
“fpls-04-00484” — 2013/11/23 — 21:21 — page 1 — #1

METHODS ARTICLE
published: 26 November 2013
doi: 10.3389/fpls.2013.00484

Unleashing the potential of the root hair cell as a single
plant cell type model in root systems biology
Zhenzhen Qiao and Marc Libault*

Department of Microbiology and Plant Biology, University of Oklahoma, Norman, OK, USA

Edited by:

Wolfgang Schmidt, Academia Sinica,
Taiwan

Reviewed by:

Georgina Hernandez, Universidad
Autónoma de Mexico, Mexico
Jeremy Dale Murray, John Innes
Centre, UK

*Correspondence:

Marc Libault, Department of
Microbiology and Plant Biology,
University of Oklahoma, 770 Van Vleet
Oval, Norman, OK 73019, USA
e-mail: libaultm@ou.edu

Plant root is an organ composed of multiple cell types with different functions. This
multicellular complexity limits our understanding of root biology because -omics studies
performed at the level of the entire root reflect the average responses of all cells composing
the organ. To overcome this difficulty and allow a more comprehensive understanding of
root cell biology, an approach is needed that would focus on one single cell type in the
plant root. Because of its biological functions (i.e., uptake of water and various nutrients;
primary site of infection by nitrogen-fixing bacteria in legumes), the root hair cell is an
attractive single cell model to study root cell response to various stresses and treatments.
To fully study their biology, we have recently optimized procedures in obtaining root hair
cell samples. We culture the plants using an ultrasound aeroponic system maximizing root
hair cell density on the entire root systems and allowing the homogeneous treatment of
the root system. We then isolate the root hair cells in liquid nitrogen. Isolated root hair
yields could be up to 800 to 1000 mg of plant cells from 60 root systems. Using soybean
as a model, the purity of the root hair was assessed by comparing the expression level of
genes previously identified as soybean root hair specific between preparations of isolated
root hair cells and stripped roots, roots devoid in root hairs. Enlarging our tests to include
other plant species, our results support the isolation of large quantities of highly purified
root hair cells which is compatible with a systems biology approach.
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EXPERIMENTAL OBJECTIVES
Our understanding of root biology (i.e., root development, root
cell differentiation and elongation, response to biotic and abiotic
stresses) is based on -omic studies performed at the level of the
entire root system or specific regions of the root as well as from
the identification of mutants showing defects in root develop-
ment. These mutants were characterized from the model plant
Arabidopsis thaliana (Benfey et al., 1993; Rogg et al., 2001; Mishra
et al., 2009) as well as other plants where genetic tools are well
developed [e.g., Medicago truncatula (Tadege et al., 2008), Oryza
sativa (Kurata and Yamazaki, 2006), Lotus japonicus (Schauser
et al., 1998; Perry et al., 2003)]. These valuable studies led to the
identification of important genes and even gene networks control-
ling plant development and adaptation to stresses (Schiefelbein
et al., 2009; Bruex et al., 2012).

To enhance our current understanding of root biology, a sys-
tems biology approach is needed to take advantage of the recent
improvements in technologies such as mass spectrometry and
high-throughput sequencing. One challenge when studying root
biology is the multicellular complexity of plant roots. For exam-
ple, -omic analysis at the level of a complex organ such as the root
represents an average of the responses of the different cells com-
posing the sample. Consequently, cell specific transcripts, proteins
and metabolites as well as cell-specific epigenomic changes will
not be revealed resulting in a partial understanding of the specific
response of a cell or cell type to a stress and difficulties to fully
integrate the various -omic data sets.

To demonstrate that a single cell type model represents an
attractive alternative to overcome plant multicellular complexity
and to better understand gene networks, we compared the tran-
scriptomes of the soybean root hair to that of the whole root
(Libault et al., 2010b). Of the 5671 transcription factor (TF) genes
known in soybean (Schmutz et al., 2010; Wang et al., 2010), we
were able to detect transcripts for 3960 TF genes mining the whole
root transcriptome. Out of the 1711 TFs undetected in the whole
root transcriptome, 425 (25%) were only detected in the root hair
cell transcriptome. This result is surprising since root hair cells
were clearly one of the cell type represented in the root samples
used for transcriptomic analysis. We are assuming that the low
proportion of root hair cells in the root sample led to a dilution of
root hair specific transcripts challenging their detection. This anal-
ysis strongly supports the need to work on a single cell type such
as the root hair cell rather than an entire tissue to enable a more
sensitive and accurate depiction of transcript abundance and, as a
consequence, plant cellular responses to environmental perturba-
tion. In addition, working at the single cell level will provide data
more amenable to the development of computational models and
the mapping of gene networks. Using a single cell type system as a
model, the information obtained will be clearly unambiguous and
would lead to a better characterization of gene networks.

The understanding of root hair cell biology requires the appli-
cation of the full repertoire of functional genomic tools. However,
major challenges in characterizing the biology of a single differen-
tiated root cell type are the limited access to the root system and
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FIGURE 1 | Root hair cells (black arrow pointing at one of the root hair

cells) are single tubular root cells. Their distinctive lateral elongation
increases the surface of exchange between the plant’s root system and the
soil. The main function of root hairs is the uptake of water and nutrients
from the rhizosphere.

the isolation of the root cells of interest. In this manuscript, we
describe a method to: (1) homogeneously treat the plant’s root
hair cells; (2) easily access the root system and, a fortiori, the root
hair cell; (3) isolate large quantities of this single cell type.

LIMITATIONS OF CURRENT TECHNIQUES
The isolation of single differentiated root cell types is limited by:
(1) the accessibility to the root system; (2) the cell wall which
confers the rigidity of the plant and its overall structure. Laser
capture microdissection is a popular technique to isolate specific
cells types but it is labor-intensive and cell yields are very limited.
Nevertheless, it has been successfully applied to study root biol-
ogy (Klink et al., 2005; Ithal et al., 2007; Santi and Schmidt, 2008;
Takehisa et al., 2012). A second method based on the labeling of
cell type by the GFP has been recently established to measure Ara-
bidopsis thaliana single plant cell type transcriptomes and their
regulation in response to environmental stresses (Zhang et al.,
2005; Petersson et al., 2009). Using a collection of transgenic plants
expressing the GFP in different root cell lines, Arabidopsis thaliana
root cell types were isolated after digestion of the cell wall and

isolation of the resulting GFP positive protoplasts using cell sort-
ing technology. This strategy allowed the identification of root
cell type-specific genes validating the concept of root cell-specific
transcriptomes. However, as reported by the authors of these stud-
ies, the digestion of the cell wall also led to a few changes of the
plant transcriptome independently of the cell line or treatment. In
addition, several studies highlighted a massive restructuration of
the chromatin and epigenetic marks in leaf protoplasts in compar-
ison to differentiated leaves cells (Zhao et al., 2001; Tessadori et al.,
2007; Ondřej et al., 2009; Chupeau et al., 2013). A third method,
the INTACT method, was applied on Arabidopsis thaliana to iso-
late hair and non-hair cells and analyze their transcriptome and
epigenome (Deal and Henikoff, 2010, 2011). This method is based
on the expression of biotinylated nuclear envelope protein under
the control of a cell type-specific promoter sequence and the iso-
lation of labeled nuclei using streptavidin-coated magnetic beads.
The characterization of a cell-specific promoter is a pre-requisite
to the INTACT method. While RNA and chromatin structure can
be accessed using the INTACT method, other aspects of the biol-
ogy of the plant cell such as its entire proteome and metabolome
cannot be reached with this method.

Another strategy to study plant single-cell biology is to mas-
sively isolate easily accessible cell types. Such method has been
successfully applied on aerial parts of the plant. For example, cot-
ton fiber and pollen cells were isolated to investigate plant cell
elongation mechanisms (Franklin-Tong, 1999; Ruan et al., 2001;
Arpat et al., 2004; Padmalatha et al., 2012). More recently, the
soybean root hair (Figure 1) has emerged as a new single cell
type model (Libault et al., 2010a). Various studies validate the use
of the root hair cell as a model in systems biology through the
analysis of the infection of soybean root hair cells by mutualis-
tic symbiotic bacteria [i.e., the soybean root hair cell is the first
site of infection by Bradyrhizobium japonicum, the nitrogen-fixing
symbiotic bacterium involved in soybean nodulation (Gage, 2004;
Kathryn et al., 2007)]. In these studies, soybean seedlings were ger-
minated on agar plate preliminary to the inoculation of the plants
with B. japonicum followed with the isolation of the root hair
cells. Various -omics approaches were successfully used to deci-
pher root hair cell biology, including transcriptomic (Libault et al.,
2010b), proteomic (Wan et al., 2005; Brechenmacher et al., 2009,
2012), phosphoproteomic (Nguyen et al., 2012) and metabolomic
(Brechenmacher et al., 2010) methods. In addition to being a
model to investigate plant microbe interactions, the root hair cell is
also an excellent model to decipher plant cell regulatory networks
in response to abiotic stresses. This is based on their primary role
in water and nutrient uptake.

To utilize full potential of this attractive single cell type as a
model in root systems biology, root hairs must be evenly treated
preliminary to their isolation from the rest of the root system
in quantities compatible with any -omic analysis, and a fortiori,
transgenic root hair cells must be isolated to perform functional
genomic studies at the level of a single cell type. To reach these
two goals, we developed the method described below combin-
ing the use of an ultrasound aeroponic system to generate and
evenly treat a large population of root hair cells and the purifi-
cation of frozen root hair cells using a highly selective filtration
system. This method overcomes the limitations related to the

Frontiers in Plant Science | Plant Systems Biology November 2013 | Volume 4 | Article 484 | 2

http://www.frontiersin.org/Plant_Systems_Biology/
http://www.frontiersin.org/Plant_Systems_Biology/archive


“fpls-04-00484” — 2013/11/23 — 21:21 — page 3 — #3

Qiao and Libault Root hair cell systems biology

FIGURE 2 | Soybean seedlings grown in the ultrasound aeroponic system; (A,B) the whole system for plant culturing; (C,D) the plants in the

EZ-cloner; (E) soybean root showing a high density in root hair cells.

use of the agar media to germinate seedlings such as the hetero-
geneity of the root hair cell population produced (i.e., root hair
cells interact with the agar or are expanding in the atmosphere
impacting their physiology) and open new avenues to investi-
gate root hair cell biology because enabling functional genomic
studies (see below). To date, we focused on the isolation of soy-
bean root hair cells but the method described below has been
validated using other plant models such as maize, sorghum, and
rice.

DETAILED PROTOCOL OF THE OPTIMIZED METHOD
USE OF AN ULTRASOUND AEROPONIC SYSTEM TO ENHANCE ROOT
HAIR DENSITY AND TREATMENT
The study of root hair cell response to stresses presupposes:

1. The even treatment of the root system under control and
stressed conditions to minimize biological variations;

2. The optimization of the growth conditions of the root system
and the enhancement of the differentiation of root hair cells on
the root system;

3. An easy access to the root hair cell compatible with their
observation and isolation;

4. The development of methods to efficiently isolate them.

We recently developed a method which fulfills these differ-
ent requirements. Five days-old soybean seedlings germinated
on a mixture of vermiculite and perlite (3:1) were transferred
to the ultrasound aeroponic system under controlled conditions
(long day conditions, 25–27◦C, 80% humidity; Figure 2). This
system is composed of two units: the fogger system and the
cloner unit (EZ-CLONE Enterprises Inc.). The fogger system
relays on the production of a 5 micrometres (μm) droplets of
nutritive solution by ultrasound misters (OCEAN MIST®, DK24)

which atomize nutrient solution into a nutrient-rich mist by
vibrating at an ultrasonic frequency [in the case of soybean,
we are using the B&D nutritive solution (Broughton and Dil-
worth, 1971)]. An air flow pushes the cool mist into the cloner
unit where plants are growing. The quantity of mist produced
by the fogger system is controlled by the number of mist mak-
ers used per fogger system as well as by a timer controlling
the frequency and duration of the production of mist. Using a
thin mist to feed the plant maximized the oxygenation of the
root system, an important factor contributing to a higher den-
sity in root hair cells of the root system [(Shiao and Doran,
2000); Figures 2C,D]. Altogether, this unique system optimizes
root growth, enhances root hair cell density and offers an easy
access to the root hair cell compatible with their observation and
isolation (Figure 2E).

ROOT HAIR ISOLATION PROCEDURE
Root hair cell isolation has been repetitively applied on soybean
(Wan et al., 2005; Brechenmacher et al., 2010; Libault et al., 2010b;
Nguyen et al., 2012). Concomitantly to the development of the
aeroponic system, the method used to isolate soybean root hair
cell was updated to reach two objectives: (1) maintain or enhance
the level of purity of the root hair cell preparation from the rest
of the root system; (2) maximize root hair yields. Several methods
exist to isolate root hairs including gentle brushing of the frozen
root system into liquid nitrogen (Bisseling and Ramos Escribano,
2003) or stirring of the roots immersed in the liquid nitrogen with
glass rod preliminary to their isolation (Roehm and Werner, 1987;
Bucher et al., 1997). The first method maximizes root hair purifica-
tion but root hair yields are low and the method is labor intensive.
The second method provides large quantities of plant material
but the root hair cell preparation could be easily contaminated

www.frontiersin.org November 2013 | Volume 4 | Article 484 | 3

http://www.frontiersin.org/
http://www.frontiersin.org/Plant_Systems_Biology/archive


“fpls-04-00484” — 2013/11/23 — 21:21 — page 4 — #4

Qiao and Libault Root hair cell systems biology

FIGURE 3 | Isolated root hairs in light microscope. Bar = 100 μm.

by non-root hair cells such as root fragments resulting from the
stirring.

We optimized the latter method as described below. Briefly, the
root systems of 3 weeks-old soybean plants are isolated, rapidly
wiped off to remove extra moisture then immediately immersed
into liquid nitrogen. This rapid freezing prevents undesirable
stress of the root and root hair cells due to their manipulation.
All subsequent steps are performed in liquid nitrogen. Frozen
roots are gently stirred into liquid nitrogen by a glass rod for
10 min. The flow of liquid nitrogen is sufficient to break root
and root hairs. The liquid nitrogen containing the root hairs is
filtered through 90 μm sieve into a beaker. Based on stereomi-
croscopic observations, this mesh offers the best compromise to
maximize the level of purification of the root hair cells with-
out compromising the yield (Figure 3). The stripped roots are
rinsed 5–7 times to collect the remaining root hair cells and
increase the yield (i.e., as much as 1000 mg of isolated root
hair cells were isolated from 63-week old soybean plants). The
plant material harvested is usable the most up-to-date molecular
approaches.

MOLECULAR QUANTIFICATION OF THE LEVEL OF PURITY OF THE ROOT
HAIR CELL PREPARATIONS
To evaluate the purity of the root hair cell preparations, we
quantified the expression of several “root hair-specific” genes in
both isolated root hair and stripped root samples. These genes
were selected from the soybean transcriptome atlas (Libault et al.,
2010c) based on their high or specific expression in root hair cells
compared to stripped roots (Figure 4A). We are assuming that
the low transcript abundance of these “root hair-specific” genes
in stripped roots is the consequence of the presence of remaining
root hair cells or root hair cell nuclei in the stripped root samples
(i.e., the nucleus of mature root hairs are located in the base of
the cell).

The fold change of gene expression level in root hair cell ver-
sus stripped root ranged from 11.9 (Glyma09g05340) to 44.1
(Glyma15g02380) based on RNA-seq data (Figure 4A). Apply-
ing qRT-PCR methods, we analyzed the quality of the plant
material collected using our optimized method compared to
a previous root hair cell isolation method (Wan et al., 2005;
Figure 4B). Independently of the root hair isolation method
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FIGURE 4 | Expression analyses of soybean root hair specific genes.

(A) Relative expression levels of nine soybean genes in root hair cells and
stripped roots from the Illumina read data (Libault et al., 2010c); (B) The
fold-change of the expression of nine root hair specific genes was
quantified between isolated root hairs and stripped roots. The plant material
was generated using our optimized protocol (dark bars) and the method
provided by Wan et al. (2005) (light gray bars). For each experiment, a
minimum of three biological replicates were performed and analyzed. The
student t -test was applied to highlight significant differences between
these two methods. The asterisk indicates significantly difference
(*p < 0.05).

used, we observed a higher abundance of transcripts encoded
by the nine candidate genes in isolated root hairs compared to
stripped roots supporting high levels of purification of the root
hair cells. Using root hair cells and stripped roots collected using
the method described by Wan et al. (2005), the fold changes of
expression of root hair specific genes between root hairs and
stripped roots ranged between 42.4 ± 56.6 (Glyma02g01970) and
133.0 ± 67.1 (Glyma08g12130). Our optimized root hair cell
method repetitively led to fold changes of expression of root hair
specific genes ranging between 124.4 ± 117.8 (Glyma04g04800)
and 385.8 ± 164.0 (Glyma02g01970). This result supports a
higher enrichment in root hair cells in root hair cell prepara-
tion using the updated method compared to Wan et al. (2005)
method.

APPLICATIONS OF THE ULTRASOUND AEROPONIC SYSTEM TO
INVESTIGATE BIOLOGICAL QUESTIONS
The flexibility of the use of the ultrasound aeroponic system is fully
compatible with the homogeneous treatment of the root system to
analyze root hair response to biotic and abiotic stresses. The nature

of the abiotic stresses allowed by the aeroponic system is diverse
including: (1) changes of the chemical composition of the nutri-
tive solution to analyze root hair response to nutrient deprivation,
low and high pHs, salinity or heavy metal contaminations, etc.;
(2) changes of the environmental conditions such as temperature,
water potential, etc.; (3) inoculation of plants with pathogenic
and symbiotic microorganisms. The latter was validated by inoc-
ulating 2 weeks-old root systems of the hypernodulation soybean
mutants [i.e., NOD1-3, NOD2-4, and NOD3-7; Ito et al., 2007]
with a bacterial suspension of B. japonicum, the soybean nitrogen-
fixing symbiont. As soon as 10 days after inoculation, nodules
emerged. Thirty days after inoculation, a large number of nodules
were developing on the hypernodulating soybean roots [NOD1-3
(106.8 ± 27.7 nodules per plant), NOD2-4 (159.7 ± 42.7 nodules
per plant), NOD3-7 (99.7 ± 29 nodules per plant)]. Compared to
these mutants, 4.4- to 7-fold fewer nodules were counted on wild
type root system (22.8 ± 9.25 nodules per plant). Although, we
found that the number of nodules per root system is lower in the
aeroponic system grown plants compared to vermiculite grown
plants (i.e., wild type, NOD1-3, NOD2-4, and NOD3-7 mutants
showed 67, 441, 344, and 143 nodules per plant, 17–18 days after
inoculation, respectively; Ito et al., 2007), the NOD hypernodu-
lating phenotype is observed in the aeroponic system. These data
support that this technology is fully compatible with the analy-
sis of the early and late stages of legume nodulation. We assume
that additional experiments and tests using the aeroponic system
would maximize the number of nodules per plant.

Another potential attractive application of the aeroponic sys-
tem is the generation of composite plants (i.e., plants carrying a
mixture of transgenic and non-transgenic roots growing from a
wild type shoot) and, a fortiori, the easy access to a large mass
of transgenic roots compatible with their observation and vari-
ous molecular analyses. To test this potential utilization of the
aeroponic system, we inoculated soybean shoots with Agrobac-
terium rhizogenes carrying our transgene of interest (in this case,
a fusion between the cassava vein mosaic virus promoter and the
UidA gene which encodes the beta-glucuronidase). Ten days after
bacteria inoculation, a callus was formed and roots started to
emerge (Figure 5A). Four weeks after inoculation, the emerged
root system was stained using X-Gluc to reveal the β-glucuronisase
activity (Libault et al., 2010d; Figure 5B). In average, we observed
seven transgenic roots emerging from each composite plant. Stere-
omicroscopic observations revealed that these roots carry an
impressive number of transgenic root hair cells (Figure 5C).

CONCLUSION
In this manuscript, we combined the use of an ultrasound aero-
ponic system with updated method to isolate root hair cells to
maximize the potential of plant root hair cell as a single cell type
model for systems biology. This updated method has the follow-
ing advantages: (1) enhance root hair cell density on the root
system; (2) even and long-term treatment of the entire popula-
tion of root hair cells to access the molecular response of the root
hairs to various biotic and abiotic stresses.; (3) compatibility with
the microscopic observation of the root hair cells; (4) leading to
high yields of isolated root hair cells compatible with any -omic
analyses.
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FIGURE 5 | Soybean transgenic roots and root hairs generated in

the ultrasound areoponic system; (A) transgenic roots emerging

from the callus 10 days after Agrobacterium rhizogenes inoculation;

(B) GUS-stained soybean root system, the black arrows point at the

transgenic root and the white arrows point at the non-transgenic root;

(C) GUS-stained transgenic root hair cells. Bar = 200 μm.

In addition to be well-suited to perform –omics analyses at
the level of one single cell type, the ultrasound aeroponic sys-
tem has been validated to study plant-bacteria interactions and to
produce large quantities of easy accessible plant material allow-
ing functional genomic studies. Undoubtly, our updated method
of generating large amount of pure root hair cells will pro-
mote the progress of deciphering the regulatory mechanism of
plant cell biology including plant cell response to environmental
stresses.

EXPERIMENT PROCEDURE
PLANT GROWTH
Soybean seeds (Glycine max [L.]) were surface-sterilized by three
sequential treatments with 1.65% sodium hypochlorite (10 min
each), rinsed three times with deionized water before a 10 min
treatment with 10 mM hydroxychloride. Seed were finally washed

three times with sterile water before sowing on sterilized mixture
of vermiculite and perlite (3:1 ratio). Seeds were germinated under
permanent light conditions at 25◦C. One week later, the seedlings
were transferred into fogger system and supplement with the mist
of B&D plus 10 mM KNO3. Cultured for another 2 weeks in
areoponic system, the seedlings were collected into liquid nitrogen
for root hair isolation.

RNA EXTRACTION AND cDNA SYNTHESIS
Total RNAs were extracted using Trizol Reagent (Invitrogen). Six
to ten μg of total RNA were extracted from one preparation of iso-
lated root hairs. Total RNA samples were treated with the TURBO
DNase (Ambion) according to the protocol provided by the man-
ufacturer before to reverse transcribe 1 μg of DNA-free RNA
using oligodT and the Moloney murine leukemia virus reverse
transcriptase as previously described (Libault et al., 2010b).

Table 1 | qRT-PCR primers.

Soybean gene ID Forward primer Reverse primer

Glyma02g01970 TGGCTGCAAAGTGAAAATGA TCAATTCTTCGTGCCAATGA

Glyma03g34560 ATGAGTTGGGGCAGTACGAC TAGTTGAGCTTGACGCCAGA

Glyma04g04800 CCAACGGAACAAAGGTTGAT TATCGGAGCGTACATCCACA

Glyma08g12130 GCCCAACAAAGGATTAACGA TATCCTCCACATGGCACTCA

Glyma09g05340 GGCATGACAAGGGCTCATAC GCCTGTTCCGTTGTTGT

Glyma11g35560 TGCTACGTGAAGCCTGTT AGTGGAGCACCATTGAGA

Glyma15g02380 CAAGGTGAACCTGGAGCTGT TCTCCCAACCTCTCAACGAT

Glyma17g14230 CGTGATGAATGTTGGAGGTG GTTGCAAATGCCTGGTATGA

Glyma18g02870 GACCCTTAGCTTTCCGTCCT TCTCAATGCATGGTCAAAGG
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QUANTITATIVE REAL-TIME PCR AND DATA ANALYSIS
Quantitative real-time PCR (qPCR) primers were designed using
Primer3 software1 Table 1.

Quantitative real-time PCR reactions were performed as
described by Libault et al. (2008) including an initial denatura-
tion step of 3 min at 95 ◦C followed by 39 cycles of 10 s at 95 ◦C
and 30 s at 55◦C. Dissociation curves were obtained using a ther-
mal melting profile performed after the last PCR cycle: a constant
increase in the temperature between 65 and 95◦C.

Cycle threshold (Ct) values were obtained based on ampli-
con fluorescence thresholds. According to Vandesompele et al.
(2002), delta Ct were generated using the geometric mean of
the cycle threshold of three reference genes [Cons6, Cons7, and
Cons15 genes Libault et al., 2008]. PCR efficiency (Peff ) for each
sample was calculated using LinRegPCR (Ramakers et al., 2003),
and the expression level (E) were calculated using the equa-
tion E = Peff

(−�Ct). The fold change of the gene expression
levels between root hair versus stripped root was calculated for
each root hair specific gene. Three independent biological repli-
cates were generated for each condition and Student t-tests with
two tails and two samples equal variance were applied to dis-
play the significant differences of gene expression between root
hair and stripped root samples. P value < 0.05 was regarded
significant.

CLONING AND SOYBEAN HAIRY ROOT TRANSFORMATION
As described by Libault et al. (2010c), cloning of the cassava vein
mosaic virus promoter upstream of the UidA gene was performed
using the Gateway® system (Invitrogen2). The cassava vein mosaic
virus promoter fragment was introduced first into the pDONR-
Zeo vector (Invitrogen) using the Gateway® system BP Clonase®II
enzyme mix, then into pYXT1 destination vectors carrying the
UidA genes, using the Gateway®LR Clonase®II enzyme mix.

Two weeks-old soybean plants grown on pro-mix were used
to generate composite plants. K599 Agrobacterium rhizogenes bac-
terial strain carrying the transgene of interest, a transcriptional
fusion between the cassava vein mosaic virus promoter and the
UidA gene, was grown at 30◦C in LB medium supplemented
with kanamycin. The bacteria were pelleted by centrifugation, and
re-suspended in B&D medium supplemented with 10 mM potas-
sium nitrate and acetosyringone (20 μM) to an optical density at
600 nm = 0.35.

Soybean shoots were cut between the first true leaves and the
first trifoliate leaf and placed into rock-wall cubes (Fibrgro). Each
shoot was inoculated with 4 mL of Agrobacterium rhizogenes sus-
pension and then allowed to dry for approximately 3 days (23◦C,
50% humidity, long-day conditions) before watering with deion-
ized water. After 1 week, instead to transfer the composite plants
into vermiculite-perlite as described by Libault et al. (2009), the
transformed soybean shoot were transferred into the ultrasound
aeroponic system supplemented with B&D medium plus 10 mM
potassium nitrate. After 2 weeks, the β-glucuronisase activity of
the soybean root system was revealed as described by Libault et al.
(2010d).

1http://biotools.umassmed.edu/bioapps/primer3_www.cgi
2http://www.invitrogen.com/
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