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INTRODUCTION

Paleoendemic species of the monophyletic genus Ramonda (R. myconi, R. serbica and
R. nathaliae) are the remnants of the Tertiary tropical and subtropical flora in Europe. They
are the rare resurrection plants of Northern Hemisphere temperate zone. Ramonda serbica
and R. nathaliae are chorologically differentiated in the Balkan Peninsula and occupy similar
habitats in calcareous, northward slopes in canyons and mountainsides. They remain well-
hydrated during spring, late autumn and even in winter. In summer and early autumn
when plants are subjected to drought and thermal stress, their desiccation tolerance
comes into operation and they fall into anabiosis. Investigations revealed the permanent
presence of ubiquitine and its conjugates, high amounts of oxalic acid and proline. Both
species are homoiochlorophyllous. It enables them to rapidly resume photosynthesis
upon rehydration, but also makes them susceptible to reactive oxygen species formation.
Dehydration induces activation of antioxidative enzymes (ascorbate peroxidase, glutathione
reductase, polyphenol oxidase), increase in amounts of AsA and GSH, phenolic acids,
dehydrins, sucrose, and inorganic ions. Plasma membranes, characterized by high amount
of cholesterol, are subjected to decrease in membrane fluidity mostly on account of
increased level of lipid saturation. Cytogenetic analysis revealed that R. nathaliae is a
diploid (2n = 48) and probably evolutionary older species, while R. serbica is a hexaploid
(2n = 144). Two species live together in only two localities forming hybrid individuals
(2n = 96). Polyploidization is the major evolutionary mechanism in the genus Ramonda that
together with hybridization ability indicates that these relict species which have preserved
an ancient survival strategy are not the evolutionary “dead end.” The species of the genus
Ramonda are promising sources of data important for understanding the complex strategy
of resurrection plants’ survival, appraised through a prism of their evolutionary and adaptive
potential for multiple environmental stresses.
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and R. nathaliae, Haberlea rhodopensis, and Jankaea heldreichii) are

The Balkan Peninsula is one of the most important parts within
the Mediterranean “hot spot” area and is globally distinguished
as a reservoir of biological diversity (Myers etal., 2000). It har-
bors several desiccation tolerant and preglacial endemo-relict
species of the tropical-subtropical family Gesneriaceae. These
are the exceptional examples of floristic evolutionary diversifica-
tion and biogeographical differentiation within South-European
eumediterranean and paramediterranean area. Family Gesneri-
aceae has predominantly pantropical and pansubtropical distribu-
tion with only a small number of species extending to temperate
regions. Among these are three genera from South Europe. The
oligotopic genus Ramonda and the monotopic genera Haberlea
and Jankaea, include five species. With the exception of Ramonda
myconi which inhabits the Iberian Peninsula, all others (R. serbica

spread in the Balkan Peninsula. These Tertiary relict and endemic
species are perennial, long-lived, and slow-growing poikilohydric
plants. They are all evergreen chasmophytic hemicryptophytes and
inhabit rock crevices, preferentially in sheltered, rather cool and
humid places.

The J.M.C. Richard’s discovery of the Pyrenean R. myconi in
1805 was in the latter half of the century followed by the some-
what unexpected finding of R. serbica and soon after by that of
R. nathaliae in the Balkans, by Serbian botanists J. Pan¢i¢ and
S. Petrovi¢. By the end of the 19th century and early in the
20th the detailed descriptions of the Balkan Ramonda species,
their morphological, ecological and cytogenetic specificities and of
their distinguishable habitats, dispelled the initial doubts regard-
ing the taxonomic validity of R. nathaliae (Pancic, 1874; Petrovic,
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1882, 1885; Kosanin, 1921, 1939; Glisi¢, 1924; Cernjavsky, 1928).
At the same time they brought to light their unique feature of
pokilohydry.

GEOGRAPHICAL DISTRIBUTION OF BALKAN Ramonda
SPECIES

Ramonda serbica and R. nathaliae occupy different distribution
areas and both are almost exclusively calcicole plants (Figure 1).
R. serbica is found in the Southern Balkans and its habitats belong
to the Adriatic river system. It spreads in the regions of Albania,
Serbia, Montenegro, Macedonia, and Greece, spanning the wide
range of altitude from 200 to 1950 m asl. R. nathaliae is found in
more restricted and rather compact area situated mostly in Mace-
donia and partially in Greece and in Kosovo. Its altitudinal range
is somewhat wider, from 100 to 2200 m asl, and its habitats belong
to the Aegean river system (Meyer, 1970; Stevanovic etal., 1991).
Within this distribution area in only two localities (P¢inja and
Radusa gorges) R. nathaliae thrives on serpentine soil (Kosanin,
1921; Stevanovi¢ and Stevanovié, 1985).

Both Ramonda species have disjunct zones to the north-east
(the Central Balkans) of their respective ranges that belong to the
Black Sea river system. Within this area, on two localities in South
East Serbia (Jelasnica and Sic¢evo gorges), they form sympatric
populations within which they hybridize (Stevanovic etal., 1986,
1987; Siljak-Yakovlev et al., 2008a; Lazarevi¢ etal., 2013).

GENERAL ASPECTS OF HABITATS AND ECOLOGY

The sibling species R. serbica and R. nathaliae are the remnants of
the mountain flora that grew in the central and southern Balkans
during the late Tertiary, enjoying the subtropical-to-moderate
temperature and humidity. The onset of the global cooling of the
Northern Hemishere during the Glacial Age reduced their high
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FIGURE 1 | Distribution map of the genus Ramonda in the Balkan
Peninsula: R. serbica (red dots), R. nathaliae (green dots), sympatric
populations (red-green dots). Blue lines are watersheds between three
river systems.

mountain populations, restricting their settlements to sheltered
places such as gorges and ravines in high mountain zone and river
gorges and canyons at lower altitudes which offered milder and
more stable climatic conditions. In all those places they still thrive
as endemic Balkan relicts.

Both Ramonda species settle in crevices of exclusively north-
facing steep rocky sides, sheltered in the shade of northward
exposition or of the surrounding forest canopy. The reduced solar
energy input in such sites consequently means the lower daily
temperature and humidity variations in the habitat which is con-
sidered crucial for the maintenance of their activities during the
major part of the year. Thus, in respect to similar plants that
thrive in tropical/subtropical zone of the Southern Hemisphere,
Balkan Ramonda species successfully survive in entirely different
environmental conditions. These species of the subtropic origin
are subjected to continental climate that is characterized by hot
and dry summer as well as by winter season with long periods
of zero to sub-zero temperatures, often with scanty snow cover.
Within this range of climatic extremes, dynamic seasonal weather
changes force plants to go through desiccation/rehydration cycles
several times during a year (Figure 2).

Ramonda nathaliae and R. serbica grow on the shallow organo-
mineral soil covered with dense carpet of mosses. Mosses are very
efficient in absorption of water and have high capacity to store it
thus helping in improving soil moisture conditions (Raki¢ etal.,
2009). This type of soil is characterized by conspicuous waterhold-
ing capacity based on the hydrophilic character of high amount
of organic debris that is also of great significance for maintaning
the plant roots in hydrated state. The high economy of Ramonda
plants is furthermore represented by the efficient recycling of dead
outher leaves of the rosette that remain attached to the plant,
even though they are already partially decomposed. Thus, the
litter in the soil beneath the rosettes is composed mainly of dead
Ramonda leaves and broken down mosses. The efficacy of the
plant water and mineral element uptake is additionaly improved
by myccorhyzal fungi that were detected in roots of both Ramonda
species and whose extraradical hyphae have access to much larger
soil volume that often remains inaccessible to the plant roots
(Raki¢ etal., 2009, 2013). Hence, they are of the special impor-
tance for plants that grow in crevices on the vertical rocks on
thin soil layer and with roots that branch deeply in the bedrock
hollows.

Aside from their role in root protection, mosses and litter
beneath the plant’s rosette are the high quality cradle for young
plants and seedlings. Therefore, the type and the traits of the soil
are the prerequisites for the protection of these species survival in
extreme habitat conditions.

Clear differences exist between R. serbica and R. nathaliae
with regard to their respective ecoanatomical and ecophysiologi-
cal characters (Stevanovic¢ 1986, 1989-1991; Stevanovi¢ and Glisi¢,
1997; Stevanovic etal., 1997/1998). R. serbica performs as meso-
phyte: it grows in fairly humid and warm habitats, situated in
rocky outcrops sheltered by surrounding shrubs and small trees,
or in the forest understory. In comparison, R. nathaliae is a xero-
mesomorphic plant: it settles the sites which are exposed to harsher
environmental conditions—more warm and dry, and less protected
from high irradiance. Its presence on serpentine soil is witness to
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FIGURE 2 | Ramonda serbica (A), R. nathaliae (B), and R. nathaliae individuals in anabiosis (C).

such pronounced tolerance to adverse effects of climate (extremely
high temperature and low humidity) and soil (toxic effects of heavy
metal load; Stevanovic etal., 1997/1998; Lazarevi¢ etal., 2013).

BIOCHEMISTRY OF DESICCATION TOLERANCE

The critical variable which triggers entering of resurrection plants
into anabiosis and their subsequent recovery to full metabolic
competence is the availability of water. Slow drying over a longer
period, until the complete desiccation sets in, is vital for gradual
changes in structure and physiology that require time. Desiccation
in Ramonda plants from well hydrated to completely dehydrated
state takes place in about 15 days and quite noticeably falls into
two successive, but different stages. The initial desiccation period
is longer (7-10 days) when plant relative water content (RWC)
diminishes to about 40-50%. This is followed by the short period
of drastic water loss and finally results in complete plant desicca-
tion (RWC < 10%). The prominent increase in some physiological
parameters, such as increase in activity of enzymes involved in
antioxidative protection, at RWC of about 30-70% indicate that
Ramonda plants suffer from the strong, but transitory metabolic
disturbances that occur in moderatelly hydrated plants, during
both dehydration and rehydration (Sgherri et al., 2004; Jovanovi¢
etal., 2011). This can be correlated with the redox shifts induced
by metabolic imbalances that are the source of signals which lead
to the coordinated activation or cessation of the defense mecha-
nisms necessary for the survival of desiccation (Jovanovi¢ etal.,
2011).

At the beginning of rehydration, the recovering plant goes
through an oscillatory, unstable and vulnerable short period. Gen-
erally, in about a day’s time the markers of the oxidative stress
subside, and the plant regains satisfactory stability in about 48 h,
when the RWC reaches control values. However the fine-tuning
synthesis and repair could be seen 6 days away from the beginning
of rehydration.

ANTIOXIDATIVE RESPONSE

The general adaptive strategy for surviving numerous repetitive
dehydration/rehydration cycles during the life of resurrection
Ramonda plants is based to a large degree on their ability to limit

cellular damages during desiccation and rewatering. In parallel
with changes in metabolic activities, R. serbica and R. nathaliae
induce high antioxidant activity that protect cells from elevated
production of reactive oxygen species (ROS), which is one of the
most deleterious consequences of water deficit and metabolic dis-
balances. This is especially pronounced in early dehydration as
well as after several hours of rewatering (30-70% RWC). These
phases, when plants are moderately hydrated, are characterized
by very high activities in superoxide dismutase (SOD), ascor-
bate peroxidase (APX), and glutathione reductase (GR) which
indicates redox potential shifts in cells induced by increased
generation of ROS (Sgherri etal., 2004; Jovanovi¢ etal., 2011;
Figure 3).

Ascorbate peroxidase and GR are the first enzymes with
markedly increased activities during initial dehydration and with
similar profiles, suggesting that ascorbate-glutathione cycle plays
a major role in maintaining redox homeostasis. At the same time,
activities of non-specific peroxidases (PODs) are also elevated
playing a role not only in ROS detoxification, but also in cell wall
remodeling. Further dehydration leads to decrease in APX, POD,
and GR activities, but also to transient increase in SOD activ-
ity that consequently results in enhanced generation of H,O, and
transient increase in membrane lipid peroxidation and ion leakage
through plasmalemma. Lastly, in severely dehydrated plants and
in the state of anabiosis, when metabolism is almost completely
suspended, production of H,0; is reduced and the antioxidant
activities of all investigated enzymes are close to their control
levels. This indicates their resistance to breakdown, even under
conditions of nearly complete water loss.

Increased H,O, formation that occurs during the later phases
of dehydration is the signal for the multiple increments in ascor-
bate and glutathione pools (Augusti etal., 2001; Sgherri etal.,
2004). In desiccated plants both pools are composed of their
reduced forms, AsA and GSH, whose role is to maintain the
redox homeostasis during the latest phases of dehydration, in
desiccated plants and especially in rehydration. The most of
this large AsA and GSH reserve is used almost immediately
upon rewatering, thus metabolizing H,O, through ascorbate-
glutathione cycle. As a consequence, during the first several hours
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FIGURE 3 | Changes in APX, GR, CAT, SOD, and guaiacol peroxidase
activities as well as peroxidation level and electrolite leakage during
dehydration and rehydration of R. nathaliae.

of rewatering, their pools, now comprised mainly of their oxi-
dized forms, drastically decrease, so that the transient increase
in lipid peroxidation level and electrolyte leakage through plas-
malemma occur. At that time, the coordinated high activities
of SOD, CAT, APX, GR, and PODs are present, indicating that
the first few hours of rehydration represent extremely dramatic
period regarding cellular oxidative stress (Sgherri etal., 2004;
Jovanovi¢ etal., 2011).

Another group of compounds with pronounced antioxidant
activity found in unusually elevated amount in leaves of R. serbica
are phenolic acids (Sgherri etal., 2004). The most representa-
tive phenolic acids are chlorogenic acid, protocatechuic acid,
and p-hydroxybenzoic acid. The very high activity of phenolic
peroxidases and non-specific POD as well as decrease in total
amount of phenolic acids in the course of dehydration indi-
cate the strong oxidation of phenolic acids and suggests that
they act against ROS, functioning as substrates for peroxidases
(Sgherri etal., 2004; Veljovi¢-Jovanovi¢ etal., 2008). In addition,
high activity of polyphenol oxidase (PPO) in desiccated leaves of
R. serbica show that oxidation of phenolics plays an important role
in the adaptation mechanism to water deficit (Veljovi¢-Jovanovic
etal., 2008). On the contrary, during the first few hours of
rehydration, the specific phenolic POD activity is low and the

phenolic acid contents increase, the most probably due to the
strong oxidation of the abundant ascorbate pool. Rehydration
brought about short-term disappearance of the PPO isoforms
(with pI from 5 to 7.4) that are normally present in desiccated
leaves, which were than re-induced within 1 day upon rehydra-
tion. This observation is in accordance with the transient decrease
of SOD, APX, and POD activities that occur during the first
few hours of rehydration (Veljovi¢-Jovanovi¢ etal., 2006). The
transient inactivation of the antioxidative enzymes can be the
consequence of uncontrolled radical chain reactions, provoked
by small increase in RWC, leading to oxidation of the proteins
(Davies etal., 1987).

PHOTOSYSTEM Il PHOTOCHEMICAL EFFICIENCY

Both Ramonda species retain about 50% of chlorophyll in des-
iccated state and therefore are typical homoiochlorophyllous
desiccation-tolerant (HDT) plants (Drazi¢ etal., 1999; Jovanovi¢
etal, 2011). In the course of dehydration leaves progressively
fold inward so that the pronouncedly pubescent abaxial leaf
side becomes exposed to the sunlight. Thus, the chloroplasts
in the palisade tissue remain shaded and protected from the
light, minimizing the possibility for the light induced dam-
age of photosynthetic apparatus in water deprived cells. In this
manner, morphological changes observed in desiccated plants
represents indispensable mechanism for protection from pho-
tooxidative damages. The importance of leaf folding was shown
in homoiochlorophyllous resurrection plant Craterostigma wilm-
sii. When its rosette leaves were prevented from folding dur-
ing dehydration in light, the lethal damages induced by light
stress occurred and resulted in the loss of the plant viability
(Farrant etal., 2003).

At the beginning of dehydration of R. serbica the photochem-
ical efficiency of PS II decreases slowly, but than drops sharply
at RWC values below 40%, as found also in Haberlea rhodopensis
(Augustietal.,2001; Peeva and Cornic, 2009). The reduced rates of
chlorophyll a fluorescence and photosynthetic electron transport
in dehydrating plants consequently lead to increase in excessive
excitation energy that is finally dissipated as heat, thus preventing
from photoinhibition (Eskling et al., 1997; Niyogi, 1999; Smirnoff,
2000). The observed transient increase in non-photochemical
quenching (NPQ) during the mild water deficit is enabled by
accumulation of carotenoid zeaxanthin (Augusti etal., 2001). The
de-epoxidation state of xanthophyll cycle (DPS) increases dur-
ing dehydration and exhibits the similar pattern of variation as
NPQ. Thus, in dehydrated plants zeaxanthin and antheraxanthin
representes from 60 to 80% of the violaxanthin + antheraxan-
thin + zeaxanthin pool (Augusti etal., 2001). Afterward, at RWC
below 30%, when leaves are mostly folded, the NPQ declines.

Zeaxanthin that is retained in dehydrated leaves plays a role in
non-radiative energy dissipation at the beginning of rewatering
when PS II centers are still in recovery. At that time, at low RWC
and low electron transport rates, the excitation energy is still in
excess and therefore it is dissipated as heat, which is confirmed by
high DPS and NPQ (Augusti etal., 2001). The almost completely
recovered photochemical efficiency of PS II within the first 35 h
of rewatering suggests that thylakoid membranes mostly restored
their structure and functionality.
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MAINTENANCE OF THE CELL INTEGRITY

Lipids

The total polar lipid content in leaves of both Ramonda
species is rather low (15-20 mg/gDW) compared to what
is usually found in other flowering plants (Stevanovi¢ etal.,
1992). In well hydrated plants the galactolipid monogalactosyl-
diacylglycerol (MGDG) is the main lipid class in both Ramonda
species, followed by digalactosyl-diacylglycerol (DGDG). Desic-
cation reduces galactolipid content to about 10% of its control
value and induces changes in relative proportions of MGDG
to DGDG, being in desiccated plants in favor of DGDG.
The later have positive effect on maintenance of the chloro-
plast membranes in a bilayer conformation that is neces-
sary for protection of its functions (Dérmann and Benning,
2002).

The striking feature of plasma membrane lipids is the abun-
dance of free sterols (FSs) that account for more than half
of plasmalemma total lipid content, irrespectively of the plant
water content (Quartacci etal., 2002). Severe water depletion
causes reduction in almost 75% in the plasma membrane lipid
content which is based mainly on decrease in phospholipids
amount. This consequently leads to the reduction in plasma mem-
brane area, thus accompanying the desiccation-induced shrinkage
of the cell volume. Regardless of the RWC, the major plas-
malemma FS is cholesterol. Its already high amount in well
watered plants doubles in the course of dehydration, reaching
even 28 mol% in the PM FS amount in completely desic-
cated leaves (Quartacci et al., 2002). In dehydrated cells cholesterol
that interacts with membrane phospholipids functions as “glue”
and stabilizes the membrane and proteins within the mem-
brane (Yoshida and Uemura, 1990; Quartacci etal., 2001). The
additional positive effect on membrane stability is achieved by
increase in level of cerebrozides (CER) and decrease in the
unsaturation level of individual phospholipids and total lipids.
This improves stability between lipids and membrane-intrinsic
proteins and increases the membrane transition temperature
(Quartacci etal., 2002). The reduced membrane fluidity in plants
with low water contents reflects in very low values of injury
index, obtained from electrolyte leakage through plasmalemma,
and low lipid peroxidation in both Ramonda species (Jovanovic
etal., 2011). All detected variations in the lipid content prevent
extremes in the consistency of the cell membrane, stabilize its
structure and preserve its biological functions during dehydra-
tion and rehydration as well as during the annual temperature
variations.

Sugars

The dominant soluble carbohydrate in R. serbica leaves is sucrose
(Zivkovi¢etal., 2005). Itsamount markedly increases in the course
of dehydration, when it might perform several different roles in
cells: (1) in osmoregulation, when together with proline and inor-
ganic ions (K, Ca, Mg, and Na) participates in water retention in
cells (Zivkovi¢ etal., 2005); (2) in conservation of the cell mem-
branes in desiccated state (Crowe and Crowe, 1986; Crowe etal.,
1987; Williams and Leopold, 1989; Allison etal., 1999); (3) as the
source of energy in the initial phase of rehydration, untill the full
photosynthetic acitivity restores.

Amino acids

The most abundant amino acid detected in leaves of R. serbica is
proline and in different phases of dehydration and rewatering it
represents from about 50% to even 70% of the total free amino
acid pool (Zivkovi¢ et al., 2005). During water deficit the amounts
of total free amino acids and proline markedly decreased. This is,
the most probably, the consequence of changed balance between
their biosynthesis and catabolism. In further dehydration, at RWC
lower than 20% proline markedly accumulates, but upon rewa-
tering its amount suddenly decreases. The pattern of changes in
proline content during dehydration and rehydration is similar to
those detected in ascorbate and glutathione pools (Jovanovic et al.,
2011) pointing to its possible role in antioxidative defense in the
initial phase of rehydration, but also to its role in osmoregula-
tion, stabilization of subcellular structures and in gene expression
(Vanrensburg etal., 1993; Iyer and Caplan, 1998; Hare etal., 1999;
Hong etal., 2000; Kavi Kishor et al., 2005).

Organic acids

The major organic acid in both leaves and roots of R. serbica is
oxalic acid. It corresponds to even 90% of all detected organic acids
along dehydration-rehydration cycle (Zivkovi¢ etal., 2005). It can
be suggested that degradation of the large ascorbate pool upon
plant rewatering is the main source of oxalic acid. In Ramonda
plants that accumulate K, Na, Ca, and Mg ions along desiccation
it might play a role in the maintenance of ionic balance.

Ubiquitin and dehydrins

Pronounced water deprivation in cells has negative effects on
proteins conformation and their activities, but also leads to the
synthesis of new polypetides involved in the protection of cell
structures. The ubiquitin is considered a stress protein that acts
as a tag for selective degradation of short-lived, denaturated,
incomplete or misfolded proteins via 26S proteasome (Kurepa and
Smalle, 2008). Although the desiccation-related effects on level of
ubiquitin and its conjugates are poorly understood, our results
demonstrate that level of protein ubiquitination is increased dur-
ing dehydration phase D, (RWC 55%) and might be the result
of higher proteolysis rate by the 26S proteasome caused by more
pronounced water depletion (Jovanovic et al., 2010). The observed
increase of ubiquitin-tagged proteins indicates the higher level
of protein turnover, suggesting that midle phase of dehydration
(D7) can be critical for induction of desiccation adaptive response.
Relatively unchanged level of protein ubiquitination during rehy-
dration of R. nathaliae suggests the predominance of desiccation
specific protein preservation mechanisms over its degradation and
de novo synthesis. The important role in protein protection could
be attributed at least in part to dehydrins. The western blot analysis
in Sporobolus stapfianus showed that maximum in rehydration-
associated transcripts accumulation coincided with depletion of
ubiquitin monomer, which directly indicates an increase in pro-
tein degradation (O’Mahony and Oliver, 1999). However, changes
in the level of ubiquitin conjugated proteins can be a reflection
of altered rates of ubiquitination, deubiquitination, or proteolysis
by the 26S proteasome, leading us to further analysis, including
analysis of ubiquitin transcript, which are required before some
definite explanations of observed changes are made.

www.frontiersin.org

January 2014 | Volume 4 | Article 550 | 5


http://www.frontiersin.org/
http://www.frontiersin.org/Plant_Physiology/archive

Raki¢ etal.

Resurrection plants of the genus Ramonda

Another mechanism meritorius for desiccation-tolerance is
represented by dehydrins — the subgroup of LEA proteins. A
positive correlation between accumulation of dehydrins and adap-
tation to cellular dehydration has been extensively documented in
the literature. In our study, we found that considerable amounts
of dehydrins were present already in fully hydrated leaves and that
some of them were upregulated during dehydration/rehydration
cycle (Jovanovi¢ etal., 2011). Considerable amounts of dehy-
drins in control plants may indicate that they are all required
for normal plant metabolism, although their higher amounts
are required during dehydration. Thus, in the drought-tolerant
resurrection plant Craterostigma plantagineum two proteins that
resemble dehydrins were detected in well-watered leaves, while
changes in plant hydric status led to appearance of new proteins
(Schneider etal., 1993). In adition, dehydrins found in Ramonda
plants could be responsible for water retention enabling slow
dehydration that is necessary for activation of various protective
mechanisms. Our result might stand for hypothesis that some
of resurrection plants have a pool of previously sinthesized pro-
teins, which serve as protectants. Emergence of the new dehydrins
during dehydration coincides with both decline in antioxidative
enzymes activities and lipid peroxidation, suggesting their role
in protection of cell structures under conditions of significant
water loss. Also, this indicates their possible free radical scavenging
activity as it has been previously reported for Citrus unshiu dehy-
drin CuCORI19 (Hara etal., 2004). Different pattern of dehydrins
during rehydration indicated their new roles — possible chaperone-
like activity in refolding and repairing of proteins. The observed
changes in expression of dehydrins suggest the need for coor-
dinated and tightly regulated expression of individual dehydrins
with specific function during dehydration/rehydration. In addi-
tion, dehydrin expression has to be coordinated with activities of
other participants in R. nathaliae desiccation tolerance, such as
antioxidative enzymes. Our results showed that down-regulation
of antioxidative enzymes is associated with up-regulation of
dehydrins.

POLYPLOIDY AND HYBRIDIZATION AS THE MAIN
MECHANISMS IN THE EVOLUTION OF THE GENUS Ramonda
Special attention in recent investigations is focused on cytoge-
netical and genome size studies of all three species of the genus
Ramonda, because they promise to bring new insight into inter-
and intra-specific variations, into the genetic relationship between
these species and the outcome of their hybrids.

According to our results R. myconi and R. nathaliae are diploids
with 2n = 2x = 48 (Siljak-Yakovlev etal., 2008a) and this is in
agreement with previous literature data (Ratter and Prentice, 1964;
Contandriopoulos, 1966; Lepper, 1970). These two species also
have the similar genome size, R. myconi 2C = 2.59 pg and R.
nathaliae 2C = 2.32 pg (Siljak-Yakovlev etal., 2008a). The most
complex of three species is R. serbica for which different results
about the chromosome number can be found in the literature,
from 2n = 72 (Glisi¢, 1924; Daskalova etal.,, 2012), 2n = 96
(Contandriopoulos, 1966; Daskalova etal., 2012) to 2n = 108
(Daskalova etal., 2012). In our investigations of genome size
and/or chromosome number in 18 populations of this species
from different parts of its distribution area mostly hexaploids with

2n = 6x = 144 chromosomes and with average genome size of
2C = 7.91 pg are found (Siljak-Yakovlev etal., 2008a; Lazarevic,
2012; Lazarevi¢ etal., 2013). Few octoploid (2n = 8x = 192)
and decaploid individuals (2n = 10x = ~230) are discovered
in only one population from Montenegro (Siljak-Yakovlev etal.,
2008a).

Interestingly, two diploids have different monoploid genome
sizes (1Cx). R. nathaliae has lower value of monoploid genome
size (1Cx = 1.16 pg) than diploid R. myconi (1Cx = 1.30 pg) and
hexaploid R. serbica (1Cx = 1.32 pg), which have very similar
values.

Cytogenetically the most complex Ramonda populations are
the two only existing sympatric populations where R. nathaliae
and R. serbica grow together, both in SE Serbia at the locali-
ties Radovanski Kamen and Oblik. Extensive genome size and
chromosome number analyses in these populations revealed
the existence of hybrid individuals. Most of these plants are
tetraploids with 2n = 4x = 96 and average genome size
of 2C = 5.14 pg (Siljak-Yakovlev etal., 2008a;
2012). Thus, hybrid individuals are characterized by inter-
mediary chromosome number and intermediary genome size
compared to parent species. However, several cases of indi-
viduals with larger genome sizes have been found in sym-
patric populations. Such individuals could originate from back-
cross of hybrids with R. serbica (2C~6 pg), while potential
octoploids (2C~9.5 pg) could result from the spontaneous
genome duplication of tetraploids or from joining of unreduced
gametes of R. nathaliae and R. serbica (Siljak-Yakovlev etal,
2008a).

Hybrids are also confirmed by the detailed pollen and seed
analyses (Lazarevi¢ etal, 2013). While pollen grains of R.
nathaliae and R. serbica are always 3-colporate and uniform in
size, pollen from hybrids is very heterogeneous both in num-
ber of colpi (3-, 9- and 12-colporate) and the size of the grains
(Figure 4). Seeds from hybrid individuals are very small, 2-3 times
smaller than those from parental species and germinate weekly
(c. 1%).

Because tetraploid hybrid individuals inherit one part of the
genetic informations from the diploid R. nathalige and three
parts from hexaploid R. serbica, it is expected that hybrids
morphologically look more like R. serbica. Hence, in the field
it is very difficult to distinguish hybrids from parents, in particu-
lar from R. serbica. Detailed morphological analyses of leaves and
flowers from both species and from the hybrid individuals, now in
progress, might reveal morphological parameters discriminative
for hybrids and could possibly point to inheritance mechanisms
of certain morphological characters (Lazarevi¢ etal., 2012).

Although R. nathaliae and R. serbica are considered as relict
species, several factors contribute to hybridization between them:
spatial proximity of individuals from two species in sympatric
populations, similar flowers with the same flowering time, the
same pollinators. Thus, the existence of hybrid individuals
between R. nathaliae and R. serbica suggest that completely effec-
tive barriers for their intercrossing are still not in place (Lazarevi¢
etal., 2013) and reveals complex processes of hybridization,
introgression, and genome duplications (Siljak-Yakovlev etal.,
2008b).

Lazarevic,
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FIGURE 4 | Results of Canonical Discriminant Analysis (CDA) of pollen
characters plotted along the first two discriminant axes for three
Ramonda species and hybrids between R. nathaliae and R. serbica.

Based on cytogenetical results, polyploidization is the major
evolutionary mechanism in the genus Ramonda. Because the
basic chromosome number in Ramonda is quite high (x = 24),
it is probable that the two diploids R. myconi and R. nathaliae
are paleopolyploids. Thus, based on chromosome numbers and
monoploid genome size, a common ancestor with 2n = 24 possi-
bly gave firstly R. nathaliae and than paleotetraploid from which
after diploidization R. myconi and R. serbica evolved (Figure 5;
Siljak-Yakovlev et al., 2008a).

The most recent results from molecular AFLP analysis con-
firmed clear taxonomic differentiation of R. nathaliae and R.
serbica (Lazarevi¢, 2012). Low genetic diversity is expected,
because this is characteristic of many species with the limited dis-
tribution (Hamrick and Godt, 1996; Ge etal., 1999). In R. myconi
from Iberian Peninsula relatively high levels of genetic diversity

Hybrids
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Doubling of
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FIGURE 5 | Hypothetical scheme of the evolution of polyploidy in the
genus Ramonda.

were detected by RAPD analyses especially within populations,
suggesting isolation by distance and existence of “refugia within
refugia” (Dubreuil etal., 2008).

CONCLUSION

Considerable amount of knowledge exists about flowering des-
iccation tolerant plants that thrive in tropical/subtropical zone
of the Southern hemisphere, which is considered their natural
“home.” In respect to them, Ramonda species successfully sur-
vive in entirely different environmental conditions, coping not
only with high temperatures and water deficit, but also with
low winter temperatures, and in some cases, with heavy metal
overload.

According to data obtained in screening of different protective
processes that are summarized in this article, we could withdraw
the key mechanisms in desiccation tolerance of R. serbica and
R. nathaliae. The main roles in these processes appertain to dehy-
drins and dehydrin-like proteins, non-reducing sugars, ROS and
mechanisms of redox control. Considerable amount of dehydrins
that are already present in fully hydrated leaves points to their pos-
sible role in water sequestration, thus enabling slow dehydration
and consequently alleviating stress. The water loss induces severe
metabolic imbalances and enhanced production of ROS such as
H,0,. The ROS could activate redox sensitive mechanisms that
lead to transcriptional reprogramming.

Further investigations should be focused on conservation
processes — cell ultrastructural changes, physico-chemical mech-
anisms underlying protection of cellular components, and genes
which orchestrate all activities during dehydration/rehydration.

Today, the ancient paleopolyploid species R. nathaliae is the
only European representative of Gesneriaceae that successfully
persists on serpentine soil characterized by high heavy metal con-
tent, high summer temperatures and low humidity as well. In
these conditions, their plants have smaller rosettes, smallest pollen
grains with thinnest exine and lower viability, smallest seeds and
even smallest genome size in comparison with plants of these
species growing on limestone substrate (Lazarevi¢ etal., 2013).
The highly effective protective mechanisms, primarily involved
in desiccation tolerance, most likely enable it to tolerate heavy
metal overload and disbalances in nutrients (Raki¢ etal., 2013).
These fundamental mechanisms apparently enable them the cross-
tolerance of various environmental stress conditions, such as low
winter temperatures. It would be interesting to compare responses
of diploid R. nathaliae and hexaploid R. serbica to different kinds
of abiotic stress because the increased tolerance of polyploids to
environmental stress has been frequently reported (Zhang etal,,
2010).

Because of the lower genetic diversity, longevity of adults and
vulnerability of seedlings, Ramonda species can be more sensi-
tive to the environmental stress of the recent climatic changes.
Therefore, they must be adequately protected, primarily through
the protection of their habitats (Pic6 and Riba, 2002; Lazarevic,
2012). Special attention should be devoted to the sympatric
populations where the evolutionary process, concerning two
relic Balkan species R. nathaliae and R. serbica living together
and forming hybrid individuals, is still ongoing. All this indi-
cates that these “living fossils” which have preserved an ancient
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survival strategy are not the evolutionary “dead end.” On the
opposite, they represent outstanding organisms for scientific
investigations and revelation of the secret of successful survival of
desiccation.
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