
REVIEW ARTICLE
published: 25 November 2013
doi: 10.3389/fpls.2013.00470

Redox regulation of the Calvin–Benson cycle: something
old, something new
Laure Michelet1, Mirko Zaffagnini2, Samuel Morisse1, Francesca Sparla2, María Esther Pérez-Pérez1,

Francesco Francia2, Antoine Danon1, Christophe H. Marchand1, Simona Fermani3, Paolo Trost2* and

Stéphane D. Lemaire1*

1 Laboratoire de Biologie Moléculaire et Cellulaire des Eucaryotes, FRE3354 Centre National de la Recherche Scientifique, Institut de Biologie Physico-Chimique,
Université Pierre et Marie Curie, Paris, France

2 Laboratory of Plant Redox Biology, Department of Pharmacy and Biotechnology (FaBiT), University of Bologna, Bologna, Italy
3 Department of Chemistry “G. Ciamician”, University of Bologna, Bologna, Italy

Edited by:

Nicolas Rouhier, Université de
Lorraine, France

Reviewed by:

Renate Scheibe, University of
Osnabrueck, Germany
David B. Knaff, Texas Tech
University, USA

*Correspondence:

Paolo Trost, Laboratory of Plant
Redox Biology, Department of
Pharmacy and Biotechnology
(FaBiT), University of Bologna, Via
Irnerio 42, 40126 Bologna, Italy
e-mail: paolo.trost@unibo.it;
Stéphane D. Lemaire, Laboratoire
de Biologie Moléculaire et Cellulaire
des Eucaryotes, FRE3354 Centre
National de la Recherche
Scientifique, Institut de Biologie
Physico-Chimique, Université Pierre
et Marie Curie, 13 rue Pierre et
Marie Curie, 75005 Paris, France
e-mail: stephane.lemaire@ibpc.fr

Reversible redox post-translational modifications such as oxido-reduction of disulfide
bonds, S-nitrosylation, and S-glutathionylation, play a prominent role in the regulation
of cell metabolism and signaling in all organisms. These modifications are mainly
controlled by members of the thioredoxin and glutaredoxin families. Early studies in
photosynthetic organisms have identified the Calvin–Benson cycle, the photosynthetic
pathway responsible for carbon assimilation, as a redox regulated process. Indeed,
4 out of 11 enzymes of the cycle were shown to have a low activity in the dark
and to be activated in the light through thioredoxin-dependent reduction of regulatory
disulfide bonds. The underlying molecular mechanisms were extensively studied at the
biochemical and structural level. Unexpectedly, recent biochemical and proteomic studies
have suggested that all enzymes of the cycle and several associated regulatory proteins
may undergo redox regulation through multiple redox post-translational modifications
including glutathionylation and nitrosylation. The aim of this review is to detail the
well-established mechanisms of redox regulation of Calvin–Benson cycle enzymes as well
as the most recent reports indicating that this pathway is tightly controlled by multiple
interconnected redox post-translational modifications. This redox control is likely allowing
fine tuning of the Calvin–Benson cycle required for adaptation to varying environmental
conditions, especially during responses to biotic and abiotic stresses.

Keywords: Calvin–Benson cycle, CO2 fixation, thioredoxin, glutaredoxin, glutathionylation, nitrosylation,

photosynthesis, redox regulation

INTRODUCTION
Redox post-translational modifications (PTM) of cysteine
residues play a prominent role in the regulation of cell metabolism
and signaling in all organisms. Indeed, cysteine residues can
undergo different states of oxidation such as sulfenic (−SOH),
sulfinic (−SO2H) and sulfonic acids (−SO3H) but also protein
disulfide bonds (intra- or intermolecular, −SS−), S-thiolation
(mainly glutathionylation, −SSG) or nitrosylation (−SNO). Most
of these modifications are controlled by small disulfide oxidore-
ductases named thioredoxins (TRXs) and glutaredoxins (GRXs).

The importance of redox PTMs has been recognized very early
in plants through studies aimed at understanding the mechanisms
underlying the regulation of enzymes of the Calvin–Benson cycle
(CBC). This pathway is responsible for CO2 fixation by photosyn-
thetic organisms and is therefore at the basis of our food chain.
The CBC, or more generally photosynthesis, fuels all life on Earth
with energy (Pfannschmidt and Yang, 2012). Without photosyn-
thesis, no complex ecosystems and higher life forms including
man would exist (Blankenship, 2002; Buchanan et al., 2002a).

After the initial discovery of the pathway by Bassham et al.
(1950), the enzymes of the cycle were purified and character-
ized from diverse sources including C3 and C4 plants, algae

and cyanobacteria (Figure 1). In the 60s, the activity of several
enzymes of the CBC was found to be regulated by light. These
enzymes were found to have a low activity in the dark and to
be activated in the light. Investigation of the molecular mecha-
nism of this light-dependent regulation led to the identification of
the ferredoxin/thioredoxin (Fd/TRX) system that plays a crucial
role in numerous redox- and light-dependent reactions in chloro-
plasts. Four enzymes of the CBC regulated by light were shown to
contain a regulatory disulfide oxidized in the dark and reduced
in the light by TRX. This reduction allows transition from a low
active form to a fully active enzyme. Additional proteins were also
recognized as TRX-regulated targets such as proteins involved
indirectly in the regulation of the CBC, in light-dependent ATP
production or in diverse carbon metabolism pathways (Lemaire
et al., 2007; Schürmann and Buchanan, 2008). All these enzymes
are regulated by light through TRX-dependent reduction of disul-
fide bonds. The mechanisms of this light-dependent regulation of
carbon assimilation enzymes are considered as the best charac-
terized mechanisms of redox signaling in photosynthetic organ-
isms (Foyer and Noctor, 2005) since they were investigated in
detail at the molecular and structural level in different model
systems.
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FIGURE 1 | The Calvin–Benson cycle. The eleven enzymes of the
Calvin–Benson cycle are indicated in gray ellipses. Four enzymes (in blue)
are activated directly by TRXs. Some proteins that control the activity of
Calvin–Benson cycle enzymes are also regulated by TRXs: Rubisco activase
(in green), and CP12 (in red), which forms a complex with PRK and
A4-GAPDH and inhibits both enzymes. Enzymes: Rubisco,
ribulose-1,5-bisphosphate Carboxylase/Oxygenase; PGK, phosphoglycerate
kinase; GAPDH, glyceraldehyde-3-phosphate dehydrogenase; TPI, triose
phosphate isomerase; FBA, fructose-1,6-bisphosphate aldolase; FBPase,
fructose-1,6-bisphosphatase; TK, transketolase; SBPase,
sedoheptulose-1,7-bisphosphatase; RPE, ribulose-5-phosphate
3-epimerase; RPI, ribose-5-phosphate isomerase; PRK,
phosphoribulokinase. Metabolites, RuBP, ribulose-1,5-bisphosphate; 3-PGA,
3-phosphoglycerate; 1,3-PGA, 1,3-bisphosphoglycerate; G3P,
glyceraldehyde-3-phosphate; DHAP, dihydroxyacetone phosphate; F1,6P,
fructose-1,6-bisphosphate; F6P, fructose-6-phosphate; X5P,
xylulose-5-phosphate; E4P, erythrose-4-phosphate; S1,7P,
sedoheptulose-1,7-bisphosphate; S7P, sedoheptulose-7-phosphate; R5P,
ribulose-5-phosphate; RuP, ribulose-5-phosphate.

However, recent proteomic studies are now challenging this
rather simple view. Indeed, proteomic analyses aimed at identi-
fying new TRX targets suggested that not only four but all CBC
enzymes might be redox-regulated through mechanisms likely
involving cysteine residues (Lemaire et al., 2007; Lindahl et al.,
2011). Moreover, all enzymes of the cycle were also identified by
proteomic approaches as potential targets of nitrosylation and
glutathionylation, two redox PTMs whose importance in sig-
naling and regulation has emerged recently (Zaffagnini et al.,
2012a). This suggests that the CBC is likely regulated by a complex
network of interconnected redox PTMs that remain to be charac-
terized. In this review we will provide an overview of our current
knowledge on the redox regulation of CBC enzymes and related
proteins and discuss the potential importance of novel types of
redox modifications on our understanding of the regulation of
CO2 fixation in photosynthetic organisms.

THE FERREDOXIN/THIOREDOXIN SYSTEM
During the 60s and 70s numerous studies have reported that
the activity of four CBC enzymes was regulated by light
(reviewed in Buchanan, 1980, 1991; Schürmann and Jacquot,
2000; Lemaire et al., 2007; Schürmann and Buchanan, 2008;
Buchanan et al., 2012). These enzymes were phosphoribulokinase

(PRK), glyceraldehyde-3-phosphate dehydrogenase (GAPDH),
fructose-1,6-bisphosphatase (FBPase), and sedoheptulose-1,7-
bisphosphatase (SBPase) (Figure 1). These four enzymes were
found to have a low activity in the dark and to be activated
under illumination. During the same period, a similar regu-
lation was reported for NADP-malate dehydrogenase (NADP-
MDH) (Johnson and Hatch, 1970) and chloroplast ATP synthase
(McKinney et al., 1978, 1979). NADP-MDH is involved in CO2

fixation in C4 plants and in the export of excess reducing power
from the chloroplast in C3 plants while chloroplast ATP synthase
produces ATP equivalents required for CO2 fixation by the CBC.
The analysis of the molecular mechanisms underlying these light-
dependent activations were mostly performed in the laboratory
of Prof. Bob Buchanan in Berkeley and led to the identification
of the so-called ferredoxin/thioredoxin system (Buchanan, 1991;
Buchanan et al., 2002b). This system is composed of three types
of chloroplast soluble proteins located in the stroma: ferredoxin
(Fd), ferredoxin/thioredoxin reductase (FTR) and thioredoxin
(TRX) (Figure 2). Upon illumination, ferredoxin is reduced by
the photosynthetic electron transfer chain at the level of pho-
tosystem I (PSI). Chloroplastic Fd is located at a metabolic
crossroad in the chloroplast and once reduced can transfer its
electron(s) to enzymes involved in diverse metabolic pathways
including photoreduction of NADP through ferredoxin/NADP
reductase (FNR), reduction of sulfites and nitrites, lipid biosyn-
thesis, hydrogen production (Winkler et al., 2010) and photosyn-
thetic cyclic electron flow via ferredoxin-plastoquinone reductase
(Hertle et al., 2013). Several isoforms of PSI-reduced Fd are
present in photosynthetic organisms: 4 distinct Fd were described
in the land plant Arabidopsis thaliana whereas 6 isoforms were
reported in the green alga Chlamydomonas reinhardtii. These Fds
are not equivalent as they exhibit some specificities toward their
target enzymes and distinct expression profiles (Hanke et al.,
2004; Terauchi et al., 2009). Under optimal growth conditions,
most of the electron flux is likely directed to FNR to produce,
in the form of NADPH, the reducing power required for CO2

fixation by the CBC. Part of the reduced Fd pool also transfers
electrons to FTR which can subsequently reduce the disulfide
bond present in the active site of several types of chloroplas-
tic TRXs. FTR is a thin and flat [4Fe-4S] enzyme interacting
with Fd on one side and TRX on the other side (Dai et al.,
2007). A first Fd molecule binds FTR and transfers one elec-
tron to the FTR [4Fe-4S] cluster. An intermediate is then formed
in which one sulfur atom of FTR active site is free to attack
the disulfide of TRX and the other sulfur atom forms a fifth
ligand for an iron atom in the FTR [4Fe-4S] center. A sec-
ond Fd molecule then delivers a second electron that cleaves
the FTR-TRX mixed-disulfide. FTR is therefore unique in its
use of a [4Fe-4S] cluster and a proximal disulfide bridge in
the conversion of a light signal into a thiol signal (Dai et al.,
2007). Once reduced, TRXs are able to reduce regulatory disul-
fides on their target enzymes, including PRK, GAPDH, FBPase,
and SBPase, allowing their activation upon illumination through
reduction of their regulatory disulfide by the Fd/TRX system
(Figure 3).

Originally identified for their ability to activate enzymes of the
CBC, TRXs were later found to contribute to the regulation of
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FIGURE 2 | The photosynthetic electron transfer chain and the reduction

of chloroplastic TRXs. In the thylakoid membrane, when photosystem II
(PSII) is excited by absorption of a photon light energy, the reaction center
chlorophyll molecule transiently loses an electron. This electron is transmitted
to the plastoquinone pool (PQ) which takes a proton from the stroma. Upon
oxidation, the reaction center chlorophyll is a very strong oxidizing agent
which is able to accept electrons from water, resulting in oxygen and protons
production in the lumen. The chlorophyll can then be excited again. Reduced
plastoquinone can move through the membrane from PSII to cytochrome
b6/f (Cyt b6/f). There, plastoquinone is oxidized and its proton is released in

the lumen, leading to a proton transport from stroma to lumen. Its electron is
further transferred to photosystem I (PSI) via cytochrome b6/f and
plastocyanin (PC). This electron transfer allows reduction of excited PSI
reaction center chlorophyll. Upon excitation, this chlorophyll gives its electron
to stromal ferredoxin (Fd) which can reduce chloroplastic thioredoxins (TRX)
via the ferredoxin-thioredoxin reductase (FTR) and NADP+ via the ferredoxin
NADP reductase (FNR). Water photolysis and proton transport via
plastoquinones contribute to the establishment of a proton gradient between
stroma and lumen. This gradient is used as an energy source by the ATP
synthase for ATP synthesis.

FIGURE 3 | The ferredoxin/thioredoxin system. Fd, ferredoxin; FTR, ferredoxin thioredoxin reductase; PSI, photosystem I; ox, oxidized; red, reduced.

diverse chloroplastic enzymes involved in other metabolic path-
ways such as ATP synthase which produces ATP in the light,
Acetyl-CoA carboxylase which catalyzes the first committed step
of fatty acid biosynthesis, ADP-glucose pyrophosphorylase, glu-
can:water dikinase and beta-amylase BAM1 involved in starch
metabolism (Ballicora et al., 2000; Geigenberger et al., 2005;
Mikkelsen et al., 2005; Sparla et al., 2006) or the oxidative pen-
tose phosphate pathway enzyme glucose-6-phosphate dehydro-
genase (Wenderoth et al., 1997; Nee et al., 2009). In addition to
their role in the control of metabolic enzymes through reduc-
tion of regulatory disulfides, TRXs also play a major role in the
detoxification of reactive oxygen species (ROS) and the main-
tenance of redox homeostasis in the chloroplast. Indeed, TRXs
serve as substrate and provide electrons for the regeneration

of different types of antioxidant chloroplast enzymes includ-
ing peroxiredoxins (PRXs) (Dietz, 2011), glutathione peroxidases
(GPXs) (Navrot et al., 2006) and methionine sulfoxide reduc-
tases (Tarrago et al., 2009). Early studies on the regulation of
FBPase and NADP-MDH led to the identification of two types
of TRX named TRXf and TRXm due to their substrate specificity
(Jacquot et al., 1978; Wolosiuk et al., 1979). Indeed, TRXf was
initially found to activate FBPase while TRXm appeared to pref-
erentially activate NADP-MDH. TRXf was also found to be more
effective than TRXm for the reduction of all other CBC enzymes
(Wolosiuk et al., 1979).

The availability of genome sequences revealed the existence of
three other types of TRXs in the chloroplast. TRXx was iden-
tified in Arabidopsis (Mestres-Ortega and Meyer, 1999), TRXy
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in Chlamydomonas (Lemaire et al., 2003), and TRXz in tomato
and Arabidopsis (Rivas et al., 2004; Arsova et al., 2010; Meng
et al., 2010; Schroter et al., 2010). In cyanobacteria, such as
Synechocystis sp. PCC6803, four TRXs are present: 1 TRXm, 1
TRXx, 1 TRXy, and 1 TRX encoded by the trxC gene that has no
ortholog in eukaryotes (Chibani et al., 2009; Pérez-Pérez et al.,
2009). All five chloroplast TRX types (f, m, x, y, z) are con-
served in land plants which usually contain several isoforms of
each TRX type, such as Arabidopsis (2 TRXf, 4 TRXm, 1 TRXx,
2 TRXy, 1 TRXz) or poplar (1 TRXf, 8 TRXm, 1 TRXx, 2 TRXy,
1 TRXz) (Lemaire et al., 2007; Chibani et al., 2009). This multi-
plicity is more limited in unicellular eukaryotes such as the green
algae Chlamydomonas reinhardtii (2 TRXf, 1 TRXm, 1 TRXx, 1
TRXy, 1 TRXz) or Ostreococcus lucimarinus (2 TRXf, 1 TRXm, 1
TRXx, no TRXy, 1 TRXz). Although TRXx and TRXy appear to
be reduced by FTR (Bohrer et al., 2012), their biochemical prop-
erties do not allow them to activate CBC enzymes. These TRX
types appear to be more specifically involved in the response to
oxidative stress and the maintenance of ROS homeostasis. Indeed,
TRXx and TRXy were found to be the most efficient TRXs for
the reduction of PRXs, GPXs and MSRs (Collin et al., 2003,
2004; Chibani et al., 2011). TRXz has been recently character-
ized as a subunit of the plastid encoded RNA polymerase and
plays an important role in chloroplast transcription and chloro-
plast development (Arsova et al., 2010; Schroter et al., 2010).
In addition to this role, TRXz was suggested to be redox active
although its mode of reduction remains controversial since TRXz
was reported to be reduced by FTR in poplar (Chibani et al.,
2011) or by other TRX types in Arabidopsis (Bohrer et al., 2012).
Nonetheless, as TRXx and TRXy, TRXz appears to reduce some
antioxidant enzymes but is most probably not able to reduce
classical carbon metabolism targets including CBC enzymes, as
demonstrated for NADP-MDH (Chibani et al., 2011; Bohrer
et al., 2012). By contrast, TRXf and TRXm are clearly dedicated
to the regulation of the CBC although TRXf appears to play a
more prominent role. Indeed, all TRX-dependent enzymes of the
CBC analyzed are exclusively or preferentially reduced by f-type
TRXs. TRXm may thus play a more important role in the regula-
tion of other chloroplastic processes and pathways such as transfer
of reducing equivalents from the stroma to the thylakoid lumen
(Motohashi and Hisabori, 2006, 2010) or regulation of chloro-
plastic proteins involved in electron transfer pathways (Courteille
et al., 2013). Alternatively, TRXm isoforms may serve as alter-
native regulators of some CBC enzymes when TRXf activity is
limiting, e.g., under oxidative stress conditions leading to pro-
tein glutathionylation in chloroplasts. Indeed, TRXf itself can be
glutathionylated and consequently lose capability to regulate its
targets (Michelet et al., 2005). In addition to canonical chloroplas-
tic TRXs, numerous non chloroplastic TRX types and TRX-like
isoforms are present in the genomes of photosynthetic eukaryotes
(Chibani et al., 2009). Forty-one isoforms of TRXs and TRX-like
proteins were reported in Arabidopsis and forty-five in poplar.
Some of these TRX-related proteins are likely located in chloro-
plasts as shown for the peculiar CDSP32 protein composed of
two TRX domains (Broin et al., 2002) and which participates
in responses to oxidative stress (Rey et al., 2005; Tarrago et al.,
2010).

MOLECULAR MECHANISMS OF LIGHT-DEPENDENT
REGULATION OF THE CALVIN–BENSON CYCLE
After the discovery of the Fd/TRX system, numerous efforts have
been put on the analysis at the biochemical and structural level of
the molecular mechanism underlying TRX-dependent activation
of chloroplast enzymes. The insights obtained from these studies
are detailed in this section.

CALVIN–BENSON CYCLE ENZYMES
Glyceraldehyde-3-phosphate dehydrogenase (GAPDH)
GAPDH catalyzes the reversible interconversion of 1,3-
bisphosphoglycerate (BPGA) into glyceraldehyde-3-phosphate
(G3P) (Figure 1). At difference with NAD(H)-specific gly-
colytic GAPDH (GAPC) (Zaffagnini et al., 2013a,b, this series),
photosynthetic GAPDH uses both NAD(H) and NADP(H) as
coenzymes (Melandri et al., 1968). GAPDH was the first CBC
enzyme reported to be activated by light: in leaves and chloro-
plast extracts subjected to short periods of illumination, the
NADP(H)-dependent activity of GAPDH was found several-fold
higher than in samples maintained in the dark, but the NAD(H)-
GAPDH activity remained low and stable (Ziegler and Ziegler,
1965). GAPDH activation in vivo was strictly dependent on
photosynthetic electron transport, i.e., was inhibited by the PSII
inhibitor DCMU (3-(3,4-dichlorophenyl)-1,1-dimethylurea),
and could be mimicked in vitro by addition of NADPH and the
strong chemical reductant dithiothreitol (DTT) (Ziegler and
Ziegler, 1966). These results were confirmed in several species of
land plants and green algae (Anderson and Lim, 1972; Huber,
1978; Austin et al., 1992; Scagliarini et al., 1993; Baalmann
et al., 1994). Wolosiuk and Buchanan (1978a) first demonstrated
the increase of the NADP(H)-dependent GAPDH activity by
reduced TRX, but the complex mechanism of GAPDH regulation
involves also the inter-conversion between active tetramers
and low activity oligomers (Pupillo and Piccari, 1973) and this
change of quaternary structure is controlled by different ligands,
including NAD(P)(H), ATP and BPGA (Pupillo and Piccari,
1973; O’brien et al., 1976; Wolosiuk and Buchanan, 1976; Cerff,
1978; Trost et al., 1993). In vivo, oligomers can be formed by
GAPDH only (Pupillo and Piccari, 1973; Scheibe et al., 2002;
Howard et al., 2011b), or include PRK as suggested by early works
(Wara-Aswapati et al., 1980; Nicholson et al., 1987; Avilan et al.,
1997). Later, it was understood that GAPDH-PRK complexes
were actually assembled by a small TRX-regulated protein named
CP12 (Wedel et al., 1997; see below).

Photosynthetic GAPDH is coded by two types of genes (gapA,
gapB) in Streptophytes [land plants and Charophytes (Petersen
et al., 2006)], and Prasinophycean green algae [e.g., Ostreococcus,
(Robbens et al., 2007)]. The gapB gene is absent in all other
oxygenic phototrophs that usually contain a single gapA gene,
except for cryptomonads, diatoms, and chromalveolates in gen-
eral in which chloroplast GAPDH is encoded by gapC-type genes
(Liaud et al., 1997). At the protein level, GAPA and GAPB are
almost identical, but GAPB contains a specific C-terminal exten-
sion (CTE) of about 30 amino acids (Baalmann et al., 1996). The
CTE contains the pair of Cys residues that are targeted by TRX
and are responsible for the light/dark regulation of the enzyme
(Sparla et al., 2002) (Figure 4). GAPA, or A-subunits, form stable
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FIGURE 4 | A schematic view of the regulation and interactions of

chloroplast A4-GAPDH, CP12, PRK and AB-GAPDH. “Light conditions”
(left side of the figure), consisting of increased levels of reduced TRXs and
high NADP(H)/NAD(H) ratio, promote the reduction and dissociation of the
supramolecular complexes. A4-GAPDH, reduced PRK and reduced
A2B2-GAPDH are fully active in the light while reduced CP12 does not
interact with partner proteins. “Dark conditions”(right side of the figure),
consisting of decreased level of reduced TRXs and low NADP(H)/NAD(H)
ratio, promote disulfide formation in PRK, CP12 and A2B2-GAPDH. These
conditions promote the formation of the binary complex between
A4-GAPDH and oxidized CP12 that further reacts with oxidized PRK forming
the ternary complex A4-GAPDH/CP12/PRK. Concomitantly, A2B2-GAPDH
undergoes oxidation and shifts to oligomeric form (A8B8-GAPDH). Within
these complexes, the activity of both GAPDHs and PRK is strongly
suppressed.

homotetramers [A4-GAPDH, (Fermani et al., 2001)] that resem-
ble the structure of glycolytic GAPDHs (Zaffagnini et al., 2013a,b,
this series), or alternatively bind B-subunits in stoichiometric
ratio to form heterotetramers (A2B2) and higher order oligomers
[mainly A8B8; (Pupillo and Piccari, 1973)]. A4-GAPDH is a
minor GAPDH isoform in higher plants (Scagliarini et al., 1993;
Howard et al., 2011b), but is the only isoform of photosynthetic
GAPDH in green algae, red algae and cyanobacteria (Petersen
et al., 2006). Lacking the CTE, A4-GAPDH is not TRX-regulated
per se but acquires this regulation through the interaction with
the TRX-regulated proteins CP12 and PRK (Wedel and Soll, 1998;
Graciet et al., 2004; Trost et al., 2006). This is the only known
mechanism of light/dark regulation of GAPDH in green algae and
cyanobacteria, and it will be discussed further below in the sec-
tion on CP12. In chloroplasts of C3 plants, CTE- and CP12-based
regulation of GAPDH co-exist (Scheibe et al., 2002), and CP12-
assembled complexes may contain either A4- or A2B2-GAPDH
(Carmo-Silva et al., 2011; Howard et al., 2011b). In C4 plants, the
two systems appear instead to be separated: a proteomic study on
maize revealed that CP12 is enriched in bundle sheath chloro-
plasts, together with GAPA and PRK, while GAPB is enriched in
mesophyll chloroplasts (Majeran et al., 2005).

In land plants, the activity of AB-GAPDH isoforms primar-
ily depends on the redox state of the two cysteines of the CTE
[Cys349 and Cys358 in spinach (Sparla et al., 2002)]. The Cys349-
Cys358 disulfide has a midpoint redox potential of −353 mV
at pH 7.9 and is specifically reduced by TRXf (Marri et al.,
2009). In the presence of reduced TRXf and at NADPH con-
centrations expected for illuminated chloroplasts, the NADPH-
activity of AB-GAPDH is maximal and the enzyme is tetrameric
(Scagliarini et al., 1993; Baalmann et al., 1994; Sparla et al.,
2002). In this activated form, the 2′-phosphate group of NADPH
interacts with Arg77 and Ser188, and these interactions are cru-
cial for both coenzyme specificity [NADH contains an −OH
in the 2′-position; (Falini et al., 2003)] and TRX-dependent
regulation of GAPDH (Fermani et al., 2007). In fact, the disul-
fide bond between Cys349 and Cys358 shapes the CTE into a
bulky hairpin structure that is harbored in proximity of the
coenzyme-binding site. In this position, the negatively charged
CTE distracts Arg77 from the 2′-phosphate of bound NADPH,
with the consequence of depressing the NADPH-dependent activ-
ity, while leaving unaffected the NADH-dependent one. Both
the crystal structure of oxidized A2B2-GAPDH (Fermani et al.,
2007) and the kinetic characterization of site-specific mutants
(Sparla et al., 2005) support this regulatory mechanism in which
the CTE of GAPB acts as a redox-sensitive auto-inhibitory
domain.

The CTE also controls the capability of A2B2-GAPDH to asso-
ciate into the A8B8 isoform upon binding NAD(H) in place of
NADP(H) (Figure 4). The effect is completely dependent on the
CTE that must bear the Cys349-Cys358 disulfide (Baalmann et al.,
1996; Sparla et al., 2002). Oligomeric AB-GAPDH has very low
NADPH-activity and accumulates in chloroplasts in the dark
(Scagliarini et al., 1993; Baalmann et al., 1994). Full recovery of
GAPDH activity is obtained by reducing the CTE with reduced
TRXf or by displacing oxidized CTE from the active site with lig-
ands such as NADP(H), ATP, or BPGA (Trost et al., 2006). As
recalled below, the CTE is homologous to the C-terminal half of
CP12 and CP12 is engaged in protein-protein interactions with
GAPA and PRK when containing a disulfide bond.

Phosphoribulokinase (PRK)
PRK catalyzes the phosphorylation of ribulose-5-phosphate to
ribulose-1,5-bisphophate using ATP generated by thylakoid ATP
synthase (Figure 1). The light-dependent activation of PRK was
initially reported in the unicellular green alga Chlorella (Pedersen
et al., 1966; Bassham, 1971) and later confirmed with isolated
chloroplasts from spinach (Latzko et al., 1970; Avron and Gibbs,
1974). As in the case of GAPDH, the activation of PRK was
found to be blocked by DCMU (Latzko et al., 1970; Avron and
Gibbs, 1974; Champigny and Bismuth, 1976) and mimicked
by DTT (Latzko et al., 1970; Anderson, 1973b; Anderson and
Avron, 1976). Contrary to GAPDH, PRK has no cytosolic coun-
terpart since this enzyme exclusively participates in the CBC.
The enzyme is a homodimer in eukaryotes (Porter et al., 1986)
and a homotetramer in cyanobacteria (Wadano et al., 1998).
In anoxygenic photosynthetic prokaryotes PRK is octameric,
but is not redox-regulated (Harrison et al., 1998). In plants,
each PRK monomer contains 4 strictly conserved cysteines. PRK

www.frontiersin.org November 2013 | Volume 4 | Article 470 | 5

http://www.frontiersin.org
http://www.frontiersin.org/Plant_Physiology/archive


Michelet et al. Calvin–Benson cycle redox regulation

has a low activity in the oxidized form and is activated by
TRX (Wolosiuk and Buchanan, 1978b). The molecular mecha-
nism of PRK redox regulation was investigated on the spinach
enzyme by chemical modification and site-directed mutagene-
sis of Cys16 and Cys55 that are located on the N-terminal part
of the monomer and form a disulfide reduced by TRX (Porter
and Hartman, 1988; Milanez et al., 1991; Brandes et al., 1996).
Since Cys55 appears to play an important role in the catalysis
by binding the sugar phosphate substrate (Porter and Hartman,
1990; Milanez et al., 1991), formation of the Cys16-Cys55 disul-
fide efficiently blocks the activity. The midpoint redox potential
of PRK was found somehow variable between species [at pH
7.9: −315 mV in tomato (Hutchison et al., 2000); −330 mV in
Arabidopsis (Marri et al., 2005); −349 mV in spinach (Hirasawa
et al., 1999)], but tends to be less negative compared to that
measured for other CBC enzymes [between −350 and −385 mV
(Hirasawa et al., 1999, 2000; Hutchison et al., 2000; Sparla
et al., 2002; Marri et al., 2005)]. Recently, the TRX specificity
for Arabidopsis PRK activation was investigated and TRXf was
found to be the most efficient compared to m-type TRXs, while
no PRK reactivation was observed with x- and y-types TRXs
(Marri et al., 2009). The three dimensional structure of plant PRK
remains unknown precluding full understanding of the molec-
ular mechanisms involved in the redox regulation mediated by
TRX.

Fructose-1,6-bisphosphatase (FBPase)
FBPase catalyzes the dephosphorylation of fructose-1,6-
bisphosphate (FBP) into fructose-6-phosphate (F6P) with the
concomitant release of inorganic phosphate (Figure 1). The
enzyme is a homotetramer of ca. 160 kDa. The cytosolic isoform
of FBPase, which participates in gluconeogenesis, is not redox
regulated by TRX. The light-dependent activation of FBPase
was also initially reported in Chlorella (Pedersen et al., 1966;
Bassham, 1971) and later confirmed in isolated chloroplasts
from higher plants where the activation was found to be DCMU
sensitive (Champigny and Bismuth, 1976; Kelly et al., 1976)
and could be mimicked by DTT (Baier and Latzko, 1975).
Oxidized FBPase has a basal activity (20–30%) and becomes fully
activated upon disulfide reduction which is strictly dependent
on TRXf, all other TRX types being inefficient. The molecular
mechanism of TRX dependent activation of FBPase was initially
unraveled for pea FBPase. Compared to its cytosolic counter-
parts, pea stromal FBPase contains two insertions of 5 and 12
amino acids containing 1 (Cys153) and 2 cysteines (Cys173
and Cys178), respectively. The mutation C153S or the double
mutation C173S/C178S yielded a permanently active FBPase
while the single mutant C173S and C178S retained a partial
redox dependent regulation (Jacquot et al., 1995, 1997). These
results suggested that the regulatory disulfide is formed between
Cys153 and either with Cys173 or Cys178. The structure of
pea FBPase revealed the presence of a unique Cys153-Cys173
disulfide, suggesting that the Cys153-Cys178 disulfide was only
formed upon mutation of Cys173 although a more complex
regulation implicating isomerization of disulfide bonds could
not be completely ruled out (Chiadmi et al., 1999). Strikingly
similar results were obtained for the 3 cysteines present in the

insertions found in rapeseed FBPase (Rodriguez-Suarez et al.,
1997). The midpoint redox potential of the regulatory disulfide
bond was found to be −369 mV and −384 mV at pH 7.9 for
pea and spinach FBPases, respectively (Hirasawa et al., 1999).
Comparison of the structure of oxidized and reduced FBPase
allowed understanding the conformational changes linking the
redox state of the regulatory disulfide and the level of activation
of the enzyme (Villeret et al., 1995; Chiadmi et al., 1999; Dai
et al., 2004). Although the regulatory disulfide is at a distance of
more than 20 Å from the active site, its formation forces a loop
connecting two antiparallel beta strands to slide in toward the
active site, thereby disrupting the binding sites for the catalytic
Mg2+ cations (Chiadmi et al., 1999). Therefore, in light-regulated
FBPase, the regulatory insertions that form the disulfide do not
interact directly with the active site (like in malate dehydrogenase
as described below) or in its proximity (like in AB-GAPDH),
but stabilizes a general conformation in which the active site is
almost non-functional.

Sedoheptulose-1,7-bisphosphatase (SBPase).
SBPase catalyzes the dephosphorylation of sedoheptulose-1,7-
bisphosphate (SBP) into sedoheptulose-7-phosphate (S7P) with
the concomitant release of inorganic phosphate (Figure 1).
SBPase is a homodimer of ca. 70 kDa that is unique to the CBC
and has no cytosolic counterpart. SBPase is found in all pho-
tosynthetic eukaryotes but not in cyanobacteria which encode
a bifunctional FBPase possessing also SBPase activity (Tamoi
et al., 1996). As in the case of GAPDH and FBPase, the light-
dependent activation of SBPase was also initially reported in
Chlorella (Pedersen et al., 1966; Bassham, 1971), confirmed in
isolated chloroplasts from land plants and found to be mim-
icked by DTT (Anderson, 1974; Schürmann and Buchanan,
1975; Anderson and Avron, 1976). By contrast with other CBC
enzymes, the oxidized form of SBPase is completely inactive
and its reactivation absolutely requires the TRX-mediated light
activation. SBPase redox regulation has only been analyzed for
the wheat enzyme that possesses 7 cysteines among which 4
are strictly conserved in all organisms. Site-directed mutagen-
esis of the wheat enzyme suggested the existence of a single
regulatory disulfide between Cys52 and Cys57 (Dunford et al.,
1998). However, in this study, the activity of recombinant wheat
mutant SBPase was only measured in E. coli crude extracts using
DTT as electron donor that may have mediated SBPase activa-
tion through E. coli TRXs. Therefore, the molecular mechanism
underlying the redox regulation of SBPase remains to be clearly
established with the purified enzyme. The enzyme from maize
leaves was reported to be, like FBPase, specifically activated by
TRXf (Nishizawa and Buchanan, 1981) but not all TRX types
have yet been tested. SBPase sequences share a significant homol-
ogy with FBPase, possibly due to a common origin (Raines
et al., 1992; Martin et al., 1996). Therefore, although the struc-
ture of plant SBPase remains undetermined, a model has been
proposed based on the structure of pig FBPase (Dunford et al.,
1998). This model suggested that like in FBPase, the reduction
of SBPase disulfide would trigger its activation through a gen-
eral conformational change of the enzyme that shapes the active
site.
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OTHER TRX-DEPENDENT ENZYMES LINKED TO THE CALVIN–BENSON
CYCLE
NADP-dependent malate dehydrogenase (NADP-MDH)
NADP-MDH catalyzes the reduction of oxaloacetate (OAA) into
malate using NADPH as electron donor. The enzyme is a homod-
imer of ca. 70 kDa. NADP-MDH plays a key role for CO2 fixation
in C4 and CAM plants where photorespiration, linked to the oxy-
genase activity of Rubisco, is limited through an alternative CO2

fixation pathway initiated by phosphoenolpyruvate carboxylase
(PEPC) (Foyer et al., 2009) (Figure 5). CO2 fixation by PEPC
yields oxaloacetate that is converted to malate by NADP-MDH.
The malic enzyme converts malate into phosphoenolpyruvate
and CO2 in the proximity of Rubisco. These carbon concen-
tration mechanisms limit photorespiration and ensure optimal
photosynthesis efficiency under specific growth conditions. In C3
plants, NADP-MDH is involved in the export of reducing power,
in the form of malate, from the stroma to the cytosol through the
malate valve. Light-dependent activation of NADP-MDH was ini-
tially reported in C4 plants (Johnson and Hatch, 1970) and later
confirmed in C3 plants (Johnson, 1971). As in the case of CBC
enzymes, the light-dependent activation was confirmed on iso-
lated chloroplasts, found to be blocked by DCMU and mimicked
by DTT (Anderson, 1973a; Anderson and Avron, 1976). NADP-
MDH is probably one of the best studied light-regulated enzyme
in the chloroplast both at the molecular and structural levels. By
contrast with most CBC enzymes which exhibit a basal activity in
the oxidized form, oxidized NADP-MDH is totally inactive and
strictly dependent on light-driven TRX activation. The molec-
ular mechanism of NADP-MDH activation has been initially
unraveled on the enzyme from the C4 plant Sorghum bicolor.
Compared to the redox independent NAD-dependent MDH
isoforms, Sorghum NADP-MDH possesses N- and C-terminal
extensions and contains 8 cysteine residues strictly conserved
in land plants. Site-directed mutagenesis and chemical mod-
ifications allowed understanding the molecular mechanism of
TRX-dependent activation of this enzyme (reviewed in Miginiac-
Maslow and Lancelin, 2002). Two regulatory disulfides, located
in each extension, are present in the oxidized form and have
to be both reduced by TRX for full activation of the enzyme.
Reduction of the Cys24-Cys29 N-terminal disulfide allows a slow
conformational change of the enzyme while reduction of the
Cys365-Cys377 C-terminal disulfide is required to give access to
the active site (Issakidis et al., 1992, 1993, 1994, 1996; Lemaire
et al., 1994). Indeed, in the oxidized form, the penultimate gluta-
mate residue interacts with the active site Arg204 thereby blocking
access of OAA (Ruelland et al., 1997; Hirasawa et al., 2000). In
addition, the internal Cys207 can form a TRX-reducible disul-
fide with Cys24, suggesting that disulfide isomerization may be
required during activation (Ruelland et al., 1997; Hirasawa et al.,
2000). These results were later found to be consistent with the
structures of Sorghum and Flaveria NADP-MDH (Carr et al.,
1999; Johansson et al., 1999) and have allowed to propose a
detailed model of the molecular mechanism of activation of
NADP-MDH (Figure 6). The standard redox potentials of the two
regulatory disulfides are not equivalent, the N-terminal disulfide
(Em = −344 mV at pH 7.9) being more positive, and therefore
easier to reduce, than the C-terminal disulfide (Em = −384 mV

FIGURE 5 | Carbon fixation in C4 and CAM plants. (A) Carbon fixation in
C4 plants. Compared to C3 plants, carbon fixation in C4 plants occurs in
two steps: CO2 is first fixed by PEPC (phosphoenolpyruvate carboxylase) in
mesophyll cells to form oxaloacetate (OAA) that is converted to malate by
NADP-MDH (NADP-malate dehydrogenase) before export to bundle sheath
cells were CO2 is released by ME (malic enzyme). Finally, CO2 is fixed by
Rubisco. (B) Carbon fixation in CAM plants. In CAM plants, carbon fixation
is split in two steps, but, compared to C4 plants, this fixation is separated in
time instead of being separated in space with cells fixing CO2 by PEPC
(phosphoenolpyruvate carboxylase) and accumulating malate during the
night before release of CO2 by ME (malic enzyme) and fixation by Rubisco
during the day. CA, carbonic anhydrase; PEPC, phosphoenolpyruvate
carboxylase; MDH, NADP malate dehydrogenase; ME, malic enzyme;
PPDK, pyruvate, phosphate dikinase; OAA, oxaloacetate; PEP,
phosphoenolpyruvate.

at pH 7.9) that will require an excess of reduced TRX for its
reduction. This difference suggests the existence of a sequential
activation: reduction of the N-terminal disulfide would occur
first and allow “pre-reduction” of the enzyme in a form that can
be rapidly activated when the reducing power of the chloroplast
reaches a threshold level. The knowledge acquired on the redox
regulation of Sorghum NADP-MDH allowed transforming the
constitutively active NAD-MDH from the thermophilic bacteria
Thermus flavus into a TRX-dependent enzyme by grafting of the
Sorghum N- and C-terminal extensions (Issakidis-Bourguet et al.,
2006).

Interestingly, Chlamydomonas NADP-MDH was found to
also possess N- and C-terminal extensions but the N-terminal
extension does not contain any cysteine. The enzyme is also
strictly dependent on TRX-mediated activation through reduc-
tion of a single regulatory disulfide located in its C-terminal
extension (Lemaire et al., 2005). The redox potential of this
disulfide (Em = −369 mV at pH 7.9) is more positive than the
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FIGURE 6 | Schematic representation of the activation mechanism of

Sorghum NADP-MDH.

C-terminal disulfide of Sorghum NADP-MDH (Em = −384 mV
pH 7) and can be reduced by both TRXm and TRXf1 from
Chlamydomonas. Conversely, Chlamydomonas TRXf1 is not able
to activate Sorghum NADP-MDH, suggesting structural and ther-
modynamic differences between algal and land plants TRXf.
Analysis of different Sorghum NADP-MDH mutants suggested
that the redox potential of the algal TRXf is significantly lower
than that of land plant TRXf (Lemaire et al., 2005). This sur-
prising result suggests the existence of a coevolution of the
redox properties of TRXs and NADP-MDH. From an evolu-
tionary point of view, the redox regulation of Chlamydomonas
NADP-MDH appears like a first step toward the complex reg-
ulation existing in land plants. The requirement for such a
sophisticated control may be linked to the multicellular nature

of land plants where malate is a circulating form of reducing
power (Scheibe, 2004) while in Chlamydomonas malate is only
exchanged between the unique chloroplast and the cytosol. These
results also suggest that the redox regulatory sequences have been
progressively added to non-regulated enzymes during the course
of evolution.

Rubisco activase
Rubisco activase is a molecular chaperone of the AAA+ family
that uses the energy from ATP hydrolysis to release tight bind-
ing inhibitors from the active site of Rubisco (reviewed in Portis,
2003; Portis et al., 2008). The ATPase activity of Rubisco acti-
vase is controlled by the ADP/ATP ratio and/or by the Fd/TRX
system. In many species, such as Arabidopsis, two isoforms of
activase are present: a short form (beta isoform) and a long form
(alpha isoform). The two forms are either generated by alternative
splicing or encoded by distinct genes (Werneke and Ogren, 1989;
Salvucci et al., 2003; Yin et al., 2010). Compared to the beta iso-
form, the alpha isoform differs by the presence of a C-terminal
extension containing two conserved cysteines. In Arabidopsis,
site-directed mutagenesis revealed that these residues, Cys392 and
Cys411, form a disulfide reduced by TRXf in the light (Zhang
et al., 2001). The extension contains negative charges that inter-
act with the ATP binding site (Wang and Portis, 2006; Portis
et al., 2008). Indeed, the oxidized enzyme has a decreased affin-
ity for ATP and is inhibited by ADP while reduction by TRXf
alleviates this inhibition. This regulation controls the activity of
both alpha and beta isoforms in the holoenzyme (Zhang et al.,
2001). Some species such as tobacco, maize, or green algae only
contain the short beta isoform but still exhibit light dependent
regulation of Rubisco activase activity (Salvucci et al., 1987).
A recent study revealed that tobacco beta isoform, by contrast
with the beta isoform from Arabidopsis, has a unique sensitiv-
ity to ADP/ATP ratios that is responsible for the light regulation
of the activity (Carmo-Silva and Salvucci, 2013). Several studies
have concluded that Rubisco activase forms hexamers in solu-
tion, and that this may be the active form (Keown et al., 2013;
Mueller-Cajar et al., 2013). The structure of tobacco Rubisco acti-
vase forms a helical arrangement in the crystal structure, with six
subunits per turn (Stotz et al., 2011). However, Rubisco activase
appears to form a wide range of structures in solution, ranging
from monomers to oligomers, and an open spiraling structure
rather than a closed hexameric structure has been recently pro-
posed (Keown et al., 2013). Numerous features of Rubisco acti-
vase are reminiscent of GAPDH which also can assemble into
higher oligomeric states and has both redox-regulated (GAPB)
and non-redox-regulated (GAPA) subunits that differ by a C-
terminal extension containing a TRX-reduced regulatory disul-
fide that exerts control on the activity of the mixed oligomer
(AnBn-GAPDH).

CP12
CP12 was discovered by serendipity in higher plants as a novel
protein of 78 amino acids with a C-terminal sequence homol-
ogous to the CTE of GAPB subunits of GAPDH (Pohlmeyer
et al., 1996). CP12 was then found to be widespread in oxygenic
photosynthetic organisms, including cyanobacteria, and GAPB
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subunits of land plants are now believed to be the result of a gene
fusion event between GAPA and CP12 that must have occurred
at the origins of Streptophytes (Petersen et al., 2006) or before
(Robbens et al., 2007).

Most CP12s contain four conserved cysteines able to form
two disulfide bonds (Groben et al., 2010; Marri et al., 2010;
Stanley et al., 2013). CP12 from both Synechococcus sp. PCC7942,
Chlamydomonas and Arabidopsis were the most extensively stud-
ied. The protein is intrinsically disordered, particularly so when
it is fully reduced, but still poorly structured when it bears both
disulfide bonds (Graciet et al., 2003; Marri et al., 2008, 2010). In
Arabidopsis, the C-terminal disulfide has redox properties simi-
lar to GAPB disulfide [Em = −352 mV at pH 7.9, (Marri et al.,
2008)] and is reduced by TRXs, though with no strict speci-
ficity (Marri et al., 2009). Oxidized CP12 binds to A4-GAPDH
more tightly than CTE through interactions with both the bound
coenzyme and the catalytic site of the enzyme. (Fermani et al.,
2007, 2012; Matsumura et al., 2011). In Arabidopsis (Marri
et al., 2008; Fermani et al., 2012) and Chlamydomonas (Kaaki
et al., 2013), A4-GAPDH binds two CP12, while four CP12
are bound to A4-GAPDH in Synechococcus (Matsumura et al.,
2011). CP12 binding is very strong in Chlamydomonas (kD

0.4 nM) and causes inhibition of GAPDH activity (Erales et al.,
2011), whereas in Arabidopsis CP12 binding is much weaker
[kD 0.2 µM, (Marri et al., 2008)] and inhibition is negligible
(Marri et al., 2005, 2008). However, in these and other organ-
isms, the binary complex GAPDH/CP12 can then bind PRK
forming the GAPDH/CP12/PRK ternary complex, in which both
enzyme activities are strongly down-regulated (Marri et al., 2005).
NAD(H) binding to GAPDH is an absolute requirement for
complex formation because the 2′-phosphate of NADPH steri-
cally hinders the attachment of CP12 (Matsumura et al., 2011;
Fermani et al., 2012). Dissociation of the complex, and recov-
ery of enzyme activity is rapidly obtained by reduced TRXs
(Marri et al., 2009), but also by BPGA, NADPH or ATP that
displace CP12 from its binding sites on GAPDH and PRK,
respectively (Wedel et al., 1997; Scheibe et al., 2002; Graciet
et al., 2004; Marri et al., 2005; Tamoi et al., 2005; Howard
et al., 2008). CP12-assembled complexes of GAPDH and PRK
accumulate in the dark, both in cyanobacteria and in chloro-
plasts, probably favored by the oxidation of the TRX pool and
by low NADP(H)/NAD(H) ratios (Scheibe et al., 2002; Tamoi
et al., 2005; Howard et al., 2008, 2011b). In Synechococcus,
inactivation of cp12 gene impaired cell growth in normal light-
dark cycles, but not under continuous illumination, support-
ing the role of CP12 in light-dark regulation of the CBC in
this organism (Tamoi et al., 2005). CP12 is also coded by the
small genome of cyanophages that infect marine cyanobacteria
including Synechococcus, apparently with the function of redi-
recting the carbon flux of the prokaryote from the CBC to the
pentose phosphate pathway, thereby sustaining NADPH produc-
tion for phage replication (Thompson et al., 2011). However,
other functions of CP12 have been proposed, particularly in
land plants like tobacco, where antisense suppression of CP12
severely restricts growth and alters carbon partitioning through
mechanisms that are still poorly understood (Howard et al.,
2011a).

EVOLUTION OF REGULATORY SEQUENCES
Comparison of the redox regulatory properties of enzymes from
cyanobacteria, diatoms, algae and higher plants suggest that
the light-dependent regulation mediated by TRX has been pro-
gressively introduced during evolution (Ruelland and Miginiac-
Maslow, 1999; Lemaire et al., 2007) (Figure 7). Comparison with
non-redox-regulated forms suggest that regulatory sequences
have been grafted within N- or C-terminal extensions (GAPDH,
NADP-MDH, Rubisco Activase) or inserted in the sequence
(FBPase). For some enzymes, there is no obvious insertion or
extension but this mainly applies to enzymes unique to the
CBC (PRK, SBPase). Interestingly, in the diatom O. sinensis PRK
contains the regulatory cysteines but the redox potential of the
disulfide is less negative than in PRK from higher plants, sug-
gesting that the enzyme might not be regulated by TRX in vivo
(Michels et al., 2005). In a survey on different algal groups, redox-
regulation of PRK was found to be greatest in chlorophytes, but
low or absent in a red alga and most chromalveolates (including
diatoms), and linked to the number of amino acids separat-
ing the two regulatory cysteine residues (Maberly et al., 2010).
Several other enzymes in diatoms may also be TRX independent
due to the absence of regulatory cysteines such as NADP-MDH
(Ocheretina et al., 2000) or GAPDH (Liaud et al., 2000).

PROTEOMICS UNRAVEL NEW REDOX-DEPENDENT
REGULATIONS
Recent advances in the field of proteomics and genomics
associated with our increasing understanding of redox post-
translational modifications have considerably challenged our cur-
rent models of the redox dependent regulation of the CBC
described in the above sections. These new data suggest that all
enzymes of the CBC are regulated by a complex network of redox
PTMs that is only starting to emerge. The following sections
will describe these new developments and discuss their potential
physiological and cellular importance.

THIOREDOXIN TARGETS
As described above, the availability of plant genome sequences
revealed the existence of an unsuspected multiplicity of TRXs.
At the beginning of the 2000s, the number of TRXs was even
higher than the number of known TRX-regulated targets. This
multiplicity raised questions about the specificity of the differ-
ent TRX isoforms for their target enzymes. Moreover, systematic
biochemical analysis of the ability of Arabidopsis TRX isoforms
to activate different chloroplastic TRX targets revealed that TRXs
are not equivalent and exhibit strong specificities (Collin et al.,
2003, 2004). This suggested that additional TRX targets proba-
bly remained to be identified and prompted several groups to
develop new proteomic-based strategies to identify these unrec-
ognized targets (reviewed in Lemaire et al., 2007; Schürmann
and Buchanan, 2008; Lindahl et al., 2011). Two main strategies
have been employed. The most common is based on the ability
of a monocysteinic TRX to form covalent heterodimers with its
target enzymes. Indeed, studies on the reaction mechanism allow-
ing the reduction of an oxidized target by a reduced TRX had
established that the most N-terminal cysteine of TRX active site
performs an initial nucleophilic attack leading to the formation
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FIGURE 7 | Redox regulated cysteines in Calvin–Benson cycle enzymes.

All proteins are schematically represented linearly. The numbering
corresponds to the sequence with the transit peptide, except when “no
transit peptide” is indicated on the right. Lines between cysteines indicate
confirmed (black) or suggested (black and dashed) disulfide bonds, whereas
gray lines indicate putative regulatory disulfides in C. reinhardtii by homology

with the disulfide identified for other species. Cysteines identified as
nitrosylated and glutathionylated are labeled with NO (blue) and SG (purple),
respectively. The dots indicate cysteine conservation in photosynthetic
organisms (green), bacteria (black), fungi (blue) and metazoans (orange). Dark
boxes correspond to insertions/extension present in the TRX-regulated
isoforms and absent in the isoforms not regulated by TRX.

of a transient mixed-disulfide between the TRX and the target.
This mixed-disulfide is then immediately reattacked by the sec-
ond cysteine of the active site to yield an oxidized TRX and a
reduced target. Consequently, mutating the second cysteine of
the active site allows stabilization of the mixed-disulfide. TRX-
affinity columns, based on a resin-bound monocysteinic TRX,

have been employed to trap TRX targets which can be eluted
by DTT reduction and identified by proteomic analysis. Many
targets have been identified using this type of affinity columns
(Motohashi et al., 2001; Goyer et al., 2002; Balmer et al., 2003,
2004b, 2006b; Lindahl and Florencio, 2003; Lemaire et al., 2004;
Wong et al., 2004; Yamazaki et al., 2004; Hosoya-Matsuda et al.,
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2005; Marchand et al, 2006; Marchand et al., 2010; Pérez-Pérez
et al., 2006, 2009). In addition, affinity columns based on wild-
type TRX have also been used to detect proteins interacting
electrostatically with TRX (Balmer et al., 2004a). The second most
widely used approach is based on the visualization of proteins
reduced by TRX in vitro by specific labeling of exposed thi-
ols by fluorescent probes like monobromobimane (mBBr) (Yano
et al., 2001; Marx et al., 2003; Wong et al., 2003, 2004; Balmer
et al., 2006a,b; Yano and Kuroda, 2006; Hall et al., 2010) or Cy5
maleimide (Maeda et al., 2004) or by radioactive probes like 14C-
iodoacetamide (Marchand et al., 2004; Marchand et al, 2006). A
comparison between both methods suggested that they are com-
plementary since only a partial overlap is found between the
different targets identified (Marchand et al, 2006).

All these proteomic studies have allowed identifying more than
300 putative TRX targets from the cyanobacteria Synechocystis
sp. PCC6803, the unicellular green alga Chlamydomonas rein-
hardtii and numerous higher plant species (reviewed in Michelet
et al., 2006; Lindahl et al., 2011). These proteomic methods are
therefore powerful but they also suffer from a lack of specificity.
Indeed, proteomic approaches with different types of TRX yielded
roughly the same targets while a strong or exclusive specificity of
most targets for a specific TRX type is generally observed in vitro.
For example, columns based on monocysteinic TRXf and TRXm
basically retain the same targets while FBPase and GAPDH are
exclusively activated by TRXf and not by TRXm (Collin et al.,
2003; Marri et al., 2009). This suggests that monocysteinic TRX
have peculiar properties distinct from the WT enzyme and/or
that the loss of specificity is due to the use of high concentra-
tions of TRX. Indeed, while enzymes show a preference for some
TRX types at physiological TRX concentration, many TRX types
become able to significantly activate a number of TRX targets if
used at high concentration (Collin et al., 2003, 2004). By contrast,
the diversity of the targets appeared to be strongly dependent on
the type of protein extracts employed (organism, tissue, growth
conditions. . . ). The problem of specificity is even larger since
monocysteinic GRX columns also retain the same type of targets
than those bound on TRX columns (Rouhier et al., 2005; Li et al.,
2007). Classical GRXs belong to the TRX family and contain an
active site disulfide (Cys-Pro-Trp/Phe-Cys) that is reduced by glu-
tathione (Rouhier et al., 2008; Zaffagnini et al., 2012c). GRXs can
reduce disulfide bonds on their target proteins, although much
less efficiently than TRX, but they are thought to play a more
prominent role in the control of protein (de)glutathionylation
(Zaffagnini et al., 2012c).

Among all putative TRX targets, more than 130 are located
in chloroplasts (Lemaire et al., 2007; Lindahl and Kieselbach,
2009). The well-established targets of TRX participating directly
or indirectly in the CBC were recovered by proteomic approaches
(FBPase, SBPase, GAPDH, PRK, CP12, Rubisco activase). More
surprisingly, all other enzymes of the CBC were also identified
among putative targets, suggesting that they might all be redox
regulated (Table 1). All CBC enzymes were, however, not iden-
tified within the same study, possibly because of a low coverage
rate due to the use of 2D-gels and MALDI-TOF mass spectrome-
try in most studies. This suggests that the number of TRX targets
could be significantly higher than presently known and that the

combination of TRX-affinity chromatography or thiol-labeling
with modern gel-free proteomic methods may reveal a much
greater diversity of new potential targets of TRXs.

Nevertheless, the identification of all CBC enzymes as poten-
tial targets of TRXs suggested the existence of a complex redox
control of these enzymes that may be much more sophisticated
than the light-dependent regulation initially uncovered for four
enzymes of the cycle. These features may allow a fine tuning of
the Calvin–Benson cycle in response to environmental changes
that affect ROS production and the intracellular redox state.
There are two non-mutually exclusive possibilities to explain this
surprising result. First, all the CBC enzymes may contain a TRX-
reducible disulfide bond, like the four established TRX-targets.
These regulations may have been initially missed, for example,
because of their low activation upon reduction (e.g., below 50%)
or because the disulfide controls enzyme properties that have not
been investigated (protein stability, cooperativity between sub-
units, protein-protein interactions, etc.). This may be the case for
phosphoglycerate kinase (PGK) which was shown to be redox reg-
ulated, possibly by TRX, in Phaeodactylum tricornutum (Bosco
et al., 2012) and Synechocystis sp. PCC6803 (Tsukamoto et al.,
2013). To date, none of these putative TRX dependent redox reg-
ulations have been confirmed experimentally on any other CBC
enzyme. The second possibility is that these cysteines are not
attacked (or reduced) by TRX because they are engaged in a
disulfide bond but because they harbor another type of cysteine
oxidative modification. Indeed, although TRX are efficient pro-
tein disulfide reductases, they are also playing a role in the control
of other post-translational modifications including sulfenylation,
nitrosylation or glutathionylation. Therefore, putative TRX tar-
gets identified by proteomic approaches may represent proteins
containing diverse types of redox PTM and should therefore
be considered as putative redox regulated proteins rather than
proteins containing a TRX-reducible disulfide. This was demon-
strated for Chlamydomonas isocitrate lyase, an enzyme of the
glyoxylate cycle participating in acetate assimilation which was
retained on a monocysteinic TRX affinity column (Lemaire et al.,
2004). Detailed biochemical analysis of this enzyme revealed
that the enzyme is strongly and reversibly inhibited by glu-
tathionylation but does not contain any TRX-reducible disulfide
bond (Bedhomme et al., 2009). We recently obtained compa-
rable results with the Calvin–Benson enzyme triosephosphate
isomerase (TPI) which does not appear to contain a regulatory
disulfide but was found to undergo glutathionylation and nitro-
sylation in vitro (Zaffagnini et al., 2013a). Although the number
of studies is more limited, mounting evidence suggests that glu-
tathionylation and nitrosylation also control enzymes of the CBC.
These recent developments are detailed in the next sections.

MULTIPLE REDOX POST-TRANSLATIONAL MODIFICATIONS
During the last decade, glutathionylation and nitrosylation have
emerged as crucial PTMs playing a major role in numerous
fundamental cell processes, especially cell signaling pathways
(Hess et al., 2005; Besson-Bard et al., 2008; Mieyal et al., 2008;
Rouhier et al., 2008; Dalle-Donne et al., 2009; Foster et al., 2009;
Astier et al., 2011; Hess and Stamler, 2012; Zaffagnini et al.,
2012c).
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Table 1 | Summary of redox proteomic analyses of Calvin–Benson cycle enzymes and related proteins.

Putative

nitrosylation

targets

(references)

Putative

nitrosylated

cysteine (Cys

numbering)

Putative

glutathionylation

targets

(references)

Putative

glutathionylated

cysteine (Cys

numbering)

Putative

thioredoxin targets

(references)

Putative

glutaredoxin

targets

(references)

Rubisco S 2, 3, 5, 6, 8, 11,
12, 26

C64 1 10, 13, 14, 15, 16, 20 17

Rubisco L 2, 3, 4, 5, 6, 7, 8,
12, 26

C172/247/427/459/C192/427 1 C172/247/427 10, 15, 16, 19, 20,
22, 23

17

PGK 2, 6, 8 C411 1, 9 C411/C158 16, 21 17

GAPDH A 2, 3, 5, 7, 8, 11 1 13, 16, 18, 20, 22 17

GAPDH B 5, 8 14, 16

TPI 2, 3, 5, 8, 11 C245/273 14, 18, 20 17

FBA 2, 3, 5, 6, 8, 12,
26

C58/142/256 1, 25 C58/256 10, 15, 22, 24 17

FBPase 2 C233 1 C109 16, 18, 22 17

Transketolase 2, 4, 5, 8, 11, 12 C582/C440 1 C84 14, 16, 18, 20, 21,
22

17

SBPase 2, 8, 12 C355/362 1 10, 13, 14, 18, 20

RPE 2 1 14, 18, 20

RPI 2, 3 1, 9 10, 18, 20

PRK 2, 3, 6, 7, 8, 11 C47 1 C47/274 10, 14, 18, 20, 22 17

CP12* 3 18, 20

NADP-MDH 2 C74 1 14, 16, 18, 20

Rubisco Activase 2, 3, 4, 6, 8, 11 C196/289/C175 1 13, 14, 15, 16,18, 20 17

Calvin–Benson cycle enzymes are listed in the order of the reactions starting with Rubisco. The three last enzymes participate indirectly in the regulation of the

cycle. The references correspond to proteomic studies that allowed identification of the enzyme as nitrosylated, as glutathionylated or as thioredoxin or glutaredoxin

targets. Modification sites identified by proteomic methods are listed with the numbering of the cysteines identified as glutathionylated (Zaffagnini et al., 2012a) and

nitrosylated (Morisse et al. manuscript in preparation) in Chlamydomonas reinhardtii in normal text and the cysteines found as nitrosylated in Arabidopsis thaliana

(Fares et al., 2011) in italics. Numberings correspond to the full-length protein with its transit peptide. References: 1, (Zaffagnini et al., 2012a); 2, Morisse et al.

manuscript in preparation; 3, (Lin et al., 2012); 4, (Fares et al., 2011); 5, (Lindermayr et al., 2005); 6, (Kato et al., 2013); 7, (Romero-Puertas et al., 2008); 8, (Tanou

et al., 2012); 9, (Michelet et al., 2008); 10, (Lemaire et al., 2004); 11, (Tanou et al., 2009); 12, (Abat and Deswal, 2009); 13, (Motohashi et al., 2001); 14, (Balmer et al.,

2003); 15, (Balmer et al., 2006b); 16, (Balmer et al., 2004a); 17, (Rouhier et al., 2005); 18, (Marchand et al., 2004); 19, (Lindahl and Florencio, 2003); 20, (Marchand et

al, 2006); 21, (Balmer et al., 2006a); 22, (Pérez-Pérez et al., 2009); 23, (Hall et al., 2010); 24, (Marchand et al., 2010); 25, (Ito et al., 2003); 26, (Abat et al., 2008).

Glutathione is the major low molecular weight antioxidant
in most species and exists in the reduced (GSH) and oxi-
dized (GSSG) forms. GSH is the major form due to con-
stant reduction of GSSG to GSH by glutathione reductase
(GR) at the expense of NADPH. Glutathione is considered as
a major cellular antioxidant and redox buffer but also plays
an important role in a myriad of cellular and physiological
functions including detoxification of heavy metals and xeno-
biotics, root growth or pathogen responses (Noctor et al.,
2012). Glutathionylation is a post-translational modification
triggered by oxidative stress conditions and consisting of the
formation of a mixed-disulfide between a protein free thiol
and the thiol of a molecule of glutathione. Although the pre-
cise mechanism leading to glutathionylation is still unclear
in vivo, it is considered to occur mainly either through reac-
tive oxygen species (ROS)-dependent sulfenic acid formation
followed by reaction with reduced glutathione (GSH) or by
thiol/disulfide exchange with oxidized glutathione (GSSG). The
reverse reaction, named deglutathionylation, is mainly catalyzed
by GRXs.

Nitrosylation consists in the formation of nitrosothiols by
reaction of protein thiols with nitric oxide (NO). It can be
triggered chemically by reactive nitrogen species (RNS) which
includes NO and its related species (such as the nitrosonium
cation, NO+; nitroxyl anion, NO−; dinitrogen trioxide, N2O3

or peroxynitrite, ONOO−) but also by transnitrosylation reac-
tions mediated by small nitrosothiols (e.g., nitrosoglutathione,
GSNO) or by other nitrosylated proteins (Hogg, 2002; Hess et al.,
2005; Benhar et al., 2009; Zaffagnini et al., 2013b). The reduc-
tion of nitrosothiols on proteins, i.e., denitrosylation, entails two
possible mechanisms dependent on reduced glutathione (GSH)
or reduced TRX (Benhar et al., 2009; Sengupta and Holmgren,
2013).

To date, several hundreds of targets of glutathionylation and
nitrosylation have been identified in bacteria, yeast, animals and
plants, suggesting a role for these redox modifications in many
cellular processes (Mieyal et al., 2008; Astier et al., 2011; Hess
and Stamler, 2012; Zaffagnini et al., 2012c; Maron et al., 2013).
In our two recent studies, the use of biotin-based enrichment
strategies using streptavidin affinity chromatography combined
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with up-to date mass spectrometry instruments allowed iden-
tification of 225 glutathionylated proteins and 492 nitrosylated
proteins in Chlamydomonas (Zaffagnini et al., 2012a; Morisse
et al. manuscript in preparation). There is a striking overlap
between potential TRX targets and proteins identified as nitro-
sylated or glutathionylated through proteomic studies. This sug-
gests that these proteins are regulated by multiple redox PTMs or
that the methods aimed at identifying TRX targets also identified
nitrosylated and glutathionylated proteins. The latter possibility
is consistent with the fact that TRX was proposed to catalyze both
(de)nitrosylation and (de)glutathionylation reaction for some
targets (Benhar et al., 2008; Greetham et al., 2010; Bedhomme
et al., 2012; Zaffagnini et al., 2013b).

Notably, all CBC enzymes appear to be modified by glu-
tathionylation (Table 1). Proteomic studies initially reported
in vivo glutathionylation for fructose-1,6-bisphosphate aldolase
(FBA) in Arabidopsis (Ito et al., 2003) and for phosphoglyc-
erate kinase (PGK) and ribose-5-phosphate isomerase (RPI)
in Chlamydomonas (Michelet et al., 2008). More recently, all
CBC enzymes were found to undergo glutathionylation in
Chlamydomonas (Zaffagnini et al., 2012a, 2013a). The modi-
fications of FBA, PGK and A4-GAPDH from Chlamydomonas
were confirmed by demonstrating that the purified protein is
glutathionylated after treatment with BioGSSG (biotinylated oxi-
dized glutathione) in vitro. Chlamydomonas PRK was found to
be strongly inhibited by GSSG and the activity could be fully
recovered after DTT treatment (Zaffagnini et al., 2012a). The glu-
tathionylation of different isoforms of GAPDH from Arabidopsis
was investigated in detail (Zaffagnini et al., 2007). Arabidopsis
A4-GAPDH was shown to be glutathionylated in vitro on its
catalytic cysteine with a concomitant loss of enzyme activity.
The enzyme is very sensitive to oxidants and is rapidly and
irreversibly inactivated by H2O2. However, incubation of the
enzyme with H2O2 in the presence of GSH leads to glutathiony-
lation, most likely through a mechanism involving a sulfenic
acid intermediate. Therefore, glutathionylation efficiently pro-
tects A4-GAPDH from irreversible oxidation and glutathiony-
lated A4-GAPDH was reported to be efficiently reactivated by
GRXs (Zaffagnini et al., 2008; Couturier et al., 2009; Gao et al.,
2010). Similar results were reported for the cytoplasmic GAPDH
isoform (GAPC) (Holtgrefe et al., 2008; Bedhomme et al., 2012).
By contrast, the A2B2-GAPDH isoform and its higher oligomeric
state A8B8-GAPDH were not found to undergo glutathionylation
in vitro (Zaffagnini et al., 2007). Chlamydomonas TPI was also
found to be glutathionylated in vitro but with no apparent effect
on the enzyme activity (Zaffagnini et al., 2013a). Finally, glu-
tathionylation is also likely affecting the CBC indirectly through
regulation of TRXf (Michelet et al., 2005). Among all chloro-
plastic TRXs, TRXf from diverse species specifically undergo
glutathionylation on a strictly conserved extra cysteine that is
distinct from the two-active site cysteines and located in the
vicinity of the active site. The glutathionylation of TRXf strongly
decreases its ability to activate A2B2-GAPDH and NADP-MDH
likely by perturbing the interaction with FTR since glutathiony-
lated TRXf is less efficiently reduced in the light. This suggests
that glutathionylation could affect all TRXf targets which include
many enzymes involved in carbon fixation and other chloroplast

metabolic pathways. A2B2-GAPDH being specifically activated
by TRXf, GAPDH activity is likely fully down-regulated under
conditions leading to protein glutathionylation in chloroplasts,
such as enhanced ROS production either by direct glutathionyla-
tion of A4-GAPDH on its catalytic cysteine or indirectly through
glutathionylation of TRXf that decrease the activation of A2B2-
GAPDH.

All CBC enzymes were also identified as nitrosylated proteins
by proteomic approaches (Table 1). None of these putative reg-
ulations has been confirmed biochemically with the exception of
Chlamydomonas TPI that was shown to be partially inhibited by
nitrosylation (Zaffagnini et al., 2013a) and land plant Rubisco
which appears to be inhibited by nitrosylation (Abat et al., 2008;
Abat and Deswal, 2009). Cytosolic GAPDH was shown to be com-
pletely inhibited by nitrosylation and fully reactivated by GSH
or, less efficiently, by TRXs (Holtgrefe et al., 2008; Zaffagnini
et al., 2013b). These properties may likely apply to chloroplas-
tic GAPDH considering its strong structural and biochemical
similarities with cytosolic GAPDH.

Recent proteomic studies also allowed identification of the
cysteine residues undergoing nitrosylation and glutathionyla-
tion (Table 1). A schematic representation of the sites identified
as nitrosylated, glutathionylated or forming a TRX-reducible
disulfide bond is presented in Figures 7, 8. Many of these cys-
teines are conserved, especially in photosynthetic organisms.
Some sites are shared between different modifications while oth-
ers are unique. For example, in Chlamydomonas PRK, Cys47
appears modified by the 3 types of redox PTMs while Cys274
was only found to undergo glutathionylation. By contrast,
Chlamydomonas FBPase is modified on 4 distinct cysteines that
are all conserved in photosynthetic organisms: the enzyme under-
goes glutathionylation on Cys109, nitrosylation on Cys233 while
the TRX-reducible disulfide bond is most likely located between
Cys213 and Cys219 by homology with higher plant FBPase. The
large subunit of Rubisco appears to undergo multiple modifi-
cations with Cys459 identified as nitrosylated and 3 cysteines
(Cys172, Cys247, Cys427) undergoing both nitrosylation and
glutathionylation (Table 1, Figure 7). These results are consis-
tent with previous studies (reviewed in (Moreno et al., 2008))
that suggested a redox control of the activity and/or the stabil-
ity of Rubisco involving Cys172 (Moreno and Spreitzer, 1999;
Marcus et al., 2003), Cys427 (Muthuramalingam et al., 2013)
or Cys 459 (Marin-Navarro and Moreno, 2006). The multi-
plicity of the modification sites suggest that CBC enzymes are
indeed regulated by multiple redox PTMs although the differ-
ent modifications may not occur at the same time, at the same
site, to the same extent or under the same physiological/cellular
conditions.

CBC enzymes appear to be regulated by an intricate net-
work of redox PTMs whose dynamics remains to be explored.
These regulations may allow a tight coupling between the activ-
ity of CBC enzymes and the intracellular redox state linked to
environmental conditions. While dithiol/disulfide exchange reac-
tions controlled by TRXs allow light-dependent activation of
CBC enzymes, glutathionylation could constitute an alternative
mechanism of regulation of the CBC pathway occurring under
illumination and dependent on ROS production and glutathione.
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FIGURE 8 | Redox regulated cysteines in proteins controlling indirectly

the Calvin–Benson cycle. All proteins are schematically represented linearly.
The numbering corresponds to the sequence with the transit peptide, except
when “no transit peptide” is indicated on the right. Lines between cysteines
indicate confirmed (black) or suggested (black and dashed) disulfide bonds.
Cysteines identified as nitrosylated and glutathionylated are labeled with NO

(blue) and SG (purple), respectively. The dots indicate cysteine conservation
in photosynthetic organisms (green), bacteria (black), fungi (blue) and
metazoans (orange). In A. thaliana Rubisco activase, the regulatory cysteines
Cys451 and Cys470 in the precursor correspond to Cys392 and Cys411 in the
mature form. Dark boxes correspond to insertions/extension present in the
TRX-regulated isoforms and absent in the isoforms not regulated by TRX.

Indeed, all available data suggest that glutathionylation down-
regulates the activity of numerous CBC enzymes. Therefore, it
has been proposed that glutathionylation could constitute a new
mechanism of regulation of photosynthetic metabolism allowing
a fine tuning of the CBC cycle in order to redistribute reduc-
ing power (in the form of NAPDH) and energy (in the form of
ATP) within chloroplasts under oxidative stress, thereby favor-
ing ROS scavenging (Michelet et al., 2005; Lemaire et al., 2007).
This redistribution may be required transiently to cope with stress
conditions. Glutathionylation also constitutes a mechanism of
protection of CBC enzymes containing highly reactive cysteines
from irreversible oxidation in the presence of ROS, as demon-
strated for GAPDH (Zaffagnini et al., 2007). It has also been
proposed that the glutathionylation/deglutathionylation cycle
catalyzed by GRXs may contribute to ROS scavenging within
chloroplasts (Zaffagnini et al., 2012b). In addition to regulation
of CBC enzymes, redox signaling contributes to numerous short-
and long-term acclimation responses that allow plants to adapt
to fluctuating environmental conditions by enabling metabolic
readjustments to maintain cellular homeostasis (Scheibe and
Dietz, 2012).

It should be kept in mind that redox PTMs of CBC enzymes
do not necessarily imply that the modification regulates the
CBC pathway. First, it is possible that the modification does not
affect the activity of the protein as shown for the glutathionyla-
tion of Chlamydomonas TPI (Zaffagnini et al., 2013a). However,
even if it does, the extent of the modification in vivo being
undetermined, it is possible that it only affects a minor pool
of the total protein (especially for abundant proteins such as
those involved in the CBC) and modification of this pool may
not be limiting for the pathway. Finally, numerous identified
proteins may represent moonlighting proteins that, upon redox
PTMs, are diverted to new functions unrelated to their metabolic
role in carbon metabolism as shown for cytosolic GAPDH in
mammals (Hara et al., 2005) (see Zaffagnini et al. this series).

Indeed, upon apoptotic stimulation, nitrosylation of mammalian
GAPDH triggers its translocation to the nucleus where it reg-
ulates gene expression through several mechanisms including
transnitrosylation of nuclear proteins (Kornberg et al., 2010).
Plant cytosolic GAPDH was also shown to undergo nitrosy-
lation and to relocalize to the nucleus under stress condition
but the exact physiological function of the modification remains
to be established (Holtgrefe et al., 2008; Vescovi et al., 2013;
Zaffagnini et al., 2013b). Moreover, the glutathionylation of
mammalian GAPDH has been shown to regulate endothelin-
1 (ET-1) expression by altering the binding of GAPDH to
the 3′ untranslated region of ET-1 mRNA thereby increasing
its stability and resulting in increased ET-1 protein levels and
endothelial vasoconstriction (Rodriguez-Pascual et al., 2008). The
only CBC enzyme for which a moonlighting function has been
reported is Rubisco. Indeed, under oxidative stress the Rubisco
holoenzyme, composed of 8 small subunits (SSU) and 8 large
subunits (LSU) disassembles into its constituents and LSU sub-
sequently binds chloroplast mRNAs non-specifically and forms
large particles (Yosef et al., 2004; Knopf and Shapira, 2005;
Cohen et al., 2006). Recently, Chlamydomonas LSU but not
SSU was shown to accumulate in chloroplast stress granules
(cpSGs) under oxidative stress conditions (Uniacke and Zerges,
2008). cpSGs are RNA granules related to mammalian stress
granules that form during oxidative stress and disassemble dur-
ing recovery from stress. This study therefore suggested a novel
function of Rubisco LSU as an mRNA-localizing and assembly
factor of cpSGs (Uniacke and Zerges, 2008). This moonlight-
ing function being triggered by oxidative stress conditions, it
may likely be regulated by redox PTMs. Since cysteine mod-
ifications control several moonlighting functions of cytosolic
GAPDH, the same may be true for chloroplastic GAPDH iso-
forms participating in the CBC which also undergo multiple
redox PTMs. These redox PTMs are likely to play an impor-
tant role in ROS sensing and to allow adaptation or alternatively
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trigger programmed cell death under varying environmental con-
ditions.

CONCLUDING REMARKS
Recent proteomic studies suggest that CBC enzymes undergo
multiple types of redox PTMs including nitrosylation, glu-
tathionylation and oxido-reduction of disulfide bonds. The
possible regulations by additional redox PTMs whose impor-
tance starts to emerge in non-photosynthetic organisms, such
as sulfenylation, sulfhydration or cysteinylation, will also have
to be explored. Many data also suggest the existence of a
strong interplay between the different types of redox PTMs
as recently described for nitrosylation and glutathionylation
(Zaffagnini et al., 2012c). All these data suggest that CBC
enzymes are regulated by a complex and highly dynamic net-
work of redox PTMs. Unraveling the importance and func-
tion of these redox modifications under diverse physiolog-
ical and growth conditions and characterizing the underly-
ing molecular and structural determinants will certainly con-
stitute a major challenge for future studies. Acquiring this
knowledge is highly desirable considering the central role of
the CBC in the determination of crop yields, CO2 fixation,
biomass and biofuel production and plant adaptation to stress
conditions.
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