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The plant cytosol is the major intracellular fluid that acts as the medium for inter-organellar
crosstalk and where a plethora of important biological reactions take place. These include
its involvement in protein synthesis and degradation, stress response signaling, carbon
metabolism, biosynthesis of secondary metabolites, and accumulation of enzymes for
defense and detoxification. This central role is highlighted by estimates indicating that the
majority of eukaryotic proteins are cytosolic. Arabidopsis thaliana has been the subject of
numerous proteomic studies on its different subcellular compartments. However, a detailed
study of enriched cytosolic fractions from Arabidopsis cell culture has been performed
only recently, with over 1,000 proteins reproducibly identified by mass spectrometry.
The number of proteins allocated to the cytosol nearly doubles to 1,802 if a series of
targeted proteomic characterizations of complexes is included. Despite this, few groups
are currently applying advanced proteomic approaches to this important metabolic space.
This review will highlight the current state of the Arabidopsis cytosolic proteome since its
initial characterization a few years ago.
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INTRODUCTION
The cytosol is the liquid portion of a cell that contains princi-
ple cellular constituents comprising membrane-bound organelles.
The cytosol itself lacks membrane compartmentalization. Within
its highly concentrated aqueous setting of dissolved ionic solutes,
small molecule metabolites and macromolecules, which include
nucleic acids and proteins, a wide range of biochemical reac-
tions are known to occur. These include an involvement in
glycolysis (Plaxton, 1996), the oxidative branch of the pen-
tose phosphate pathway (Schnarrenberger et al., 1995), protein
biosynthesis and degradation (Bailey-Serres et al., 2009; Vierstra,
2009), signal transduction (Lecourieux et al., 2006; Klimecka and
Muszynska, 2007), primary and secondary metabolite biosyn-
thesis and transportation (Lundmark et al., 2006; Lunn, 2007;
Martinoia et al., 2007; Weber and Fischer, 2007; Krueger et al.,
2009), stress response signaling (Yamada and Nishimura, 2008;
Cazale et al., 2009; Sugio et al., 2009), and the accumulation
of enzymes for defense and detoxification (Laule et al., 2003;
Dixon et al., 2009; Sappl et al., 2009). Furthermore, nuclear-
encoded organellar proteins are synthesized in the cytosol prior
to their import into organelles by targeting peptides (Jarvis,
2008; Prassinos et al., 2008; Huang et al., 2009). Although the
cytosol has a multitude of prominent biochemical processes in
the eukaryotic cell (Figure 1), only two proteome surveys have
been carried to date on the plant cytosol. The first study iden-
tified 69 abundant proteins in cytosolic samples of soybean root
nodules (Oehrle et al., 2008) while the second study identified
1,071 proteins from a large-scale mass spectrometry (MS) anal-
ysis of cytosol-enriched fractions from Arabidopsis thaliana cell
suspension cultures (Ito et al., 2010). Many of the identified

proteins were from well-known cytosolic processes (Figure 1);
although a significant portion of the functionally unclassifiable
proteins likely undertake novel roles in the cytosol (Ito et al., 2010).
In this review, we will discuss further developments that have
occurred from these initial proteomic analyses of the Arabidopsis
cytosol.

THE Arabidopsis CYTOSOLIC 80S RIBOSOME
The cytosolic ribosome is a major component of the Arabidopsis
cytosol and has been targeted by a number of studies for analysis
by proteomics. A significant proportion of the proteins identi-
fied in the cytosolic proteome of Arabidopsis are involved in the
core biological process of protein biosynthesis and degradation
(Book et al., 2010; Ito et al., 2010; Hummel et al., 2012). The
ribosome was well-represented amongst these proteins, with 92
previously identified ribosomal protein subunits from 61 of the
80 gene families (Ito et al., 2010). Arabidopsis ribosomal proteins
have highly conserved sequences that belong to small gene fami-
lies of two to six members, most of which are expressed (Carroll
et al., 2008). A total of 79 of the 80 ribosomal protein fami-
lies were characterized in purified ribosome preparations from
Arabidopsis leaves (Giavalisco et al., 2005) and cell suspension
cultures (Chang et al., 2005; Carroll et al., 2008). This included
the identification of post-translational modifications (PTMs)
such as initiator methionine removal, N-terminal acetylation,
N-terminal methylation, lysine N-methylation, and phosphory-
lation. These studies represent basic proteomic surveys of the
ribosome; more recent analyses have undertaken quantitative
approaches to characterize this important protein complex of the
cytosol.
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FIGURE 1 | Cartoon highlighting prominent metabolic processes,

proteins, and protein complexes of the plant cytosol. Components
were selected based on the proteomic data outlined in supplementary
material of Ito et al. (2010). The number of proteins contributing to each of
these components is shown in brackets. This information was obtained

from Plant Metabolic Network resource (Zhang et al., 2005) and from
MapMan pathway dataset for Arabidopsis (Thimm et al., 2004). Collectively,
over 2,600 proteins can be assigned to the Arabidopsis cytosol when
considering proteomics studies, localization with fluorescent proteins and
functional curation.

Two quantitative proteomic studies have attempted to mea-
sure changes in the Arabidopsis ribosomal proteome under defined
growing conditions. The first quantitative study investigated dif-
ferential phosphorylation of purified ribosomal proteins from
Arabidopsis leaves at day and night cycles as a possible mecha-
nism to regulate diurnal protein synthesis (Turkina et al., 2011).
Phosphorylation was detected by liquid chromatography (LC)–
MS/MS on eight serine residues of six ribosomal proteins: S2-3,
S6-1, S6-2, P0-2, P1, and L29-1. Relative quantification of phos-
phopeptides by differential stable isotope labeling and LC–MS/MS
showed significant increases in day to night phosphorylation ratios
of ribosomal proteins S6 at Ser-231 (2.2-fold), S6-1 and S6-2
variants at Ser-240 (4.2- and 1.8-fold, respectively), and L29-1
at Ser-58 (1.6-fold). This indicated that differential phospho-
rylation of these ribosomal proteins are likely mechanisms in
modulating diurnal translation in plants (Turkina et al., 2011). The
second study performed a label-free absolute quantitative analy-
sis by LC–MSE of immune-purified ribosomal protein paralogs

from transgenic Arabidopsis leaves in response to sucrose feeding
– a treatment known to have a profound effect on plant physi-
ology and gene regulation (Hummel et al., 2012). The extensive
families of ribosomal protein paralogs, the ambiguity of their
incorporation into ribosomes and the potential alterations to
ribosome composition in response to environmental and devel-
opmental cues were all factors in carrying out this study. Indeed,
out of 204 ribosomal proteins identified by LC–MS/MS, 13 par-
alogs including S8A, S3aA, L12C, L19A-C, L30B, L8C, L28A, S12A,
S12C, L22B, and S7C, as well as the ribosomal scaffold protein
RACK1A, showed significant changes in their abundances up to
2.7-fold by LC–MSE in response to sucrose treatments (Hummel
et al., 2012). While L28A, L19A, and RACK1 have been shown to
be important in normal plant growth and development (Tzafrir
et al., 2004; Chen et al., 2006; Yao et al., 2008), the majority
display limited phenotypic traits in their mutant plants. Con-
currently, multiple ribosomal protein paralogs were shown to
be incorporated into ribosomes in both sucrose fed and unfed
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plants. It was surmised from these results that the Arabidopsis
cytosolic ribosomes undergo variable alteration to their protein
paralog compositions in reaction to changing external conditions
(Hummel et al., 2012).

THE Arabidopsis CYTOSOLIC 26S PROTEASOME
The 26S proteasome is a complex of approximately 2.5 MDa
which is responsible for the proteolytic degradation of most ubiq-
uitylated proteins. Ubiquitylated protein degradation regulates
processes such as the cell cycle, organ morphogenesis, circa-
dian rhythms, and environmental response (Vierstra, 2009). The
proteasome consists of a 28-subunit core protease (CP), which
houses the active sites for protein and peptide hydrolysis, and a
regulatory particle (RP) of at least 18 subunits which regulates
substrate recognition, unfolding, and access to the CP. The archi-
tecture is highly conserved amongst eukaryotes but recent affinity
purification of the 26S complex from Arabidopsis has revealed
that although the plant 26S proteasome is analogous to that of
the human and yeast (Kim et al., 2011), important differences
exist.

In Arabidopsis, as in other plant groups, almost all subunits
in both the CP and RP are encoded by duplicate genes of at
least 90% homology, of which few appear to be pseudogenes
(Book et al., 2010). Complexes containing all subunit duplicants
have been purified from whole plants and characterized by MS
(Yang et al., 2004; Book et al., 2010). It is not known yet whether
duplicants are inserted into the 26S proteasome randomly or
specifically. If these subunit “duplicants” are functionally spe-
cific, this raises the possibility of localized regulation of specific
protein groups by populations of 26S proteasomes containing
specific subunit duplicants/variants. In mutant backgrounds for
the RPT2a/b subunit (Lee et al., 2011), complementation stud-
ies revealed functional redundancy between duplicants. However,
double rpt2a/rpt2b knockout mutants exhibited a more severe
phenotype that either single mutant, suggesting redundancy is
only partial. RPN2a has uniquely been shown to be unregulated
in response to increased sucrose concentrations, implicating a
RPN2a-complex in the degradation hexokinase signaling pathway
proteins (Sun et al., 2012). Likewise, single RPN5a/b mutants are
phenotypically different and double mutants are lethal (Book et al.,
2009; Serino and Pick, 2013). Together, these pieces of evidence
point toward neofunctionalization of gene duplicants, support-
ing the idea of multiple populations of complexes within a whole
plant.

Most of what is known about the plant 26S proteasome comes
from yeast studies and has been reviewed previously (Finley,
2009; Vierstra, 2009). However, a recent study of RPN10 in
Arabidopsis shows that important functional differences exist,
at least in recognition of ubiquitylated substrates (Lin et al.,
2011). Further unique properties of the Arabidopsis 26S pro-
teasome include a much greater degree of ubiquitylation of
subunits than has been observed in yeast (Peng et al., 2003; Book
et al., 2010). Subunits became ubiquitylated when still assem-
bled as a complex, implying that this modification performed
a function beyond tagging subunits for degradation after com-
plex disassembly. Accessory proteins help assemble the complex
and recognize and recruit ubiquitylated substrates. A number

of proteins homologous to yeast accessory proteins co-purified
with the Arabidopsis 26S proteasome, as well as some novel puta-
tive accessory proteins not found in yeast (Book et al., 2010).
An interesting question for future studies is whether certain
accessory proteins associate with particular subunit variants/
duplicants.

An important aim in understanding plant 26S proteasome
function is to understand the relationship between subunit com-
position, and specific protein degradation in response to changes
in internal and external environments. Given the high identity of
many of these subunits, this will involve a significant challenge
for characterization by MS. Nonetheless, together with the recent
analysis of the ubiquitylated proteome in Arabidopsis (Kim et al.,
2013), such work will undoubtedly expand our understanding of
signaling and process regulation related to this important cytosolic
protein complex.

POST-TRANSLATIONAL MODIFICATIONS
The ability to routinely identify and quantify PTMs represents a
grand challenge in the field of proteomics (Heazlewood, 2011).
However, few proteomic studies have targeted a subcellular com-
partment to specifically characterize PTMs (de la Fuente van
Bentem et al., 2006; Ito et al., 2009). To the best of our knowl-
edge, no such survey has ever been conducted on highly purified
cytosolic fractions from Arabidopsis. Aside from the detailed anal-
yses of the purified cytosolic complexes 80S ribosome and 26S
proteasome outlined above, PTMs identified on cytosolic localized
proteins are largely the result of large-scale PTM-targeted studies.
In Arabidopsis, this has included phosphorylation (Heazlewood
et al., 2008), N-linked glycosylation (Zielinska et al., 2012), ubiq-
uitination (Kim et al., 2013), methionine oxidation (Marondedze
et al., 2013), S-nitrosylation (Fares et al., 2011), and acetylation
(Finkemeier et al., 2011). With few exceptions, these studies com-
prise collections of identified sites and do not generally explore
the functional implication of a PTM. However, a number of
more detailed investigations have identified the importance of
PTMs on proteins localized to the cytosol. Entry into the cytoso-
lic oxidative pentose phosphate pathway (OPPP) is catalyzed by
glucose-6-phosphate dehydrogenase (G6PD) which is encoded by
AT3G27300 and AT5G40760 in Arabidopsis. Large-scale phos-
phoproteomic studies have identified phosphorylation sites on
both cytosolic isoforms. Recently it was demonstrated that the
phosphorylation of AT5G40760 at Thr-467 increased G6PD activ-
ity fourfold (Dal Santo et al., 2012). Glycolysis represents a key
metabolic pathway in the plant cytosol. The sixth step in this
pathway is catalyzed by glyceraldehyde-3-phosphate dehydroge-
nase (GAPDH) and represents the beginning of a net gain in ATP
and NADH. In Arabidopsis, the step is encoded by a small gene
family, a member of which has been identified as lysine acety-
lated (AT1G13440) in Arabidopsis. It was also demonstrated that
the acetylation of Lys-130 inhibited the activity of this enzyme
in vitro and consequently this PTM may represent a regulatory
mechanism for this step in the pathway (Finkemeier et al., 2011).
GAPDH encoded by AT1G13440 also contains N-glycosylation
and numerous phosphorylation sites according to a number of
targeted PTM studies (Heazlewood et al., 2008; Zielinska et al.,
2012). The functional roles, if any, of the many thousands of
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PTMs on cytosolic localized proteins will likely take many years
to accurately characterize. Recently many of these sites were
incorporated into the MASCP Gator, the Arabidopsis proteomics
aggregation portal (Mann et al., 2013). It is envisaged that the
inclusion of this information into such a utility will enable the
community to better leverage these data for future functional
analyses.

UTILIZATION OF THE Arabidopsis CYTOSOLIC PROTEOME
Establishing the subcellular location of a protein is an impor-
tant factor in determining its function (Chou and Cai, 2003).
MS analysis of purified organelles or cellular compartments and
chimeric fluorescent fusion proteins are two common experimen-
tal methods used to define subcellular localizations of Arabidopsis
proteins (Heazlewood et al., 2007; Tanz et al., 2013). Over 2,200
proteins contain information indicating a cytosolic localization
in Arabidopsis (Table 1), which comprises nearly 25% of all
experimentally localized proteins in the SUBcellular Arabidopsis
database (SUBA). A large proportion of these cytosolic proteins
have been identified in multiple subcellular compartments, espe-
cially in the case of proteomic approaches. It is therefore ideal,
though often not the case, that protein localization is confirmed
using complementary methods (Millar et al., 2009).

Several recent reports have used data from the Arabidopsis
cytosolic proteome to confirm functional interpretations sup-
porting a localization in the cytosol. Overall, they exemplify
the practicality of this subcellular proteome for verifying the
cytosolic localizations of different proteins. Glyoxylate reduc-
tase (GLYR) is a central enzyme in the γ-aminobutyrate (GABA)
metabolic pathway, where it catalyzes the detoxification of gly-
oxylate and succinic semialdehdye (Ching et al., 2012). The two
plant isoforms GLYR1 and GLYR2 were believed to localize to
the cytosol or peroxisomes, and plastid, respectively. Conflicting
reports of Arabidopsis GLYR1 (At3g25530) localizing in the cytosol
(Simpson et al., 2008) or the peroxisome (Reumann et al., 2009)
had implications for defining its exact metabolic roles and the
compartmentation of the GABA and photorespiratory pathways.
This was resolved by visualizing N-terminal green fluorescent
protein (GFP)-tagged GLYR1 in Arabidopsis suspension-cultured
cells, leaves and seedlings and tobacco BY-2 suspension-cultured
cells, where it was observed to exclusively localize in the
cytosol (Ching et al., 2012). Its identification by MS as a major

Table 1 | A survey of cytosolic proteins experimentally localized in

Arabidopsis from the SUBA database as of November 2013 (Tanz

et al., 2013).

MS/MS FP Total Overlap

All locations 7891 2647 9319 1219

Cytosol 1808 580 2262 126

MS/MS indicates proteins identified through subcellular proteomics studies; FP
are proteins localized using a fluorescent protein tag. The overlap between FP
and MS/MS for cytosolic proteins is significantly worse than all proteins localized
in the SUBA database. Possibly reflecting poor attention to this subcellular space
and its processes by the research community.

protein in the cytosolic proteome of Arabidopsis cell suspensions
was cited as further evidence of this finding (Ito et al., 2010;
Ching et al., 2012).

The Arabidopsis translation elongation factor eEF-1Bβ1
(EF1Bβ, At1g30230) is involved in plant cell wall biosynthe-
sis and it is essential for normal plant development (Hossain
et al., 2012). Arabidopsis plants with T-DNA insertions in their
EF1Bβ gene display a dwarf phenotype, with alterations to their
vascular morphology and inflorescence stem structures and 38
and 20% reductions in total lignin and crystalline cellulose con-
tent, respectively. By transforming Arabidopsis plants with a 35S
promoter-controlled EF1Bβ fused with yellow fluorescent protein
(EF1Bβ-YFP), the subcellular locations of EF1Bβ were visual-
ized in the plasma membrane and cytosol (Hossain et al., 2012).
These observations agreed with MS analyses of the Arabidop-
sis plasma membrane (Mitra et al., 2009) and cytosol proteomes
(Ito et al., 2010), with EF1Bβ identified in both subcellular
compartments.

An evolutionary and structural analysis of a human disrupted
in schizophrenia 1 (DISC1) protein conducted orthology searches
of non-vertebrate reference organisms such as Dictyostelium, Tri-
choplax, Monosiga, and Arabidopsis (Sanchez-Pulido and Ponting,
2011). This study found that while most DISC1 orthologs lacked
any experimental evidence of their functions, the Arabidopsis
DISC1 ortholog (At5g25070) is ubiquitously expressed in vari-
ous tissues and developmental stages and is a constituent of the
Arabidopsis cytosolic proteome (Ito et al., 2010). This was strik-
ingly similar to human DISC1, which is expressed in a wide range
of tissues and also cytosol-localized (Sanchez-Pulido and Ponting,
2011).

EXPANDING THE Arabidopsis CYTOSOLIC PROTEOME
A computational analysis of the Arabidopsis proteome estimated
that the cytosolic proteome may contain around 5,400 ± 650 pro-
teins (Ito et al., 2010). This indicates that the current experimental
set of 2,262 proteins likely represents only about 40% of the cytoso-
lic proteome (Table 1). A dissection of fluorescent protein-based
localization studies of Arabidopsis proteins (Table 1) reveals that
many members were also identified in the Arabidopsis cytoso-
lic proteome (recent examples include Ching et al., 2012; Christ
et al., 2012; Hossain et al., 2012; Li et al., 2012; Lu et al., 2012;
McLoughlin et al., 2012; Witz et al., 2012). However, there are
many examples of FP-tagged proteins that have been localized to
the cytosol and not identified by proteomic surveys (some recent
studies include Gaber et al., 2012; Hernandez et al., 2012; Kwon
et al., 2012; Lu et al., 2012; McLoughlin et al., 2012; Rautengarten
et al., 2012; Vadassery et al., 2012; Witz et al., 2012). The inclu-
sion of complementary subcellular datasets such as those available
from the gene ontology database AmiGO (Carbon et al., 2009) and
UniProtKB (Magrane and UniProt Consortium, 2011) can also be
used to capture some of these missing cytosolic proteins. Nearly
2000 Arabidopsis proteins are designated as cytosolic by AmiGO,
while about 1,300 Arabidopsis proteins are allocated to the cytosol
by the UniProt Protein Knowledgebase. Incorporating these data
with the proteomic and fluorescent protein information, the total
number of Arabidopsis proteins with some cytosolic designation
is 2604 distinct members or about 50% of the computationally
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derived proteome. It should be noted that the “experimental”
figure of ca. 2,600 does not account for false positives resulting
from proteins with multiple subcellular designations. Over 1,400
of these proteins also have non-cytosolic assignments by either MS
or fluorescent protein localizations according to SUBA (Tanz et al.,
2013).

While proteomics has identified a considerable proportion of
the computationally derived cytosolic proteome (around 30%),
the shortfall can be readily explained and include: many proteins
are not abundant and thus not easily detected by MS, many pro-
teins could be expressed in tissue(s) other than cell suspension
cultures or only under certain conditions (i.e., at a specific stage of
plant development or in response to stress) and most significantly
only one out of the nearly 120 proteomic analyses of various sub-
cellular compartments from Arabidopsis has been performed on
its cytosolic fraction (Heazlewood et al., 2007; Ito et al., 2010). In
contrast, studies in Arabidopsis in the areas of respiration and pho-
tosynthesis have benefited tremendously from the characterization
of their proteomes across different organs and tissues, develop-
mental stages, and growth conditions (Lee et al., 2008; van Wijk
and Baginsky, 2011). In order to better understand its dynamics,
future analyses of the Arabidopsis cytosolic proteome will also need
to reach this level of diversity.

A critical factor in performing in-depth proteomic analysis of
the cytosol from plants will be to obtain relatively pure cytoso-
lic fractions from this material. Isolating the cytosolic fraction
from Arabidopsis cell suspensions relies on enzymatic generation
of protoplasts and their disruption by gentle pressure to maintain
organelle integrity, followed by organelle removal by differential
centrifugation (Ito et al., 2010). Unlike uniform heterotrophic cell
suspensions, cytosol purification from plants requires extra steps
including the removal of chloroplasts. A study of protein local-
ization between cytosol and chloroplasts of Arabidopsis seedlings
developed a method for isolating the cytosolic fraction from proto-
plasts of seedlings (Estavillo et al., 2011). The addition of density
centrifugation was necessary to remove broken protoplasts and
intact chloroplasts, respectively, from the seedling cytosolic frac-
tion (Estavillo et al., 2011, 2014). Employing immunoblotting
or MS-based quantitation against subcellular markers to assess
organelle contamination during the extraction process (Ito et al.,
2010), this method could be further refined to generate high-
purity cytosolic fractions from many types of Arabidopsis plant
material for proteomic analysis.

Sub-fractionation of the cytosol is an effective way to reduce
its protein complexity and to improve MS/MS identification of
low abundant cytosolic proteins. Unlike mitochondria and plas-
tids, the cytosol lacks defined membrane-bound compartments
that can be further sub fractionated (Eubel et al., 2007; Ferro
et al., 2010). However, isolating soluble protein complexes from
the Arabidopsis cytosol has been shown to be relatively straight
forward. As outlined above, both the 80S ribosome and the 26S
proteasome have been isolated and extensively characterized by MS
(Yang et al., 2004; Chang et al., 2005; Giavalisco et al., 2005; Carroll
et al., 2008; Book et al., 2010; Turkina et al., 2011; Hummel et al.,
2012). Beyond these examples, sub-fractionation of other cytoso-
lic protein groups will likely rely on affinity purification techniques
tailored to the physiochemical properties of target proteins to

simplify complex mixtures and enrich for low abundant pro-
teins. In non-plant systems approaches have included immobilized
heparin chromatography to fractionate cytosolic proteins from
human breast cancer MCF-7 cells (Shefcheck et al., 2003). Approx-
imately 300 low-abundant cytosolic proteins were detected by
two-dimensional gel electrophoresis (2-DE) of heparin fractions,
and they were not present on 2-DE separations of total cytoso-
lic protein mixtures (Shefcheck et al., 2003). Finally, LC–MS/MS
analysis of tandem biomimetic affinity pre-fractionation of rat
liver cytosol proteins identified 665 unique rat proteins, which
was significantly more than the 371 proteins in the unfractionated
cytosol (Tan et al., 2009).

PERSPECTIVES
There is tremendous scope to extend our current knowledge of
the multitude of reactions that take place in the plant cytosol.
Few studies have employed quantitative proteomic approaches to
study cytosolic components revealing a lack of attention to this
important compartment. Similarly, the characterization and anal-
ysis of PTMs of cytosolic proteins will be a significant challenge in
the future. Recent reports of cytosolic localizations of Arabidopsis
proteins by fluorescent protein tagging showed that while a num-
ber of them were identified in the cytosolic proteome, many others
were not. Future comparative analysis of cytosolic proteomes of
different plant tissues grown under various environmental condi-
tions is essential to better understand its dynamics and to unravel
its complexity. Isolating pure cytosolic fractions and their sub-
fractions from diverse sources of plant material for LC–MS/MS
analysis will be key factors to achieve this aim.

AUTHOR CONTRIBUTIONS
The manuscript was devised by Jun Ito and written by Jun Ito,
Harriet T. Parsons, and Joshua L. Heazlewood. Figure and Table
were constructed by Joshua L. Heazlewood.

ACKNOWLEDGMENTS
This work was part of the DOE Joint BioEnergy Institute
(http://www.jbei.org) supported by the U.S. Department of
Energy, Office of Science, Office of Biological and Environmen-
tal Research, through contract DE-AC02-05CH11231 between
Lawrence Berkeley National Laboratory and the U.S. Department
of Energy. Harriet T. Parsons was supported by a Marie Curie
Fellowship.

REFERENCES
Bailey-Serres, J., Sorenson, R., and Juntawong, P. (2009). Getting the message across:

cytoplasmic ribonucleoprotein complexes. Trends Plant Sci. 14, 443–453. doi:
10.1016/j.tplants.2009.05.004

Book, A. J., Gladman, N. P., Lee, S. S., Scalf, M., Smith, L. M., and Vierstra,
R. D. (2010). Affinity purification of the Arabidopsis 26 S proteasome reveals a
diverse array of plant proteolytic complexes. J. Biol. Chem. 285, 25554–25569.
doi: 10.1074/jbc.M110.136622

Book, A. J., Smalle, J., Lee, K.-H., Yang, P., Walker, J. M., Casper, S., et al. (2009). The
RPN5 subunit of the 26s proteasome is essential for gametogenesis, sporophyte
development, and complex assembly in Arabidopsis. Plant Cell 21, 460–478. doi:
10.1105/tpc.108.064444

Carbon, S., Ireland, A., Mungall, C. J., Shu, S., Marshall, B., Lewis, S., et al. (2009).
AmiGO: online access to ontology and annotation data. Bioinformatics 25, 288–
289. doi: 10.1093/bioinformatics/btn615

www.frontiersin.org February 2014 | Volume 5 | Article 21 | 5

http://www.jbei.org
http://www.frontiersin.org/
http://www.frontiersin.org/Plant_Proteomics/archive


Ito et al. Arabidopsis cytosolic proteome

Carroll, A. J., Heazlewood, J. L., Ito, J., and Millar, A. H. (2008). Analysis of
the Arabidopsis cytosolic ribosome proteome provides detailed insights into its
components and their post-translational modification. Mol. Cell. Proteomics 7,
347–369. doi: 10.1074/mcp.M700052-MCP200

Cazale, A. C., Clement, M., Chiarenza, S., Roncato, M. A., Pochon, N., Creff, A., et al.
(2009). Altered expression of cytosolic/nuclear HSC70-1 molecular chaperone
affects development and abiotic stress tolerance in Arabidopsis thaliana. J. Exp.
Bot. 60, 2653–2664. doi: 10.1093/jxb/erp109

Chang, I. F., Szick-Miranda, K., Pan, S., and Bailey-Serres, J. (2005). Proteomic
characterization of evolutionarily conserved and variable proteins of Arabidop-
sis cytosolic ribosomes. Plant Physiol. 137, 848–862. doi: 10.1104/pp.104.
053637

Chen, J. G., Ullah, H., Temple, B., Liang, J., Guo, J., Alonso, J. M., et al. (2006).
RACK1 mediates multiple hormone responsiveness and developmental processes
in Arabidopsis. J. Exp. Bot. 57, 2697–2708. doi: 10.1093/jxb/erl035

Ching, S. L., Gidda, S. K., Rochon, A., Van Cauwenberghe, O. R., Shelp, B. J.,
and Mullen, R. T. (2012). Glyoxylate reductase isoform 1 is localized in the
cytosol and not peroxisomes in plant cells. J. Integr. Plant Biol. 54, 152–168.
doi: 10.1111/j.1744-7909.2012.01103.x

Chou, K. C., and Cai, Y. D. (2003). Prediction and classification of protein subcel-
lular location-sequence-order effect and pseudo amino acid composition. J. Cell.
Biochem. 90, 1250–1260. doi: 10.1002/jcb.10719

Christ, B., Schelbert, S., Aubry, S., Sussenbacher, I., Muller, T., Krautler, B., et al.
(2012). MES16, a member of the methylesterase protein family, specifically
demethylates fluorescent chlorophyll catabolites during chlorophyll breakdown
in Arabidopsis. Plant Physiol. 158, 628–641. doi: 10.1104/pp.111.188870

Dal Santo, S., Stampfl, H., Krasensky, J., Kempa, S., Gibon, Y., Petutschnig, E., et al.
(2012). Stress-induced GSK3 regulates the redox stress response by phosphorylat-
ing glucose-6-phosphate dehydrogenase in Arabidopsis. Plant Cell 24, 3380–3392.
doi: 10.1105/tpc.112.101279

de la Fuente van Bentem, S., Anrather, D., Roitinger, E., Djamei, A., Hufnagl, T.,
Barta, A., et al. (2006). Phosphoproteomics reveals extensive in vivo phosphory-
lation of Arabidopsis proteins involved in RNA metabolism. Nucleic Acids Res. 34,
3267–3278. doi: 10.1093/nar/gkl429

Dixon, D. P., Hawkins, T., Hussey, P. J., and Edwards, R. (2009). Enzyme activities
and subcellular localization of members of the Arabidopsis glutathione transferase
superfamily. J. Exp. Bot. 60, 1207–1218. doi: 10.1093/jxb/ern365

Estavillo, G. M., Crisp, P. A., Pornsiriwong, W., Wirtz, M., Collinge, D., Carrie,
C., et al. (2011). Evidence for a SAL1-PAP chloroplast retrograde pathway that
functions in drought and high light signaling in Arabidopsis. Plant Cell 23, 3992–
4012. doi: 10.1105/tpc.111.091033

Estavillo, G. M., Verhertbruggen, Y., Scheller, H. V., Pogson, B. J., Heazlewood, J. L.,
and Ito, J. (2014). Isolation of the plant cytosolic fraction for proteomic analysis.
Methods Mol. Biol. 1072, 453–467. doi: 10.1007/978-1-62703-631-3_31

Eubel, H., Heazlewood, J. L., and Millar, A. H. (2007). “Isolation and subfractiona-
tion of plant mitochondria for proteomic analysis,” in Plant Proteomics: Methods
and Protocols, eds H. Thiellement, M. Zivy, C. Damerval, and V. Méchin. (Totowa,
NJ: Humana Press Inc.), 49–62

Fares, A., Rossignol, M., and Peltier, J. B. (2011). Proteomics investigation of
endogenous S-nitrosylation in Arabidopsis. Biochem. Biophys. Res. Commun. 416,
331–336. doi: 10.1016/j.bbrc.2011.11.036

Ferro, M., Brugière, S., Salvi, D., Seigneurin-Berny, D., Court, M., Moyet, L., et al.
(2010). AT_CHLORO, a comprehensive chloroplast proteome database with sub-
plastidial localization and curated information on envelope proteins. Mol. Cell.
Proteomics 9, 1063–1084. doi: 10.1074/mcp.M900325-MCP200

Finkemeier, I., Laxa, M., Miguet, L., Howden, A. J. M., and Sweetlove, L. J. (2011).
Proteins of diverse function and subcellular location are lysine acetylated in
Arabidopsis. Plant Physiol. 155, 1779–1790. doi: 10.1104/pp.110.171595

Finley, D. (2009). Recognition and processing of ubiquitin–protein con-
jugates by the proteasome. Annu. Rev. Biochem. 78, 477–513. doi:
10.1146/annurev.biochem.78.081507.101607

Gaber, A., Ogata, T., Maruta, T., Yoshimura, K., Tamoi, M., and Shigeoka, S. (2012).
The involvement of Arabidopsis glutathione peroxidase 8 in the suppression of
oxidative damage in the nucleus and cytosol. Plant Cell Physiol. 53, 1596–1606.
doi: 10.1093/pcp/pcs100

Giavalisco, P., Wilson, D., Kreitler, T., Lehrach, H., Klose, J., Gobom, J., et al. (2005).
High heterogeneity within the ribosomal proteins of the Arabidopsis thaliana 80S
ribosome. Plant Mol. Biol. 57, 577–591. doi: 10.1007/s11103-005-0699-3

Heazlewood, J. L. (2011). The green proteome: challenges in plant proteomics.
Front. Plant Sci. 2:6. doi: 10.3389/fpls.2011.00006

Heazlewood, J. L., Durek, P., Hummel, J., Selbig, J., Weckwerth, W., Walther, D., et al.
(2008). PhosPhAt: a database of phosphorylation sites in Arabidopsis thaliana
and a plant-specific phosphorylation site predictor. Nucleic Acids Res. 36, D1015–
D1021

Heazlewood, J. L., Verboom, R. E., Tonti-Filippini, J., Small, I., and Millar, A.
H. (2007). SUBA: the Arabidopsis Subcellular Database. Nucleic Acids Res. 35,
D213–D218. doi: 10.1093/nar/gkl863

Hernandez, L., Whitehead, L., He, Z., Gazda, V., Gilday, A., Kozhevnikova, E.,
et al. (2012). A cytosolic acyltransferase contributes to triacylglycerol synthesis
in sucrose-rescued Arabidopsis seed oil catabolism mutants. Plant Physiol. 160,
215–225. doi: 10.1104/pp.112.201541

Hossain, Z., Amyot, L., Mcgarvey, B., Gruber, M., Jung, J., and Hannoufa, A. (2012).
The translation elongation factor eEF-1Bβ1 is involved in cell wall biosynthe-
sis and plant development in Arabidopsis thaliana. PLoS ONE 7:e30425. doi:
10.1371/journal.pone.0030425

Huang, S., Taylor, N. L., Whelan, J., and Millar, A. H. (2009). Refining the defi-
nition of plant mitochondrial presequences through analysis of sorting signals,
N-terminal modifications, and cleavage motifs. Plant Physiol. 150, 1272–1285.
doi: 10.1104/pp.109.137885

Hummel, M., Cordewener, J. H., De Groot, J. C., Smeekens, S., America, A. H.,
and Hanson, J. (2012). Dynamic protein composition of Arabidopsis thaliana
cytosolic ribosomes in response to sucrose feeding as revealed by label free MSE
proteomics. Proteomics 12, 1024–1038. doi: 10.1002/pmic.201100413

Ito, J., Batth, T. S., Petzold, C. J., Redding-Johanson, A. M., Mukhopadhyay, A.,
Verboom, R., et al. (2010). Analysis of the Arabidopsis cytosolic proteome high-
lights subcellular partitioning of central plant metabolism. J. Proteome Res. 10,
1571–1582. doi: 10.1021/pr1009433

Ito, J., Taylor, N. L., Castleden, I., Weckwerth, W., Millar, A. H., and Heazlewood, J.
L. (2009). A survey of the Arabidopsis thaliana mitochondrial phosphoproteome.
Proteomics 9, 4229–4240. doi: 10.1002/pmic.200900064

Jarvis, P. (2008). Targeting of nucleus-encoded proteins to chloroplasts in plants.
New Phytol. 179, 257–285. doi: 10.1111/j.1469-8137.2008.02452.x

Kim, D. Y., Scalf, M., Smith, L. M., and Vierstra, R. D. (2013). Advanced proteomic
analyses yield a deep catalog of ubiquitylation targets in Arabidopsis. Plant Cell
25, 1523–1540. doi: 10.1105/tpc.112.108613

Kim, H. M., Yu, Y., and Cheng, Y. (2011). Structure characterization of the 26S pro-
teasome. Biochim. Biophys. Acta 1809, 67–79. doi: 10.1016/j.bbagrm.2010.08.008

Klimecka, M., and Muszynska, G. (2007). Structure and functions of plant calcium-
dependent protein kinases. Acta Biochim. Pol. 54, 219–233

Krueger, S., Niehl, A., Lopez Martin, M. C., Steinhauser, D., Donath, A., Hilde-
brandt, T., et al. (2009). Analysis of cytosolic and plastidic serine acetyltransferase
mutants and subcellular metabolite distributions suggests interplay of the cellu-
lar compartments for cysteine biosynthesis in Arabidopsis. Plant Cell Environ. 32,
349–367. doi: 10.1111/j.1365-3040.2008.01928.x

Kwon, Y., Yu, S. I., Lee, H., Yim, J. H., Zhu, J. K., and Lee, B. H. (2012). Arabidop-
sis serine decarboxylase mutants implicate the roles of ethanolamine in plant
growth and development. Int. J. Mol. Sci. 13, 3176–3188. doi: 10.3390/ijms130
33176

Laule, O., Furholz, A., Chang, H. S., Zhu, T., Wang, X., Heifetz, P. B., et al. (2003).
Crosstalk between cytosolic and plastidial pathways of isoprenoid biosynthe-
sis in Arabidopsis thaliana. Proc. Natl. Acad. Sci. U.S.A. 100, 6866–6871. doi:
10.1073/pnas.1031755100

Lecourieux, D., Ranjeva, R., and Pugin, A. (2006). Calcium in plant
defence-signalling pathways. New Phytol. 171, 249–269. doi: 10.1111/j.1469-
8137.2006.01777.x

Lee, C. P., Eubel, H., O’Toole, N., and Millar, A. H. (2008). Heterogeneity of the
mitochondrial proteome for photosynthetic and non-photosynthetic Arabidopsis
metabolism. Mol. Cell. Proteomics 7, 1297–1316. doi: 10.1074/mcp.M700535-
MCP200

Lee, K. H., Minami, A., Marshall, R. S., Book, A. J., Farmer, L. M., Walker, J. M.,
et al. (2011). The RPT2 subunit of the 26S proteasome directs complex assembly,
histone dynamics, and gametophyte and sporophyte development in Arabidopsis.
Plant Cell 23, 4298–4317. doi: 10.1105/tpc.111.089482

Li, H. M., Chen, H., Yang, Z. N., and Gong, J. M. (2012). Cdi gene is required for
pollen germination and tube growth in Arabidopsis. FEBS Lett. 586, 1027–1031.
doi: 10.1016/j.febslet.2012.02.046

Frontiers in Plant Science | Plant Proteomics February 2014 | Volume 5 | Article 21 | 6

http://www.frontiersin.org/Plant_Proteomics/
http://www.frontiersin.org/Plant_Proteomics/archive


Ito et al. Arabidopsis cytosolic proteome

Lin, Y. L., Sung, S. C., Tsai, H. L., Yu, T. T., Radjacommare, R., Usharani, R.,
et al. (2011). The defective proteasome but not substrate recognition function
is responsible for the null phenotypes of the Arabidopsis proteasome subunit
RPN10. Plant Cell 23, 2754–2773. doi: 10.1105/tpc.111.086702

Lu, W., Tang, X., Huo, Y., Xu, R., Qi, S., Huang, J., et al. (2012). Identification and
characterization of fructose 1,6-bisphosphate aldolase genes in Arabidopsis reveal
a gene family with diverse responses to abiotic stresses. Gene 503, 65–74. doi:
10.1016/j.gene.2012.04.042

Lundmark, M., Cavaco, A. M., Trevanion, S., and Hurry, V. (2006). Carbon par-
titioning and export in transgenic Arabidopsis thaliana with altered capacity for
sucrose synthesis grown at low temperature: a role for metabolite transporters.
Plant Cell Environ. 29, 1703–1714. doi: 10.1111/j.1365-3040.2006.01543.x

Lunn, J. E. (2007). Compartmentation in plant metabolism. J. Exp. Bot. 58, 35–47.
doi: 10.1093/jxb/erl134

Magrane, M., and UniProt Consortium. (2011). UniProt Knowledgebase: a hub of
integrated protein data. Database 2011, bar009. doi: 10.1093/database/bar009

Mann, G. W., Calley, P. C., Joshi, H. J., and Heazlewood, J. L. (2013). MASCP gator:
an overview of the Arabidopsis proteomic aggregation portal. Front. Plant Sci.
4:411. doi: 10.3389/fpls.2013.00411

Marondedze, C., Turek, I., Parrott, B., Thomas, L., Jankovic, B., Lilley, K. S., et al.
(2013). Structural and functional characteristics of cGMP-dependent methion-
ine oxidation in Arabidopsis thaliana proteins. Cell Commun. Signal. 11, 1. doi:
10.1186/1478-811X-11-1

Martinoia, E., Maeshima, M., and Neuhaus, H. E. (2007). Vacuolar transporters
and their essential role in plant metabolism. J. Exp. Bot. 58, 83–102. doi:
10.1093/jxb/erl183

McLoughlin, F., Galvan-Ampudia, C. S., Julkowska, M. M., Caarls, L., Van Der
Does, D., Lauriere, C., et al. (2012). The Snf1-related protein kinases SnRK2.4
and SnRK2.10 are involved in maintenance of root system architecture during
salt stress. Plant J. 72, 436–449. doi: 10.1111/j.1365-313X.2012.05089.x

Millar, A. H., Carrie, C., Pogson, B., and Whelan, J. (2009). Exploring the function-
location nexus: using multiple lines of evidence in defining the subcellular
location of plant proteins. Plant Cell 21, 1625–1631. doi: 10.1105/tpc.109.066019

Mitra, S. K., Walters, B. T., Clouse, S. D., and Goshe, M. B. (2009). An efficient
organic solvent based extraction method for the proteomic analysis of Arabidopsis
plasma membranes. J. Proteome Res. 8, 2752–2767. doi: 10.1021/pr801044y

Oehrle, N. W., Sarma, A. D., Waters, J. K., and Emerich, D. W. (2008). Pro-
teomic analysis of soybean nodule cytosol. Phytochemistry 69, 2426–2438. doi:
10.1016/j.phytochem.2008.07.004

Peng, J., Schwartz, D., Elias, J. E., Thoreen, C. C., Cheng, D., Marsischky, G., et al.
(2003). A proteomics approach to understanding protein ubiquitination. Nat.
Biotechnol. 21, 921–926. doi: 10.1038/nbt849

Plaxton, W. C. (1996). The organization and regulation of plant glycol-
ysis. Annu. Rev. Plant Physiol. Plant Mol. Biol. 47, 185–214. doi:
10.1146/annurev.arplant.47.1.185

Prassinos, C., Haralampidis, K., Milioni, D., Samakovli, D., Krambis, K., and Hat-
zopoulos, P. (2008). Complexity of Hsp90 in organelle targeting. Plant Mol. Biol.
67, 323–334. doi: 10.1007/s11103-008-9322-8

Rautengarten, C., Ebert, B., Ouellet, M., Nafisi, M., Baidoo, E. E., Benke, P., et al.
(2012). Arabidopsis deficient in cutin ferulate encodes a transferase required for
feruloylation of omega-hydroxy fatty acids in cutin polyester. Plant Physiol. 158,
654–665. doi: 10.1104/pp.111.187187

Reumann, S., Quan, S., Aung, K., Yang, P., Manandhar-Shrestha, K., Holbrook, D.,
et al. (2009). In-depth proteome analysis of Arabidopsis leaf peroxisomes com-
bined with in vivo subcellular targeting verification indicates novel metabolic
and regulatory functions of peroxisomes. Plant Physiol. 150, 125–143. doi:
10.1104/pp.109.137703

Sanchez-Pulido, L., and Ponting, C. P. (2011). Structure and evolutionary history of
DISC1. Hum. Mol. Genet. 20, R175–R181. doi: 10.1093/hmg/ddr374

Sappl, P. G., Carroll, A. J., Clifton, R., Lister, R., Whelan, J., Millar, A. H., et al.
(2009). The Arabidopsis glutathione transferase gene family displays complex
stress regulation and co-silencing multiple genes results in altered metabolic sen-
sitivity to oxidative stress. Plant J. 58, 53–68. doi: 10.1111/j.1365-313X.2008.
03761.x

Schnarrenberger, C., Flechner, A., and Martin, W. (1995). Enzymatic evidence for
a complete oxidative pentose phosphate pathway in chloroplasts and an incom-
plete pathway in the cytosol of spinach leaves. Plant Physiol. 108, 609–614. doi:
10.1104/pp.108.2.609

Serino, G., and Pick, E. (2013). Duplication and familial promiscuity within the
proteasome lid and COP9 signalosome kin complexes. Plant Sci. 203, 89–97. doi:
10.1016/j.plantsci.2012.12.018

Shefcheck, K., Yao, X., and Fenselau, C. (2003). Fractionation of cytosolic pro-
teins on an immobilized heparin column. Anal. Chem. 75, 1691–1698. doi:
10.1021/ac026153h

Simpson, J. P., Di Leo, R., Dhanoa, P. K., Allan, W. L., Makhmoudova, A., Clark,
S. M., et al. (2008). Identification and characterization of a plastid-localized Ara-
bidopsis glyoxylate reductase isoform: comparison with a cytosolic isoform and
implications for cellular redox homeostasis and aldehyde detoxification. J. Exp.
Bot. 59, 2545–2554. doi: 10.1093/jxb/ern123

Sugio, A., Dreos, R., Aparicio, F., and Maule, A. J. (2009). The cytosolic protein
response as a subcomponent of the wider heat shock response in Arabidopsis.
Plant Cell 21, 642–654. doi: 10.1105/tpc.108.062596

Sun, H. H., Sako, K., Suzuki, Y., Maekawa, S., Yasuda, S., Chiba, Y., et al. (2012).
Sugar-inducible RPT2a, a subunit of 26S proteasome, participates in sugar
response in Arabidopsis. Plant Biotechnol. 29, 279–284. doi: 10.5511/plantbiotech-
nology.12.0409a

Tan, Q., Dong, D., Ye, L., Huo, C., Huang, F., and Li, R. (2009). Pre-fractionation
of rat liver cytosol proteins prior to mass spectrometry-based proteomic analysis
using tandem biomimetic affinity chromatography. J. Mol. Recognit. 23, 93–100.
doi: 10.1002/jmr.995

Tanz, S. K., Castleden, I., Hooper, C. M., Vacher, M., Small, I., and Millar, H. A.
(2013). SUBA3: a database for integrating experimentation and prediction to
define the SUBcellular location of proteins in Arabidopsis. Nucleic Acids Res. 41,
D1185–D1191. doi: 10.1093/nar/gks1151

Thimm, O., Blasing, O., Gibon, Y., Nagel, A., Meyer, S., Kruger, P., et al. (2004).
MAPMAN: a user-driven tool to display genomics data sets onto diagrams of
metabolic pathways and other biological processes. Plant J. 37, 914–939. doi:
10.1111/j.1365-313X.2004.02016.x

Turkina, M. V., Klang Arstrand, H., and Vener, A. V. (2011). Differential phosphory-
lation of ribosomal proteins in Arabidopsis thaliana plants during day and night.
PLoS ONE 6:e29307. doi: 10.1371/journal.pone.0029307

Tzafrir, I., Pena-Muralla, R., Dickerman, A., Berg, M., Rogers, R., Hutchens, S., et al.
(2004). Identification of genes required for embryo development in Arabidopsis.
Plant Physiol. 135, 1206–1220. doi: 10.1104/pp.104.045179

Vadassery, J., Reichelt, M., Hause, B., Gershenzon, J., Boland, W., and Mithofer, A.
(2012). CML42-mediated calcium signaling coordinates responses to Spodoptera
herbivory and abiotic stresses in Arabidopsis. Plant Physiol. 159, 1159–1175. doi:
10.1104/pp.112.198150

van Wijk, K. J., and Baginsky, S. (2011). Plastid proteomics in higher plants: cur-
rent state and future goals. Plant Physiol. 155, 1578–1588. doi: 10.1104/pp.111.
172932

Vierstra, R. D. (2009). The ubiquitin-26S proteasome system at the nexus of plant
biology. Nat. Rev. Mol. Cell Biol. 10, 385–397. doi: 10.1038/nrm2688

Weber, A. P., and Fischer, K. (2007). Making the connections – the crucial role of
metabolite transporters at the interface between chloroplast and cytosol. FEBS
Lett. 581, 2215–2222. doi: 10.1016/j.febslet.2007.02.010

Witz, S., Jung, B., Furst, S., and Mohlmann, T. (2012). De novo pyrimidine
nucleotide synthesis mainly occurs outside of plastids, but a previously undiscov-
ered nucleobase importer provides substrates for the essential salvage pathway in
Arabidopsis. Plant Cell 24, 1549–1559. doi: 10.1105/tpc.112.096743

Yamada, K., and Nishimura, M. (2008). Cytosolic heat shock protein 90 regulates
heat shock transcription factor in Arabidopsis thaliana. Plant Signal. Behav. 3,
660–662. doi: 10.4161/psb.3.9.5775

Yang, P., Fu, H., Walker, J., Papa, C. M., Smalle, J., Ju, Y. M., et al. (2004). Purifi-
cation of the Arabidopsis 26 S proteasome: biochemical and molecular analyses
revealed the presence of multiple isoforms. J. Biol. Chem. 279, 6401–6413. doi:
10.1074/jbc.M311977200

Yao, Y., Ling, Q., Wang, H., and Huang, H. (2008). Ribosomal proteins promote leaf
adaxial identity. Development 135, 1325–1334. doi: 10.1242/dev.017913

Zhang, P., Foerster, H., Tissier, C. P., Mueller, L., Paley, S., Karp, P. D., et al. (2005).
MetaCyc and AraCyc. Metabolic pathway databases for plant research. Plant
Physiol. 138, 27–37. doi: 10.1104/pp.105.060376

Zielinska, D. F., Gnad, F., Schropp, K., Wisniewski, J. R., and Mann, M. (2012).
Mapping N-glycosylation sites across seven evolutionarily distant species reveals
a divergent substrate proteome despite a common core machinery. Mol. Cell 46,
542–548. doi: 10.1016/j.molcel.2012.04.031

www.frontiersin.org February 2014 | Volume 5 | Article 21 | 7

http://www.frontiersin.org/
http://www.frontiersin.org/Plant_Proteomics/archive


Ito et al. Arabidopsis cytosolic proteome

Conflict of Interest Statement: The authors declare that the research was conducted
in the absence of any commercial or financial relationships that could be construed
as a potential conflict of interest.

Received: 16 November 2013; accepted: 19 January 2014; published online: 05 February
2014.
Citation: Ito J, Parsons HT and Heazlewood JL (2014) The Arabidopsis cytosolic
proteome: the metabolic heart of the cell. Front. Plant Sci. 5:21. doi: 10.3389/fpls.
2014.00021

This article was submitted to Plant Proteomics, a section of the journal Frontiers in
Plant Science.
Copyright © 2014 Ito, Parsons and Heazlewood. This is an open-access arti-
cle distributed under the terms of the Creative Commons Attribution License
(CC BY). The use, distribution or reproduction in other forums is permitted,
provided the original author(s) or licensor are credited and that the original pub-
lication in this journal is cited, in accordance with accepted academic practice. No
use, distribution or reproduction is permitted which does not comply with these
terms.

Frontiers in Plant Science | Plant Proteomics February 2014 | Volume 5 | Article 21 | 8

http://dx.doi.org/10.3389/fpls.2014.00021
http://dx.doi.org/10.3389/fpls.2014.00021
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://www.frontiersin.org/Plant_Proteomics/
http://www.frontiersin.org/Plant_Proteomics/archive

	The arabidopsis cytosolic proteome: the metabolic heart of the cell
	Introduction
	The arabidopsis cytosolic 80s ribosome
	The arabidopsis cytosolic 26s proteasome
	Post-translational modifications
	Utilization of the arabidopsis cytosolic proteome
	Expanding the arabidopsis cytosolic proteome
	Perspectives
	Author contributions
	Acknowledgments
	References


