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The type III secretion system (T3SS) is a protein delivery system which is involved
in a wide spectrum of interactions, from mutualism to pathogenesis, between Gram
negative bacteria and various eukaryotes, including plants, fungi, protozoa and mammals.
Various phylogenetic families of the T3SS have been described, including the Salmonella
Pathogenicity Island 1 family (SPI-1). The SPI-1 T3SS was initially associated with the
virulence of enteric pathogens, but is actually found in a diverse array of bacterial species,
where it can play roles in processes as different as symbiotic interactions with insects and
colonization of plants. We review the multiple roles of the SPI-1 T3SS and discuss both
how these discoveries are changing our perception of the SPI-1 family and what impacts
this has on our understanding of the specialization of the T3SS in general.
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INTRODUCTION
Non-flagellar Type III secretion systems (NF-T3SSs) are macro-
molecular complexes, apparently derived from exaptation of the
flagella for the delivery of bacterial effectors into eukaryotic
cells (Abby and Rocha, 2012). These macromolecular complexes
can be divided schematically into three parts: (i) a transmem-
brane export apparatus, (ii) an extracellular needle or pilus and
(iii) a translocon which forms a pore in the host cell mem-
brane (Cornelis, 2006). Additional elements, such as chaperones
which can facilitate the association between effectors and the
T3SS injectisome, and an ATPase which catalyzes the dissoci-
ation of the effector chaperone complex prior to secretion are
also important for proper T3SS functioning (Akeda and Galan,
2005).

Multiple phylogenetic analyses based on proteins involved in
the assembly of the transmembrane export apparatus have split
the NF-T3SSs into seven distinct families: SPI-1 (also known
as the Inv-Mxi-Spa family), SPI-2, Hrp1, Hrp2, Ysc, Rhizo-
biales, and Chlamydiales (Pallen et al., 2005; Troisfontaines and
Cornelis, 2005; Barret et al., 2013b). From initial characteriza-
tion and genomic distribution, the Ysc, Chlamydiales, SPI-1,
and SPI-2 families were associated with animal–bacterial inter-
actions while the Rhizobiales, Hrp1, and Hrp2 families were
associated with plant–bacterial interactions. As well as host-range,
phylogenetic groups differed in their extracellular appendages,
with plant-associated families having long flexible pili, while ani-
mal pathogens have short rigid needles, which in some cases
(e.g., SPI-2) can be appended by a filamentous sheath (Chakra-
vortty et al., 2005) The core components are highly conserved
between each family, which probably contributes to the phe-
nomenon of promiscuous secretion; that is, there are multiple
reports of effector secretion via non-cognate T3SS families,

including effectors which are normally used during the infection
of animals being heterologously expressed and secreted via phy-
topathogenic T3SSs and vice versa (Anderson et al., 1999; Subtil
et al., 2001).

HISTORY AND PHYLOGENETIC ANALYSIS OF SPI-1 T3SSs
The Salmonella pathogenicity island 1 (SPI-1) is a genetic locus
which is involved in invasion of non-phagocytic cells by Salmonella
spp. (Galan and Curtiss, 1989). Molecular analyses have revealed
that the vast majority of the genes located in this region encoded
a T3SS (Galan, 1996). Consequently the term SPI-1 was coined
for this T3SS. Homologs of SPI-1 T3SS have been identified and
found to be essential virulence determinants in other mammalian
pathogens such as Chromobacterium, Escherichia, Shigella, and
Yersinia species (Barinaga, 1996; Miki et al., 2010), thus confirming
its role in animal/human pathogenesis. However, recent reports in
the literature have highlighted the presence of SPI-1 T3SSs outside
of mammalian pathogenic bacteria, such as Sodalis (Dale et al.,
2005), Erwinia (Triplett et al., 2006), Xanthomonas (Alavi et al.,
2008; Marguerettaz et al., 2011), Pantoea (Correa et al., 2012), and
Pseudomonas species (Barret et al., 2013a; Redondo-Nieto et al.,
2013). Concurrently, the rise in genome sequences is revealing
that the SPI-1 T3SS is found in a multitude of other bacterial
strains (Figure 1).

Phylogenetic analyses have consistently split the SPI-1 family
into 2 sub-clusters (Marguerettaz et al., 2011; Abby and Rocha,
2012; Barret et al., 2013b). One sub-cluster has a greater fre-
quency of classical enteric bacteria such as Salmonella, Shigella,
and Escherichia coli, while the other contains other bacterial
strains associated with plant insect or soil environments. How-
ever, both environmental strains and mammalian pathogens
can be found in each sub-cluster so it is difficult to see
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FIGURE 1 | Phylogenetic distribution of the SPI-1T3SS. A distance tree (maximum likelihood based on the WAG model) was calculated from InvA homologs
(COG4789) of the SPI-1 family. RscV (COG4789) from the Hrp1 T3SS of P. fluorescens F113 was used as an outgroup. Only aLRT support values greater than
0.75 (1000 replicates) are displayed.

that this phylogenetic split has any meaningful implication for
host range. Of course there may be other interesting fea-
tures related with phylogeny, for instance through evolution
some differences in T3SS apparatus or secretion mechanism
might arise which could be particular to certain phylogenetic
branches. One possible example might be that Pseudomonas
strains possessing the SPI-1 T3SS do not have a strong homolog
to the invJ gene which controls needle length, suggesting

the needle length or regulation thereof is different in these
strains.

MULTIPLE ROLES OF SPI-1 T3SSs
As mentioned, the SPI-1 T3SS is best known for its role in mam-
malian pathogenesis, but it is being recognized as being important
in a many different settings (Figure 2). The high occurrence
of SPI-1 T3SS in genome sequences of insect symbionts such
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FIGURE 2 | Multiple roles of the SPI-1T3SS. The SPI-1 T3SS was first implicated in virulence towards mammals, but has since been shown to mediate
interactions with other animals, protozoa, and plants.

as Arsenophonus nasoniae, “Candidatus Hamiltonella defensa”,
“Candidatus Regiella insecticola,” and Sodalis glossinidius could
indicate that SPI-1 is often necessary for persistence in insect
hosts, expanding the known host range of the SPI-1-type T3SS
and demonstrating a non-pathogenic function for this T3SS fam-
ily. Indeed, two SPI-1 family T3SS are found in S. glossinidius,
one which is required for cell invasion and another “needleless”
T3SS which is required for replication of this bacterium in insect
cells (Dale et al., 2005). Interestingly, a recent study has also high-
lighted that the SPI-1 T3SS of Pantoea stewartii is required for
persistence of this bacterium in the flea beetle, an important
vector for this maize pathogen (Correa et al., 2012). Moreover,
protein-coding genes involved in the assembly of the SPI-1 NF-
T3SS are also abundant in arthropoda-associated microbiomes
(Barret et al., 2013b).

Other SPI-1 T3SSs are involved in interactions with free-living
protozoa. SPI-1 T3SS gene expression of Salmonella and Pseu-
domonas fluorescens is induced during contact with amoebae
(Bleasdale et al., 2009; Barret et al., 2013a). In Salmonella a modest
effect was seen on amoeba survival after hilA, a key regulator of the
SPI-1 system, was mutated, but as non-T3SS genes are also regu-
lated by HilA the contribution of the SPI-1 T3SS to this phenotype
is not clear (Tezcan-Merdol et al., 2004). The presence of the SPI-1
system did not enable the plant-growth promoting rhizobacterium

P. fluorescens F113 to survive in or kill amoeba, but instead helped
the bacteria avoid amoeboid grazing. As the amoeba still consume
P. fluorescens F113 in the absence of alternatives, it is not clear
whether this is the main function of the SPI-1 system, or a useful
additional function.

Finally, SPI-1 T3SS is also important during bacterial–plant
interactions. For instance SPI-1 and SPI-2 T3SS deficient strains
of Salmonella spp. are compromised for survival in planta while
the SPI-1 mutant had reduced ability to repress the hypersensi-
tive response of Arabidopsis (Schikora et al., 2011). In addition,
the SPI-1 T3SS of Salmonella is also involved in suppression of
the early plant immune response of Nicotiana tabacum (Shirron
and Yaron, 2011). In contrast, the SPI-1 T3SS of Salmonella enter-
ica elicits Medicago defense, which limits bacterial colonization
of plant tissue (Iniguez et al., 2005). Plant defense responses are
often categorized as either PTI or ETI, based on whether they are
triggered by pathogen-associated molecular pathogens or effec-
tors, respectively. While the structural apparatus of the T3SS
might elicit the Medicago PTI, mutants lacking the translocator
SipB reached higher numbers in planta, suggesting the plant’s
response might be at least partially due to the presence of translo-
cated effectors. Indeed, one effector of the SPI-2 T3SS, SseF, has
been shown to trigger the hypersensitive response in N. benthami-
ana when expressed transiently or translocated by the T3SS of
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phytopathogen Xanthomonas campestris, though the presence of
S. enterica did not elicit this response (Üstün et al., 2012). While
there are other examples of multi-host pathogens that infect both
plants and animals, this is the only reported instance of a bac-
terium using the same secretion system in both processes, though
E. coli does use its extended T3SS filament for plant attachment,
and encodes several homologs to phytopathogenic effectors (Tobe
et al., 2006; Shaw et al., 2008).

The SPI-1 system might also play a role in cell aggregation sim-
ilar to, but independent from, biofilm formation. Indeed, when
overexpressed on a vector, the SPI-1 locus induced clumping of S.
enterica Typhimurium in media, seemingly due to an extracellular
sheath composed at least partly of SPI-1 proteins (Jennings et al.,
2012). Somewhat analogously the Hrp T3SS is involved in pelli-
cle formation in Erwinia chrysanthemi (Yap et al., 2005). In light
of the lack of evidence for SPI-1-mediated effector translocation
into plant cytosol it remains a possibility that SPI-1 induced for-
mation of cell aggregates in planta could shield the bacteria from
plant defense receptors, though visual evidence from Salmonella
inoculation of Arabidopsis has not shown large clumps of cells
(Schikora et al., 2008). It is harder to envisage how cell aggrega-
tion could explain the SPI-1 dependent induction of the Medicago
plant defense in response to infection with S. typhimurium, but
in these set of experiments only a translocator was mutated, so
it is possible the phenotype seen was due to perception of this
translocator instead of perception of translocated effectors within
the plant cytosol.

THE T3SS TRANSLOCATION PROCESS IN PLANTS AND ANIMALS
While T3SS function was initially understood within the confines
of the model system(s) that are still predominantly used to char-
acterize it, there has been a growing recognition that bacteria can
utilize the same T3SS to mediate interactions with several different
hosts (Preston, 2007). A role for the same T3SS with both plant
and animal hosts is the ultimate demonstration of the flexibility
of the T3SS, as this challenges the classical separation of NF-T3SSs
from animal and plant-associated bacteria, which mainly differ in
their translocators and extracellular appendages. This is presum-
ably because of the greater challenge of delivering effectors across
the additional barrier of the cell wall, which can be reinforced
through callose deposition at sites of infection (Luna et al., 2011).
Instead of the short (∼60 nm), apparently ancestral, needle, the
Hrp-T3SS has a long (∼1–2 μm) flexible pilus presumed to be an
adaptation to the thickness of the plant cell wall (Cornelis, 2006).
The phytopathogenic translocator repertoire is more complex and
variable than that of animal pathogens, which simply have three
essential translocators. Though proteins involved in translocation
which show homology to one particular animal translocator, SipB,
can be found in some phytopathogens, this is not universal (Meyer
et al., 2006). Instead, small, heat stable proteins known as harpins,
which are exclusive to and possibly ubiquitous in, bacteria pos-
sessing the Hrp T3SS, have been implicated in the translocation
process (Kvitko et al., 2007; Choi et al., 2013).

In light of the plant-related activities of the SPI-1 system it
seems that having a long flexible pilus and harpins to facilitate
delivery of type 3 effectors (T3Es) into plants is not a strict
requirement, but given the strong association between the Hrp

T3SS family and phytopathogens it seems likely that these factors
are advantageous. How Salmonella could deliver effectors into
the plant cell cytosol remains to be determined, though forma-
tion of elongated needles through dysregulation of needle length
control has been observed in vitro following mutation (Kubori
et al., 2000). It is important to note, however, that transloca-
tion of effectors into plant cells by Salmonella remains to be
demonstrated.

It is interesting to note that P. fluorescens MFM1032 use a T3SS
which probably belongs to the Hrp family to lyse macrophages
and interfere with the growth of amoeba (Sperandio et al., 2012).
Unfortunately, in the absence of a genome sequence it is not
clear whether this strain possesses the plant-associated pilus and
translocator repertoire.

SPI-1 TYPE 3 EFFECTORS
Each bacterial species delivers its own unique set of T3Es into host
cells and it is necessary to define their role(s) to fully understand
any T3SS-dependent phenotype.

Unfortunately, from the SPI-1 family only effectors from clas-
sical mammalian pathogens have been characterized to date. As
these effectors have been extensively reviewed elsewhere (McGhie
et al., 2009; Parsot, 2009), the examples in the next section are
not intended to be exhaustive, but instead serve to emphasize the
commonalities of T3Es generally by comparing effectors secreted
by the SPI-1 and Hrp families.

Although extremely diverse, described T3Es are composed of
less than 40 motifs or domains which can often interfere with con-
served eukaryotic cellular processes such as the mitogen activated
protein kinase (MAPK) signaling pathway (Dean, 2011). Indeed,
several effectors which bacteria use during infection of plants or
animals have been characterized after heterologous expression in
non-host yeast (Siggers and Lesser, 2008; Tripathi et al., 2010;
Salomon et al., 2011). Therefore, it is possible that Salmonella uses
a subset of the same effectors to affect both plants and animals by
interfering with the same processes in both.

Many described SPI-1 effectors can be categorized as being
involved in host cell invasion or host immune response modu-
lation, and many T3Es secreted by Hrp T3SSs are also dedicated
to downplaying the host immune response (Grant et al., 2006).
This is especially pertinent as SPI-1 dependent phenotypes in
plant models all result ultimately from differential plant immune
response. SPI-1 T3Es SptP and AvrA act to inhibit the action of
the MAPK-dependent immune response pathway while Hrp effec-
tor HopAO1 possibly acts downstream of the MAPK activation
to suppresses plant defenses (Murli et al., 2001; Lin et al., 2003;
Underwood et al., 2007; Jones et al., 2008). Hrp effector AvrptoB
and SPI-1 effector SopA are ubiquitin ligases which also modu-
late the host immune response (Abramovitch et al., 2006; Zhang
et al., 2006). SopE activates caspase-dependent immune responses
in macrophages (Hoffmann et al., 2010), while caspase-like pro-
teases also control programmed cell death in plants (Hoffmann
et al., 2010; Woltering, 2010). The SptP T3E has an additional
function as dephosphorylase of the mammalian ATPase valosin-
containing protein (Humphreys et al., 2009), and could potentially
have the same activity with the plant homolog AAA+ ATPase (Shi
et al., 1995).
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Other conserved targets of both plant and animal SPI-1 systems
are suggested by similar localization patterns, e.g., Hrp effec-
tors HopG1 and HopAA1-1 and SPI-1 effectors SipB and SopA
are reported to be able to localize to the mitochondria (Hernan-
dez et al., 2003; Layton et al., 2005; Munkvold et al., 2008; Block
et al., 2010). Understanding these underlying commonalities we
can begin to appreciate how multi-host T3SS-dependent interac-
tions evolve as well as form hypotheses about which effectors are
utilized by Salmonella in interactions with plants. Alternatively, it
is possible that the Salmonella SPI-1 T3SS might translocate an
entirely different, yet uncharacterized, set of proteins into plant
cells.

Only recently have SPI-1 T3Es from outside mammalian
pathogens been identified, and their mode of action remains to
be determined. Using a conserved chaperone-binding domain
(CCBD) sequence, recognized by class IB chaperones, two SPI-
1 T3Es of S. glossinidius (SG0576 and SG0764) were predicted,
and then confirmed to be secreted in a T3SS-dependent manner
(Costa et al., 2012). This CCBD sequence could be employed to
detect others SPI-1 T3Es in genome sequences possessing class
IB chaperones, such as P. fluorescens HK44 and Pseudomonas sp.
GM49 (Barret et al., 2013a). Bioinformatic prediction has also
been used to identify effectors. Two putative protein coding-genes
(PSF113_1802 and PSF113_4041) were predicted to be potential
effectors of Pseudomonas strains, since they possess T3 secretion
signal, are only encoded in Pseudomonas genome sequences encod-
ing the T3SS SPI-1 cluster. Though their translocation remains
to be confirmed, their expression is induced by the SPI-1 T3SS
transcriptional activator HilA in P. fluorescens F113 (Barret et al.,
2013a). As well as using CCBD sequences to detect other SPI-1
T3Es in genome sequences, improving in silico prediction models,
which are mainly based on the amino acid frequencies and bio-
chemical properties of the effector’s N-terminal region, may result
in more T3Es being found, allowing us to develop our understand-
ing of the SPI-1 T3SS in its many diverse roles (Wang et al., 2011;
Wang et al., 2013).

CONCLUSION
Phylogenetic analyses have highlighted seven different families of
T3SS and have been useful for unraveling the evolutionary his-
tory of the system, as well as for highlighting the relationship
between T3SS family and (a) the specificities of its translocation
process as well as (b) broader categories of target organisms. The
SPI-1 system is associated with and best understood in the con-
text of mammalian pathogenesis, but as our knowledge advances
it becomes clear that this is a system with multiple functions in
different hosts, perhaps especially with insects as it is particularly
abundant among insect related bacteria. In light of the division
between T3SS families that were found to target plant or ani-
mals in early T3SS research, it was tempting to speculate that
certain T3SS families were limited to plants or non-plants but evi-
dence is mounting that this is not the case. This raises questions
about our assumptions about the specialization of the plant-
related translocation process. This, and the growing appreciation
of the functional relatedness of the diverse set of T3E, suggests that
the various bacterial–eukaryote interactions mediated by the T3SS
follow similar templates.

Though the original categorical divisions between phy-
topathogenic and animal pathogenic processes are being eroded,
this paradigm is still useful as long as we remember that in biology,
exceptions are the rule. What adaptions are needed for the SPI-1
system to interact with plant cells is an intriguing question, and
when the Hrp systems are so strongly associated with plants, the
prospect that no adaptions are needed is maybe more intriguing
still.
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