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Phosphate (Pi) limitation causes drastic lipid remodeling in plant membranes. Glycolipids
substitute for the phospholipids that are degraded, thereby supplying Pi needed for
essential biological processes. Two major types of remodeling of membrane lipids
occur in higher plants: whereas one involves an increase in the concentration of
sulfoquinovosyldiacylglycerol in plastids to compensate for a decreased concentration
of phosphatidylglycerol, the other involves digalactosyldiacylglycerol (DGDG) synthesis
in plastids and the export of DGDG to extraplastidial membranes to compensate for
reduced abundances of phospholipids. Lipid remodeling depends on an adequate supply
of monogalactosyldiacylglycerol (MGDG), which is a substrate that supports the elevated
rate of DGDG synthesis that is induced by low Pi availability. Regulation of MGDG
synthesis has been analyzed most extensively using the model plant Arabidopsis thaliana,
although orthologous genes that encode putative MGDG synthases exist in photosynthetic
organisms from bacteria to higher plants. We recently hypothesized that two types of
MGDG synthase diverged after the appearance of seed plants.This divergence might have
both enabled plants to adapt to a wide range of Pi availability in soils and contributed to
the diversity of seed plants. In the work presented here, we found that membrane lipid
remodeling also takes place in sesame, which is one of the most common traditional
crops grown in Asia. We identified two types of MGDG synthase from sesame (encoded
by SeMGD1 and SeMGD2) and analyzed their enzymatic properties. Our results show that
both genes correspond to the Arabidopsis type-A and -B isoforms of MGDG synthase.
Notably, whereas Pi limitation up-regulates only the gene encoding the type-B isoform of
Arabidopsis, low Pi availability up-regulates the expression of both SeMGD1 and SeMGD2.
We discuss the significance of the different responses to low Pi availability in sesame and
Arabidopsis.
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INTRODUCTION
The regulation of galactolipid synthesis in Arabidopsis thaliana
under phosphate (Pi)-limited conditions has been studied exten-
sively. Under Pi-sufficient conditions, the galactolipids mono-
galactosyldiacylglycerol (MGDG) and digalactosyldiacylglycerol
(DGDG) are found exclusively and abundantly in plastids,
especially in thylakoid membranes. They are not observed in
other extraplastidial membranes (Joyard et al., 1998). Under
Pi-depleted conditions, synthesis of MGDG and DGDG is up-
regulated, and DGDG is exported from plastids to extraplas-
tidial membranes to help maintain membrane structure after
phospholipid degradation (Essigmann et al., 1998; Härtel et al.,

2000; Andersson et al., 2003, 2005; Jouhet et al., 2004). DGDG
can substitute for phosphatidylcholine (PC) in the mem-
brane because DGDG and PC are both bilayer-forming lipids,
whereas MGDG is not (Murphy, 1986). Regarding the sub-
stitution for non-bilayer or anionic phospholipids such as
phosphatidylethanolamine and phosphatidylinositol under Pi-
depleted conditions, glucuronosyldiacylglycerol was suggested to
play an essential role (Okazaki et al., 2013).

Although MGDG moiety is unlikely to have a role in PC substi-
tution, MGDG plays an important role as a precursor for DGDG
synthesis under Pi-depleted conditions. DGDG is produced by
galactosylation of MGDG by the DGDG synthases DGD1 and
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DGD2 in Arabidopsis (Härtel et al., 2000; Kelly and Dörmann,
2002; Kelly et al., 2003). Both DGD1 and DGD2 contribute to
DGDG production under Pi-sufficient and Pi-limiting conditions,
but the contribution of DGD2 to the increase in extraplastidial
DGDG concentrations under Pi-depleted conditions is larger than
that of DGD1 (Härtel et al., 2000; Kelly and Dörmann, 2002; Kelly
et al., 2003).

There are three MGDG synthases in Arabidopsis that are clas-
sified into two types: type A (MGD1) and type B (MGD2 and
MGD3; Awai et al., 2001). Type-A MGD1 is mainly involved
in the bulk of MGDG synthesis and plays a critical role dur-
ing the development of chloroplasts and the formation of the
photosynthetic apparatus. Analysis of mgd1-1 knockdown and
mgd1-2 knockout mutants indicated that the role of MGD1 can-
not be fully complemented by MGD2 or MGD3 (Jarvis et al., 2000;
Kobayashi et al., 2007, 2013). Under nutrient-sufficient condi-
tions, the expression levels of MGD2 and MGD3 are very low
in vegetative tissues (Awai et al., 2001; Kobayashi et al., 2004).
The relatively high levels of MGD2 transcripts in non-green tis-
sues such as flowers suggest that galactolipids are likely to have
important roles in these organs (Awai et al., 2001; Kobayashi et al.,
2004). Indeed, DGDG is a major glycolipid in floral organs, and
galactolipid-producing activity is highly up-regulated in the pis-
tils, petals, and elongated pollen tubes of Petunia hybrida and
Lilium longiflorum flowers during their development (Nakamura
et al., 2003, 2009a). However, the role of type-B MGDG synthase
during flower development has not been defined given that nei-
ther a mgd2 single nor a mgd2mgd3 double knockout mutant
displayed any distinctive flower phenotype compared with that
of wild-type (WT) plants (Kobayashi et al., 2009a). This suggests
that type-A MGDG synthase may complement the function of
type-B MGDG synthase in the flower (Kobayashi et al., 2009a).
Under nutrient-sufficient conditions, AtMGD3 is relatively highly
expressed in roots compared with other organs, but roots of mgd3
plants showed no obvious phenotype compared with WT. These
results suggest that type-B MGDG synthases have no crucial role
in seedling development under nutrient-sufficient conditions, at
least in Arabidopsis.

In contrast, under Pi-depleted conditions, type-B MGDG
synthases have an essential role in membrane lipid remodeling
(Kobayashi et al., 2009a). MGD2 and MGD3 are main contribu-
tors to the increase in DGDG concentrations during Pi starvation
by supplying a substrate for DGDG synthesis. Although levels of
MGD1 transcripts remain unchanged under Pi-depleted condi-
tions, MGD1 also partially contributes to the increase in DGDG
concentrations under Pi-depleted conditions; concentrations of
DGDG in leaves are increased in mgd2mgd3 under Pi-depleted
conditions (Kobayashi et al., 2009a). Moreover, among the two
type-B MGDG synthases of Arabidopsis, MGD3 seems to be a
main contributor of MGDG synthesis induced by low Pi availabil-
ity; although developmental defects are observed in mgd3 and
mgd2mgd3 mutants, no significant defects are observed in the
mgd2 mutant (Kobayashi et al., 2009a).

More than a decade has passed since the first isolation of genes
encoding type-B MGDG synthases from Arabidopsis, and molec-
ular and biochemical analyses of Arabidopsis mutant plants or
WT plants treated with chemical inhibitors of MGDG synthesis

have revealed many details of the regulation of MGDG synthesis
under Pi-depleted conditions (Botté et al., 2011; Boudière et al.,
2012). Besides Arabidopsis, membrane lipid remodeling under
Pi-depleted conditions has also been observed in Avena sativa,
Glycine max, Phaseolus vulgaris, Acer pseudoplatanus (suspension-
cell cultures), Helianthus annuus, Oryza sativa, Raphanus sativus,
Tropaeolum majus, Zea mays, and six Proteaceae species (Anders-
son et al., 2003; Gaude et al., 2004; Jouhet et al., 2004; Russo et al.,
2007; Tjellström et al., 2008; Lambers et al., 2012). These data sug-
gest that the up-regulation of galactolipid synthesis following Pi
depletion might be conserved in several higher plants and that
it might offer a competitive advantage that allows certain plant
species to survive in Pi-limited environments (Kobayashi et al.,
2009b; Yuzawa et al., 2012). Indeed, recent comprehensive phylo-
genetic analyses of genes that encode MGDG synthases in bacteria
and plants conducted by our group suggested that a gene encoding
a type-B MGDG synthase might have been acquired around the
time of the emergence of seed plants; this gene might have been
critical to the adaptation of plant species to Pi-limited conditions,
which may often have occurred on land during an early phase of
the evolution of life on earth (Ohta et al., 2012).

Here we report our findings following analysis of the regulation
of MGDG synthesis in sesame, Sesamum indicum L. Sesame is one
of the most popular traditional crops in Asia. Sesame plants can
grow in soils such as acidic volcanic ash, which suggests their
potential suitability as model plants that are relatively tolerant to
low available Pi. In this paper, we mainly compared the regulation
of MGDG synthesis in sesame with that in Arabidopsis because
the regulation of MGDG synthesis at a molecular level is better
understood in Arabidopsis than in any of the other higher plants
in which this has been analyzed.

RESULTS
MORPHOLOGICAL DIFFERENCES BETWEEN SESAME AND
ARABIDOPSIS UNDER Pi-DEPLETED CONDITIONS
Morphology and biochemical processes can be markedly affected
when plants are exposed to a Pi-depleted growth environment.
Morphological changes, such as growth retardation of shoots and
primary roots and elongation of lateral roots and root hairs, have
been documented extensively in Arabidopsis plants transferred
to Pi-depleted conditions (Bates and Lynch, 1996; Raghothama,
1999; Ticconi and Abel, 2004; Desnos, 2008; Péret et al., 2011; Sato
and Miura, 2011). When sesame seedlings were grown under Pi-
depleted conditions, morphological changes in the lateral roots
seemed to be more obvious than those observed in Arabidopsis
(Figure 1A). We measured fresh weight per seedling under Pi-
sufficient or -depleted growth conditions for shoots and roots,
respectively (Figure 1B). It should be noted that conflicting effects
of Pi depletion have been reported for Arabidopsis. Whereas
Kobayashi et al. (2009a) reported that the fresh weight of shoots
and that of roots both decreased when plants were grown under
Pi-depleted conditions (0 mM Pi in agar medium containing 1%
sucrose), Versaw and Harrison (2002) observed that the fresh
weight of shoots decreased but that of roots was unchanged under
other Pi-depleted conditions (0.2 mM Pi in agar medium without
sucrose). Sucrose in the growth medium enhances the sensitivity
of plants to Pi depletion (Lei and Liu, 2011). Given that we used
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FIGURE 1 | Sesame plants grown under phosphate (Pi)-sufficient and

Pi-depleted conditions. (A) Growth phenotypes of sesame seedlings
grown on Pi-sufficient medium for 5 days and then on Pi-sufficient (+Pi) or
Pi-depleted (−Pi) medium for 7 days. Bars represent 1 cm. (B) Fresh
weights of shoots and roots of sesame plants grown on Pi-sufficient
medium for 5 days and then on +Pi or −Pi medium for 14 days. Values
shown for each of shoots (n = 3) and roots (n = 3) represent the
mean ± SE for three independent measurements.

the same growth medium as Kobayashi et al. (2009a), we compared
the sesame phenotype with their Arabidopsis data.

In sesame, fresh weight of shoots was drastically decreased
upon transfer to Pi-depleted medium, similar to the effects shown
by Kobayashi et al. (2009a) for Arabidopsis. In contrast, the fresh
weight of roots remained unchanged upon transfer to Pi-depleted
medium (Figure 1B). These data showed that, when sesame and
Arabidopsis are compared, the morphological changes caused by
low-Pi stress are similar in shoots but different in roots. The
data further suggested that the significant elongation of lat-
eral roots in sesame plants grown under Pi-depleted conditions
might offer an advantage for survival under conditions of low Pi
availability.

COMPARISON OF THE MEMBRANE LIPID COMPOSITIONS OF SESAME
AND ARABIDOPSIS DURING Pi STARVATION
Regarding the lipid compositions of cellular membranes under
Pi-depleted conditions, Arabidopsis is known to degrade phos-
pholipids and supply Pi needed for essential biological processes.
A simultaneous increase in the concentration of the galactolipid
DGDG compensates for the loss of phospholipids from mem-
branes. In both shoots and roots of sesame plants grown under
Pi-depleted conditions, the mol% (relative to total membrane
lipids) of DGDG and sulfoquinovosyldiacylglycerol (SQDG)
increased and that of phospholipids (phosphatidylglycerol, phos-
phatidylethanolamine, phosphatidylinositol, and PC) decreased
(Figures 2A,B). In shoots, most of the changes were comparable
between Arabidopsis and sesame (Figure 2A). However, Pi deple-
tion decreased the phospholipid mol% (relative to total membrane
lipids) by 32% (from 79 to 47%) in sesame roots (Figure 2B).
This reduction is slightly larger than the 24% reduction (from 88
to 64%) observed in Arabidopsis roots (Kobayashi et al., 2009a).
In sesame roots grown under Pi-sufficient conditions, the molar
ratio of galactolipids MGDG and DGDG in the total membrane
lipids (20%) was much higher than that in Arabidopsis roots (9%;
Kobayashi et al., 2009a). This difference might result from differ-
ences in the abundance of plastids in sesame roots under both of
the Pi conditions tested. Exposure of Arabidopsis to Pi-depleted

FIGURE 2 | Lipid analysis of sesame seedlings under phosphate

(Pi)-sufficient and Pi-depleted conditions. (A,B) Molar ratio of membrane
lipids of shoots (A) and roots (B). Fatty acid compositions of MGDG (C,E)

and DGDG (D,F) in shoots (C,D) and roots (E,F). Gray bars and black bars
indicate Pi-sufficient and Pi-depleted conditions, respectively. MGDG,
monogalactosyldiacylglycerol; DGDG, digalactosyldiacylglycerol; PC,
phosphatidylcholine; PE, phosphatidylethanolamine; PG, phosphati-
dylglycerol; PI, phosphatidylinositol; SQDG, sulfoquinovosyldiacylglycerol.
Values represent the mean ± SD from three independent measurements.

conditions increases the ratio of DGDG to total acyl lipids in
roots but not that of MGDG to total acyl lipids (Kobayashi et al.,
2009a). Under Pi-depleted conditions, however, not only were
mol% of DGDG and MGDG in sesame roots increased relative
to the respective mol% under Pi-sufficient conditions, but also
the total molar ratio of MGDG and DGDG (combined) reached
53% of the total membrane lipids, which is 20% higher than that
measured in Arabidopsis roots (Kobayashi et al., 2009a).

Phosphate depletion caused a marked decrease in the abun-
dances of phospholipids in sesame roots. These data suggested
that, under Pi-depleted conditions, MGDG synthesis in sesame
roots was more strongly up-regulated than in Arabidopsis roots
and that the increased supply of Pi from the accelerated degrada-
tion of phospholipids might render sesame plants tolerant to low
Pi availability by enabling them to maintain root growth under
Pi-depleted conditions.

The effects of Pi depletion on the fatty acid composition of
MGDG and DGDG in sesame are shown in Figures 2C–F. Given
that MGDG contains no 16:3 fatty acid, which is a signature of
“16:3 plants,” sesame should clearly be categorized as one of the
“18:3 plants,” which only possess eukaryotic pathways for lipid
synthesis (Figures 2C,D; Heinz and Roughan, 1983; Li-Beisson
et al., 2013). Fatty acid compositions of DGDG under both of
the Pi conditions tested were similar in sesame (Figures 2E,F).
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Given that DGDG is mainly synthesized from diacylglycerol
derived from eukaryotic pathways under both Pi-sufficient and
-depleted conditions, the fatty acid composition of DGDG does
not differ substantially between Arabidopsis and sesame, although
they are distinctly categorized as “16:3 plants” and “18:3 plants,”
respectively (Figures 2E,F; Kobayashi et al., 2009a).

ISOLATION OF THE TWO GENES THAT ENCODE SESAME MGDG
SYNTHASES
We isolated two genes for sesame MGDG synthase, namely
SeMGD1 and SeMGD2 (accession numbers AB841066 and
AB841067, respectively). SeMGD1 is a 516-amino acid residue
protein that is predicted by ChloroP to contain a chloroplast transit
peptide (Emanuelsson et al., 1999) and is categorized as a type-A
MGDG synthase on the basis of its similarity to other type-A
MGDG synthases (Figure 3). SeMGD2 is a 475-residue protein
that is categorized as a type-B MGDG synthase. The failure to iden-
tify a putative chloroplast transit peptide in the SeMGD2 sequence
suggests that, like AtMGD2 and AtMGD3, SeMGD2 localizes to
the outer envelope membrane of chloroplasts. Comparison of
the amino acid sequences of SeMGD1 and SeMGD2 with other
MGDG synthases (Figure 3) indicated that SeMGD1 and SeMGD2
are highly similar to AtMGD1 (81.3%) and AtMGD2 (79.6%),
respectively. We could not find the third gene for MGDG synthase
by screening a sesame cDNA library. In Arabidopsis, AtMGD2 and
AtMGD3 are both involved in MGDG synthesis under Pi-depleted
conditions, but AtMGD3 is rather predominantly involved in
MGDG synthesis under Pi-depleted conditions (Kobayashi et al.,
2009a). Moreover, differences in expression patterns in seedlings
suggested that AtMGD2 and AtMGD3 have distinct tissue-specific
roles in development, although the mgd2 mutant did not show an
apparent phenotype compared with the WT (Awai et al., 2001;
Kobayashi et al., 2004). It is possible that sesame might have
another type-B MGDG synthase that has another function, given
that the cDNA library used was generated from cotyledons of
seedlings grown under Pi-sufficient conditions.

REGULATION OF TRANSCRIPT LEVELS OF SeMGDs UNDER
Pi-DEPLETED CONDITIONS
In Arabidopsis, AtMGD1 is constitutively expressed, whereas the
transcript abundance of AtMGD2 and AtMGD3 transcripts are
markedly increased after transfer to Pi-depleted conditions (Awai
et al., 2001; Kobayashi et al., 2004). However, it is not known
whether type-B MGDG synthases from other plant species are
transcriptionally up-regulated under Pi-depleted conditions. We
analyzed the abundance of SeMGD1 and SeMGD2 mRNAs under
Pi-sufficient and Pi-depleted growth conditions using quantitative
RT-PCR (Figure 4). In sesame, the observed increases in levels
of the SeMGD2 transcript under Pi-depleted conditions both in
shoots and roots (Figures 4C,D) showed that the transcriptional
up-regulation of genes that encode type-B MGDG synthases under
Pi-depleted conditions is conserved in plants other than Ara-
bidopsis. Similar to what was observed for AtMGD1, SeMGD1
expression in shoots remained unchanged under Pi-sufficient
and Pi-depleted conditions (Figure 4A), but that in roots under
Pi-depleted conditions was higher than that under Pi-sufficient
conditions (Figure 4B). AtMGD1 is constitutively expressed in

various organs, and levels of AtMGD1 transcript are not affected
by the Pi concentration in the growth medium (Awai et al., 2001;
Kobayashi et al., 2004). Thus, the regulation of MGDG synthesis
under Pi-depleted conditions seems to differ between Arabidopsis
and sesame.

REGULATION OF SeMGD ACTIVITY BY REDOX STATUS
Cucumis sativus MGD1 (CsMGD1) was the first MGDG synthase
for which the gene was isolated and identified in higher plants
(Shimojima et al., 1997). The enzymatic properties of CsMGD1
have been well characterized (Yamaryo et al., 2003, 2006). To ver-
ify whether SeMGDs could be regulated by cellular redox status,
we measured SeMGD activity under both oxidizing and reducing
conditions (Figures 5A,B). The specific activity of SeMGD1 was
much higher than that of SeMGD2, and the MGDG synthase activ-
ity of each SeMGD1 and SeMGD2 was regulated by redox status.
The inactivation of both SeMGD1 and SeMGD2 by oxidization
and their activation by reduction suggests that the activities of
both type-A and type-B MGD might be also regulated by cellu-
lar redox status, as has been shown for CsMGD1 (Yamaryo et al.,
2006).

When comparing various sequences of MGDG synthases, we
found five highly conserved cysteine residues at positions 277, 291,
383, 418, and 420 of CsMGD1 (Figure 3). Given that our results
showed that both types of SeMGDs are regulated by redox state,
these five cysteines may be important for enzyme activation.

IN VITRO ACTIVATION OF SESAME TYPE-B MGDG SYNTHASE BY
PHOSPHATIDIC ACID
CsMGD1, spinach MGD1, and AtMGD1 are each activated in vitro
by the inclusion of either phosphatidic acid (PA) or phosphatidyl-
glycerol (Covès et al., 1988; Ohta et al., 1995; Dubots et al., 2010).
Extensive biological analyses using Arabidopsis concluded that
the activation of MGD1 by PA is essential and indispensable for
MGDG synthesis in chloroplasts (Dubots et al., 2010). Although
the PA-binding residue in the mature protein of AtMGD1 was
not determined, the important residues for full activation by PA
were previously shown to be P189, H251, W287, and E456 (Dubots
et al., 2010; Figure 3). The conservation of all four of these residues
in SeMGD1 and SeMGD2, as well as the other MGDG synthases
compared in Figure 3, suggests that both SeMGD1 and SeMGD2
might be activated by PA. All published research on the activa-
tion by lipids was performed using type-A MGDG synthases. We
analyzed activation of type-A and type-B SeMGDs by PA using
partially purified recombinant enzymes expressed in Escherichia
coli. Intriguingly, both SeMGDs were activated by PA (Figure 6),
but again the specific activity of SeMGD1 was much higher than
that of SeMGD2. It should be noted that the specific activity of
desalted SeMGD1 and SeMGD2 in Figures 5A,B (∼6.0 × 104

and ∼0.7 × 102 nmol min−1 mg−1 protein, activity of oxidized
SeMGD1 and SeMGD2 + DTT, respectively) was higher than that
of the non-desalted proteins in Figures 6A,B (∼0.2 × 104 and
∼0.4 × 102 nmol min−1 mg−1 protein, activity of SeMGD1 and
SeMGD2 at PA = 0 mol%, respectively). The presence of salts
could also explain the difference in PA concentrations required for
the maximum activation of both types of SeMGD (10 mol% for
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FIGURE 3 | Amino acid sequence alignment for MGDG synthases. Red
and blue indicate conserved and similar residues, respectively. Identical
cysteines are indicated by asterisks; partially conserved cysteines are
indicated by open triangles. Four residues in AtMGD1 (P189, H251, W287,

and E456) are shown in gray. Cs, Cucumis sativus; At, Arabidopsis thaliana;
Se, Sesamum indicum L. Accession numbers are CsMGD (P93115), AtMGD1
(NP_849482), SeMGD1 (AB841066), AtMGD2 (NP_568394), AtMGD3
(NP_565352), and SeMGD2 (AB841067).
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FIGURE 4 | Quantitative RT-PCR analysis of SeMGD expression. (A–D)

Relative abundances of SeMGD1 (A,B) and SeMGD2 (C,D) mRNAs in
shoots (A,C) and roots (B,D) of plants grown under phosphate
(Pi)-sufficient (+Pi) and Pi-depleted (−Pi) conditions for 14 days after 5 days
of growth on Pi-sufficient medium. Values represent the mean ± SD from
three independent measurements. *P < 0.05.

SeMGD1, 18 mol% for SeMGD2) were substantially higher than
those required for AtMGD1 (0.6 mol%; Dubots et al., 2010).

DISCUSSION
It is well known that only DGDG, but not MGDG, can substi-
tute for membrane lipids (such as PC) outside of plastids. Given
that our data indicate that MGDG accumulates in Pi-depleted
roots of sesame plants, we were interested in understanding the
distribution of MGDG in roots (Figure 2B). In Arabidopsis, we
recently found that severe impairment of thylakoid membrane
formation in mgd1-2 is only partially complemented by the syn-
thesis of MGDG and DGDG that is induced by low availability
of Pi (Kobayashi et al., 2013). This suggests that only a small
part of MGDG and DGDG produced via MGDG synthesis cat-
alyzed by type-B MGDG synthase is able to be transported to
thylakoid membranes (Kobayashi et al., 2013). We also found that
up-regulation of type-B MGDG synthases under conditions of
low Pi availability contributes substantially to DGDG accumula-
tion but only slightly to MGDG accumulation (Kobayashi et al.,
2013), probably because type-B MGDG synthase is located in
the outer envelope membrane and the MGDG produced could
be used immediately for DGDG synthesis by DGD1 and DGD2,
which are also located in the outer envelope membrane of plastids.
Thus, from these results, we speculate that MGDG accumulated
in sesame roots might be derived from the induction of SeMGD1
rather than of SeMGD2 and that MGDG produced in Pi-deficient
roots accumulates within plastids.

The level of SeMGD1 expression was slightly increased in
roots under Pi-depleted conditions although the magnitude of
increase was smaller than that of SeMGD2 in roots and shoots
(Figures 4B–D). In Arabidopsis, AtMGD1 mRNA abundance
remains unchanged both in shoots and roots under the both Pi

FIGURE 5 | SeMGD activity under reducing and non-reducing

conditions. (A) SeMGD1. (B) SeMGD2. Non-oxidized, freshly purified
recombinant MGDG synthases from sesame were assayed. Oxidation was
performed as described in Materials and Methods. The assay was
performed in the presence (+) or absence (−) of dithiothreitol (DTT). Values
represent the mean ± SD from three independent measurements.

conditions (Awai et al., 2001; Kobayashi et al., 2004). Thus, it is
possible that the increase in MGDG concentration in sesame roots
was caused by a slight increase in the abundance of the transcript
encoding SeMGD1 in roots, i.e., given that the specific activity of
SeMGD1 was much higher than that of SeMGD2 (Figures 5 and
6). The distribution of MGDG under Pi-depleted conditions has
been controversial. Härtel et al. (2000) reported that MGDG con-
centrations outside of plastids increase slightly under Pi-depleted
conditions even in Arabidopsis. A slight accumulation of MGDG
has been observed in the plasma membranes of oat roots under
Pi-depleted conditions (Andersson et al., 2003, 2005). It will be
interesting to determine where and how MGDG might accumulate
in cells under Pi-depleted conditions.

Our data showed that cellular redox status can regulate the
activity of both types of SeMGD (Figure 5). It has been sug-
gested that thioredoxin is involved in the regulation of CsMGD1
(Yamaryo et al., 2006). However, we have no data to show that
SeMGD activity is regulated by thioredoxin in the same man-
ner as CsMGD1. Given that type-A MGDG synthase is localized
in the inner envelope membrane of plastids, we speculate that
the activation of type-A MGDG synthase by reduced thioredoxin
(photosynthetic activity increases the level of reduction of the
chloroplastic pool of thioredoxin) might account for the close cor-
relation between the development of the thylakoid membrane and
the maintenance of photosynthetic function. Consistent with this
proposal, type-A MGDG synthase is involved in the bulk of MGDG
synthesis, and the absence of the corresponding gene severely
decreases photosynthetic activity (Jarvis et al., 2000; Kobayashi
et al., 2007). On the other hand, the localization of type-B MGDG
synthase in the outer envelope membrane of plastids might leave
it less affected by the redox status of plastids (Awai et al., 2001;
Kobayashi et al., 2009a). Additional research is needed to clar-
ify how regulation of the activity of type-B MGDG synthase by
cellular redox status in vivo might be affected by low Pi availability.

Both types of SeMGD were activated by PA in vitro, although
the overall specific activity and the required concentration of PA
differed markedly between SeMGD1 and SeMGD2 (Figure 6).
SeMGD1 was markedly activated by 10 mol% PA, whereas
SeMGD2 activation required 20 mol% PA. We do not know why
the activation of MGDG synthases by PA displays such a narrow
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FIGURE 6 | Induction of SeMGD activity by phosphatidic acid (PA).

(A) SeMGD1. (B) SeMGD2. Values represent the mean ± SD from three
independent measurements.

optimum curve, but these concentrations of PA in cell membranes
(especially 20 mol% PA) are not physiologically relevant. More-
over, even after activation by PA, the activity of SeMGD2 was much
lower than that of SeMGD1 (Figure 6). Therefore, it seems pos-
sible that each SeMGD is activated by PA in vivo through direct
interaction with a PA-producing enzyme.

One unsolved problem is the pathway of PA supply for the
activation of MGDG synthases. PA could be supplied either
from inside or outside of plastids (Li-Beisson et al., 2013).
Among the known pathways for PA supply, the only one that
might be regulated by Pi depletion is the pathway that enables
PA accumulation through up-regulation of phospholipase ζ2
(PLDζ2) abundance during Pi deficiency (Cruz-Ramírez et al.,
2006; Acevedo-Hernández et al., 2012). PLDζ2 localizes to tono-
plasts under Pi-sufficient conditions, but it has been observed that
PLDζ2-enriched tonoplast domains are preferentially positioned
close to mitochondria and adjacent to chloroplasts (Yamaryo et al.,
2008). This suggests that the PA produced might activate MGD
synthase in the envelope membrane of plastids. Localization of
SeMGD2 in the outer envelope membrane, as is the case for Ara-
bidopsis type-B MGDG synthases, might promote the interaction
of SeMGD2 with other PA-producing proteins outside of plas-
tids (such as PLDζ2) because the outer envelope membrane has
multiple contact sites with extraplastidial membranes.

The PA pool under Pi-depleted conditions is smaller than that
under Pi-sufficient conditions; this is because PA is immediately
degraded to diacylglycerol by PA phosphohydrolase 1 and 2 to
supply Arabidopsis cells with Pi (Nakamura et al., 2009b). Thus,
although it remains uncertain whether SeMGDs are activated in
vivo by the cellular pool of PA, it is also possible that these enzymes
are activated by other lipids such as phosphatidylglycerol (Dubots
et al., 2010). It remains to be resolved whether PA might be a
key factor for the activation of type-B MGDG synthase. Several
factors besides the availability of Pi might regulate type-B MGDG
synthase at the levels of transcript abundance and protein activity
in vivo. Kobayashi et al. (2006) evaluated the effect of phosphite on
the expression of AtMGD2 and AtMGD3. Phosphite, which is an
inactive analog of the Pi anion, mimics Pi in signaling pathways.
The results showed that increases in the abundances of AtMGD2
and AtMGD3 transcripts was not mediated by the damage to plants
induced by a decrease in intracellular Pi. Instead, the increased
abundances of AtMGD2 and AtMGD3 transcripts were regulated
directly by a Pi-sensing system (Kobayashi et al., 2006).

All of the studies mentioned above have been performed using
Arabidopsis. The present study did not involve a similar com-
parative analysis between sesame and Arabidopsis, but it will be
the subject of future work to investigate the key regulator(s)
responsible for the activation of type-B MGDG synthase under Pi-
depleted conditions and to compare the regulatory mechanisms
used by higher plants and how they confer tolerance of condi-
tions of limited Pi availability. Using comparative phylogenetic
analysis of MGDG synthases, we recently suggested that higher
plants developed the capacity for galactolipid synthesis following
the acquisition of type-B MGDG synthases on the outer enve-
lope membrane of plastids almost 320 million years ago, which is
thought to be immediately after the emergence of Spermatophyta
(seed plants; Ohta et al., 2012; Yuzawa et al., 2012). Type-B MGDG
synthase mainly supplies MGDG as a precursor for DGDG syn-
thesis under Pi-depleted conditions to facilitate lipid remodeling
(Kobayashi et al., 2009a, 2013). This suggests that the acquisition
of type-B MGDG synthase may have been one of the key fac-
tors that promoted the modern diversity of seed plants on land
given that available Pi was likely to become more scarce in some
soil types than it was in seawater. Thus, it might be important
to use a broad range of plant species to analyze the correlation
between the expression level or enzymatic properties of type-B
MGDG synthases and the Pi concentration in any given plant
species’ indigenous habitat. It is also possible that the efficiency of
lipid remodeling might have affected species’ survival in Pi-limited
environments. Thus, comparative analyses of MGDG synthesis
among diverse land plants might shed light on the evolution of
seed plants.

MATERIALS AND METHODS
PLANT MATERIAL AND GROWTH CONDITIONS
Sesame seedlings (S. indicum L. strain 4294) were grown on
Murashige and Skoog medium solidified with 0.8% (w/v) agar
containing 1% (w/v) sucrose for 5 days at 28◦C under continuous
white light, transferred to Pi-sufficient (1.0 mM) or Pi-depleted
(0 mM) medium, and grown for another 14 days (Härtel et al.,
2000).

LIPID ANALYSIS
Total lipids were extracted and separated by two-dimensional thin
layer chromatography as described by Kobayashi et al. (2007).
Lipids isolated from silica gel plates were methylated, and fatty
acid methyl esters were quantified by gas chromatography using
pentadecanoic acid as an internal standard (Kobayashi et al., 2006).

CONSTRUCTION OF A cDNA LIBRARY
Total RNA was isolated from sesame cotyledons using an RNA
isolation kit (Stratagene). A sesame cDNA library was generated
using a cDNA synthesis kit, ZAP-cDNA synthesis kit, and ZAP-
cDNA Gigapack III gold cloning kit (Stratagene).

ISOLATION OF GENES ENCODING A SESAME MGDG SYNTHASE
Consensus sequences of type-A MGDG synthase (nucleotide
number 540–1378 of AtMGD1 ORF, NM 119327) and type-
B MGDG synthase (nucleotide number 527–1184 of AtMGD2
ORF, NM 122048) were selected based on the nucleotide
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sequence alignment of the sequences encoding MGDG syn-
thases from C. sativus (U62622), Nicotiana tabacum (AB047476),
O. sativa (AK243359, AB112060, NM 001068022), Spina-
cia oleracea (AJ249607), and G. max (AB047475). Degener-
ate primers for nested RT-PCR were constructed; for type-A
MGDG synthases: forward 5′-tttntggncngancanacnccntggcc-3′
and reverse 5′-cnttnccngcntcntgnccngcnatgta-3′ for the first PCR
and forward 5′-ccngatatnatnatcagtgtncatcc-3′ and reverse 5′-
gnccngccttngtnatnatncantcaca-3′ for the second PCR; for type-B
MGDG synthases: forward 5′-gngtncanccnntnatgcaacanattcc-3′
and reverse 5′-gcnccattntnnacnacatanggnacatt-3′ for the first PCR
and forward 5′-ganctnannacntgncancctacntggtt-3′ and reverse 5′-
tgnnatnatgcantcacangcncccat-3′ for the second PCR. These PCR
fragments were used to screen the sesame cDNA library. The
full-length SeMGD1 cDNA was obtained by 5′-RACE using the
5′-Full RACE Core Set (TaKaRa), and that of SeMGD2 cDNA was
obtained by 5′-RACE and 3′-RACE using the RNA PCR kit (AMV)
Ver. 3.0 (TaKaRa).

QUANTITATIVE RT-PCR
Total RNA was isolated from three independent sesame sam-
ples of shoot and root using the SV Total RNA isolation system
(Promega). Reverse transcription was performed using the Prime-
Script RT reagent kit (TaKaRa). cDNA was amplified using SYBR
PreMix Ex Taq (TaKaRa). Signal detection and quantification
were performed in duplicate using the Thermal Cycler Dice Real
Time System (TaKaRa). Quantification of SeMGD1 and SeMGD2
transcripts by quantitative PCR was carried out using the SiACT
(JP631637) and SiUBQ6 (JP631638) transcript levels for nor-
malization, respectively (Wei et al., 2013). Expression levels were
obtained from at least three replicates. The following gene-specific
primers were used:

SeMGD1_fw: 5′ GGTCTATGGCCTTCCCGTACGG 3′
SeMGD1_rv: 5′ TGACTGCAATTTGCTGGCTAGC 3′
SeMGD2_fw: 5′ CTAGATGGGCTCGAAGAATCTC 3′
SeMGD2_rv: 5′ GATAATCAGTTGTCCGATTGGC 3′
SiACT_fw: 5′ GACGAGCTCTGCTGTAGAGAAG 3′
SiACT_rv: 5′ CCACCACTGAGAACAATATTGC 3′
SiUBQ6_fw: 5′ GATAGGCACTACTGTGGTAAGTG 3′
SiUBQ6_rv: 5′ GGAACAGCAATGGTGTCAGCAAC 3′.

PROTEIN EXPRESSION OF SeMGD1 AND SeMGD2 IN E. coli
SeMGD1 and SeMGD2 were amplified by PCR using a gene-
specific primer set (forward primer 5′-gccatatggttgatgccggggagaataa-
3′ and reverse primer 5′-gcgaattcgtagttgtacaatactgaggtact-3′ for
SeMGD1; forward primer 5′-gccatatgatgttcagaagctctacatttat-3′
and reverse primer 5′-gcgaattcgtgtaaattaggctcgagaagga-3′ for
SeMGD2) and were then each cloned separately into the pET24a
vector. Vectors were transformed into competent cells of E. coli
strain BL21(DE3). Transformed cells were grown in Luria–Bertani
medium at 37◦C for 16 h and diluted 10-fold using medium to
grow for a further 2 h. Protein expression was induced using 1 mM
isopropyl thiogalactopyranoside for 3 h at 37◦C for SeMGD1
and at 20◦C for SeMGD2. Cells were collected by centrifugation
at 3000 × g for 15 min and suspended in lysis buffer (0.1 M
MOPS–NaOH, pH 7.8).

PURIFICATION OF SeMGD1 AND SeMGD2 PROTEINS
Transformed E. coli were resuspended in lysis buffer and disrupted
by sonication (Ultrasonic disrupter UD-201, TOMY). Cell lysates
were centrifuged at 5000 × g for 3 min at 4◦C, and the resulting
supernatant was centrifuged again at 125,000 × g for 30 min at
4◦C. Each supernatant was applied to a nickel-charged resin (Ni-
NTA Agarose, Qiagen GmbH), Recombinant MGDG synthase was
allowed to bind to the resin at 4◦C for 30 min, and the resin was
washed three times with a three-bed volume of lysis buffer that
contained 0.2 M NaCl and 10 mM imidazole. Each His-tagged
MGDG synthase was eluted with lysis buffer containing 0.2 M
NaCl, 10% (v/v) glycerol, and 200 mM imidazole to yield a pure
protein. In all experiments, protein concentrations were deter-
mined using bovine serum albumin as the standard (Bensadoun
and Weinstein, 1976).

MEASUREMENT OF MGDG SYNTHASE ACTIVITY
MGDG synthase activity was measured by determining the
amount of [4,5-3H]galactose incorporated into the lipid fraction
(Yamaryo et al., 2003). Briefly, after pre-incubation of SeMGD in
190 μL of assay mixture (6.4 mM diacylglycerol in 0.01% (w/v)
Tween 20, 10 mM dithiothreitol, 10 mM sodium acetate, and 0.1 M
MOPS–NaOH pH 7.8) at 30◦C, 10 μL of UDP-[4,5-3H]galactose
(5.1 mM, 29 Bq nmol−1) was added to initiate the reaction,
which was allowed to proceed at 30◦C for 30 min. The reaction
product was quantified using an image analyzer after thin layer
chromatography or measured using a liquid scintillation counter.

ACTIVATION OF MGDG SYNTHASE BY PA
Lipids were removed from the purified SeMGD preparation
(1 mg mL−1) by stirring at 4◦C for 30 min in lysis buffer that
contained 24 mM lauryl dimethylamino oxide. MGDG synthase
activity was then assessed after the addition of PA using the method
described above. PA concentration was calculated as the mol% of
total micelle concentration in the assay mixture (Maréchal et al.,
1994).

OXIDATION AND REDUCTION OF MGDG SYNTHASE
Oxidation and reduction of the SeMGD isoforms were performed
according to Yamaryo et al. (2006) with slight modifications.
Briefly, the purified MGD was treated with 50 μM CuCl2 for
1 h on ice. The oxidized enzyme was then subjected to gel filtra-
tion (ProbeQuant G-50 Micro Column, GE Healthcare) to remove
Cu2+ ions and salts and was then used in assays to measure the
activity of oxidized MGDG synthase. Reduced MGD was prepared
by incubation with 1 mM dithiothreitol at 30◦C for 30 min.
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