (uni-1D) that constitutively activates ETI (Igari et al.,
2008) exhibits an enhanced expression of PR-1, PR-5, and of
the type-A ARR CK-signaling repressors and increased endoge-
nous CK levels, with phenotypic alterations typical for high CK
activity as a consequence (Figure 2; Igari et al., 2008). In uni-1D
plants, CK levels decreased by the CKX1 induction reduces both
the PR-1 and of type-A ARR gene expression. However, in these
uni-1D plants, overexpression of the bacterial SA hydroxylase-
encoding nahG gene prevents SA accumulation and interferes with
the PR-1 expression, but without effect on the type-A ARR gene
induction and the CK-like phenotypes (Igari et al., 2008). A sim-
ilar CK-related phenotype has been observed in the knockdown
mutant rin4K-D of the resistance to Pseudomonas syringae pv.
maculicola (RPM1)-interacting protein 4 (RIN4), which is a neg-
ative regulator of R proteins. In rin4K-D plants, the R proteins
Resistant to P. syringae 2 (RPS2) and RPM1 are constitutively
active and trigger ETI, whereas both PR-1 and ARR5 transcript
levels are upregulated and the phenotypic alterations are typical
for high CK activity (Figure 2; Igari et al., 2008).

Another indication of the crosstalk between CK and SA has
emerged from the characterization of the CRF 5 (Figure 2;
Liang et al., 2010). Indeed, the CRF5 expression is upregulated
in response to Pseudomonas syringae pv. tomato DC3000 (Pst
DC3000) and the transcript levels of SA-induced PR-1, PR-3,
PR-4, and PR-5 are increased in the CRF5-overexpressing lines
(Rashotte et al., 2006; Cutcliffe et al., 2011). This crosstalk mech-
anism between CK and SA has been elucidated (Choi et al., 2010)
by showing that pretreatment of Arabidopsis plants with CK
significantly increased the resistance against Pst DC3000 infec-
tion. Correspondingly, mutants defective in CK perception and
signaling, such as ahk2/ahk3 and arr2, or plants with reduced
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FIGURE 2 | CK and hormonal crosstalks during biotic stress responses.

Pathogen attacks stimulated by PAMP-triggered immunity (PTI) and
effector-triggered immunity (ETI) correlate with a dramatic production of SA
and CK. The accumulation of CK will induce the production and accumulation
of phytoalexins in a SA-independent manner and also enhance the
SA-dependent immunity. In response to pathogens, NPR1 monomerizes and
translocates to the nucleus where it interacts with TGA3. The NPR1-TGA3

activity is further regulated through interaction with the type-B ARR2
response regulator, a component of the CK signaling pathway. The
TGA3-NPR1-ARR2 complex is required to induce the SA-mediated resistance
and to trigger the expression of PR1 and PR2. High CK levels, induced after
pathogen attacks, can activate the CRF5-mediated branch of the CK signaling
pathway and contribute to the regulation of the PR1, PR3, PR4, and PR5
expression.

endogenous CK levels, such as 35S::CKX2 and 35S::CKX4, were
more susceptible to Pst DC3000. In contrast, the plant resistance
to Pst DC3000 was enhanced by high endogenous CK levels due
to overexpression of the CK biosynthesis (IPT) genes or by CK
signaling promoted by increased ARR2 expression (Choi et al.,
2010). Therefore, CK has been proposed to affect priming, a
defense-related response activation and might assist plants to cope
with infections through the induced SA signaling and increased
PR expression levels (Igari et al., 2008; Choi et al., 2010; Liang
et al., 2010). This scenario is strongly supported by the findings
that ARR2 interacts directly with the SA response factor TGA3,
which binds the promoter regions of PR-1 and PR-2, and that
this interaction is essential for the enhanced resistance of the
35S::ARR2 lines. Altogether, both the SA-triggered translocation
of NPR1 into the nucleus and the formation of a complex with
TGA3-ARR2 are seemingly necessary for the development of a
full SA-mediated defense response (Choi et al., 2010, 2011). The
impact of CK on the plant defense has been characterized in the

Pst DC3000-Arabidopsis interaction model with the SA induction
deficient 2 (sid2) mutant that fails to accumulate SA (Naseem et al.,
2012). The increased susceptibility of sid2 toward Pst DC3000 can
only be partially recovered by CK treatment (Naseem et al., 2012),
thereby supporting that CK treatments enhance the immunity in
an SA-dependent manner (Naseem and Dandekar, 2012).

Recently, the CK-promoted protection against pathogenic
infections has been suggested to be involved in SA-independent
mechanisms (Großkinsky et al., 2011). In the P. syringae pv. tabaci-
tobacco interaction model, higher CK levels before infection
increase the resistance of tobacco against P. syringae pv. tabaci
and this resistance depends on increases phytoalexin levels, such
scopoletin and capsidiol, which accumulate in the presence of CK
(Großkinsky et al., 2011). Thus, the mechanism underlying the
CK-mediated resistance of tobacco differs from that in Arabidop-
sis that is based on an SA-dependent transcriptional control. In the
solanaceous plant species, CK appears to promote primary defense
responses through an increase of the phytoalexin-pathogen ratio
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in the early infection phases that then efficiently restricts the
pathogen development.

CYTOKININ AND ITS CROSSTALK WITH JASMONIC ACID
Even though there is not much evidence for an interplay between
JA and CK, these hormonal pathways might be linked directly
(Ueda and Kato, 1982; Dermastia et al., 1994; Sano et al., 1996)
and their interaction might be antagonistic (Naik et al., 2002;
Stoynova-Bakalova et al., 2008). Typically, in wounded plants,
the JA levels increase significantly, whereas the SA levels remain
unchanged, but both CK applications and high endogenous CK
levels accelerate the defense response to reach a faster maximum
release of JA and methyl jasmonate (MeJA) than in control plants
(Sano et al., 1996; Dervinis et al., 2010). In potato (Solanum tubero-
sum), JA treatments can induce the accumulation of CK ribosides
(Dermastia et al., 1994), whereas they might strongly inhibit the
CK-induced callus growth (Ueda and Kato, 1982). These observa-
tions hint at a very complex and unexplored interplay, in which
the outcome probably depends not only on the CK-JA ratio, but
also that of other hormones as well.

CYTOKININ AND ITS CROSSTALK WITH AUXIN
Crosstalk between CK and auxin has been widely studied over the
years, particularly in a developmental context in which their inter-
action is primarily antagonistic (Bishopp et al., 2011; Vanstrae-
len and Benková, 2012), although a number of recent studies
undoubtedly point toward a role of auxin in stress responses.
Various pathogens can produce auxins or modulate auxin lev-
els in planta to enhance the plant susceptibility to infection (Chen
et al., 2007; An and Mou, 2011). In Arabidopsis plants lacking
the functional RPS2 gene, the expression of the P. syringae type
III effector AvrRpt2 decreased the resistance against Pst DC3000,
and also show altered auxin levels and auxin-related phenotypes
(Chen et al., 2007). This direct correlation between sensitivity and
auxin levels implies that auxin promotes plant susceptibility. Also,
a recent study in which PR1 was used as a marker gene in the
Pst DC3000–Arabidopsis interaction revealed that, whereas the
immunity was positively promoted by CK and SA, it was neg-
atively regulated by auxin, JA, and ABA (Naseem et al., 2012).
Interestingly, the positive effect of CK pretreatments on the plant
immunity can be repressed by a combined CK and auxin treatment
(Naseem et al., 2012). Based on this evidence, CK and auxin might
play a highly possible antagonistic role in plant defense responses,
but the specific mechanisms that modulate this crosstalk are still
unknown.

A model for the CK–auxin interplay in plant defense has
been proposed (Naseem and Dandekar, 2012). After infection,
pathogens will modulate the auxin levels and the signaling that
will diminish the responses mediated by SA and CK, whereas CK
pretreatments will prevent the auxin-based susceptibility, due to
the known effect of CK on auxin transport and signaling.

CONCLUSIONS AND FUTURE PERSPECTIVES
Nowadays, one of the major objectives of plant biologists is to
improve plant performances under less favorable environmental
conditions. By enhancing plant defense responses against biotic
and abiotic stress, non-cultivable land might be used, the losses due

flooding and infections be decreased, and the amount of applied
fertilizers and pesticides in the fields be reduced. However, because
the crosstalk between stress-related and developmental hormones
is largely unknown, and uncharacterized, usually unforeseen prob-
lems occur when the stress resistance is modified. Ideally, plants
with enhance resistance to stress or pathogen attacks should not be
affected in growth or developmentally hampered. In this context, it
is crucial to understand the hormonal crosstalks underlying plant
responses to various stresses, because the modification of one sin-
gle hormonal pathway will very probably alter the activity of other
hormonal pathways as well.

The complexity of the impact of hormones on the resistance to
stress can be nicely illustrated with examples of plants with altered
CK levels. Due to the importance of CK in stress responses, several
genes involved in the regulation of CK levels have been proposed
as possible targets to enhance stress resistance, such as the IPT and
CKX genes (Werner et al., 2010; Nishiyama et al., 2011; Wang et al.,
2011b). However, the benefit of the stress-tolerant phenotype of
the IPT loss-of-function mutants or of CKX-overexpressing plants
was counteracted by developmental defects caused by low bioactive
CK levels, such as N6-(�2-isopentenyl)adenine and trans-zeatin
(Nishiyama et al., 2011). To overcome this drawback, it is necessary
to control the CK activity either in an organ or in a tissue-specific
manner, an approach that has already been used in several species
(McCabe et al., 2001; Sýkorová et al., 2008; Ghanem et al., 2011;
Qin et al., 2011). For instance, as a consequence of downregulated
CK levels in root tissues only (Werner et al., 2010), root length,
branching, and biomass increased and the plants were also more
resistant to abiotic stress treatments, such as severe drought or
heavy metal contaminations (Werner et al., 2010). Furthermore,
modulation of CK-mediated defense to stress might at the same
time attenuate the input provided by other signaling pathways,
such as ABA (Wang et al., 2011b). A reduced CK content leads
to a decrease in ABA content and hypersensitivity to ABA treat-
ments (Nishiyama et al., 2011), in contrast to the stressed plants
in which the ABA levels are upregulated (Stoll et al., 2000; Hansen
and Dörffling, 2003; Kudoyarova et al., 2007). Correspondingly,
overexpresssion of IPT8 results in insensitivity to ABA treatments
and prevents the induction of ABI1 and ABI5 in seedlings (Wang
et al., 2011b). These examples clearly show that a good knowledge
of the molecular mechanisms underlying the hormone-mediated
responses and of the mutual communication among hormonal
pathways might be very rewarding in the targeted modulation
of specific hormonal pathways and, hence, in the effective plant
adaptation to concrete environmental conditions.

Extended studies on the genes that mediate the crosstalk
between CK and other developmental and stress-related hormones
might identify novel targets for the stress tolerance improve-
ment of crop species. Importantly, the identification of molecular
components and mechanisms that mediate the phytohormonal
interplay might enable us to dissect the stress-related from the
developmental functions.

Finally, to increase the plant resistance against various stresses,
new alternative approaches should take in account the specific
features of the plant species and the distinct mechanisms that
underlay their stress responses (Choi et al., 2010; Großkinsky
et al., 2011). A nice example of such a strategy is the enhanced
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drought stress tolerance of alfalfa (Medicago sativa) by means
of CK-overproducing Sinorhizobium meliloti without impact on
nitrogen fixation (Xu et al., 2012).
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