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Plasmodesmata (PD) are cytoplasmic channels that connect neighboring cells for cell-to-cell
communication. PD structure and function vary temporally and spatially to allow formation
of symplastic domains during different stages of plant development. Reversible deposition
of callose at PD plays an important role in controlling molecular trafficking through PD by
regulating their size exclusion limit. Previously, we reported several semi-dominant mutants
for CALLOSE SYNTHASE 3 (CALS3) gene, which overproduce callose at PD in Arabidopsis.
By combining two of these mutations in a LexA-VP16-ER (XVE)-based estradiol inducible
vector system, a tool known as the “icals3m system” was developed to temporally obstruct
the symplastic connections in a specified spatial domain.The system has been successfully
tested and used, in combination with other methods, to investigate the route for mobile
signals such as the SHR protein, microRNA165/6, and cytokinins in Arabidopsis roots, and
also to understand the role of symplastic domain formation during lateral root development.
We envision that this tool may also be useful for identifying tissue-specific symplastic
regulatory networks and to analyze symplastic movement of metabolites.

Keywords: plasmodesmata (PD), non-cell autonomous proteins (NCAP), plant development, callose, symplastic

domains, size exclusion limit (SEL)

INTRODUCTION
In plants, the exchange of information between cells is essential
for their growth, response to the environment and defense. Dur-
ing development, the transmission of positional signals between
different cells, tissues and organs is required for the determination
of their identities. These signals include hormones, metabolites,
non-cell autonomous proteins and RNAs, which can move either
through the process of exocytosis and endocytosis (apoplastic sig-
naling) or via Plasmodesmata (PD) (symplastic signaling). PD
connect the cytoplasms of plant cells and act as channels for traf-
ficking of signaling molecules, which can pass either via simple
diffusion (non-targeted movement) or by temporarily chang-
ing PD diameter (targeted movement). Here, we are discussing
symplastic signaling and the role of callose during plant devel-
opment and describing a tool which can be used to temporally
obstruct molecular trafficking through PD in a tissue-specific
manner to understand the role of symplatic communication in
plant developmental processes.

PD STATES DEFINE SPATIAL SYMPLASTIC DOMAINS
Plasmodesmata are developed across the cell walls to enable
cytoplasmic connection and molecular trafficking between neigh-
boring cells. PD channels are lined by plasma membrane at their
boundaries, and the desmotubule (DT), a structure composed of
compressed endoplasmic reticulum (ER), is located in the center
of the pores. The region between the plasma membrane and the
DT is known as the cytoplasmic sleeve (CS), which provides a
major path for molecular movement through PD. A large num-
ber of different kinds of proteins associated with PD have been
identified using proteomic and biochemical approaches (Bayer

et al., 2006; Levy et al., 2007; Thomas et al., 2008; Simpson et al.,
2009; Fernandez-Calvino et al., 2011; Ham et al., 2012; Salmon and
Bayer, 2013). Some of these proteins such as PDLP1 are uniformly
distributed along the plasma membrane (Thomas et al., 2008),
whereas others may be specifically localized to the regional mem-
brane microdomains (Simpson et al., 2009). Therefore, presence
of membrane microdomain-associated proteins at PD raises a pos-
sibility that a special membrane microdomain is associated with
PD (Raffaele et al., 2009; Mongrand et al., 2010) that may act as a
sorting platform for recruitment of PD-associated proteins (Mon-
grand et al., 2010; Simon-Plas et al., 2011; Tilsner et al., 2011).

PD can exist in different states depending on their permeability
during plant growth and development. Closed PD do not permit
any trafficking, whereas small molecules such as ions, photo-
assimilates and growth regulators can diffuse through opened
PD. Apart from closed/open state, PD can also be in a dilated
state in different tissues to allow movement of larger molecules.
A dilation state of the PD is defined by their size exclusion limit
(SEL) which is the upper size limit of the molecules that can move
through PD. The SEL of PD varies in different cells and tissues. For
example, PD located on stele/endodermis and cortex/epidermis
boundaries have SEL ∼60 kDa whereas PD connecting compan-
ion cells (CC) and sieve elements (SE) generally have SEL >67 kDa
(Stadler et al., 2005; Rim et al., 2011). During various stages of
differentiation, a dynamic control over PD permeability allows for-
mation of some segregated regions, called“symplastic domains” in
which communication among the cells is free, while between the
domains, it is restricted (Rinne and Van Der Schoot, 1998; Gisel
et al., 1999). These functional domains, therefore, allow specific
developmental programs to take place in restricted areas. For
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example, the early staged embryo constitutes a single symplast
due to opened interconnection between the cells, but at the later
stages of development, PD change their SEL to generate distinct
symplastic domains as shown by the movements of different sized
tracers (Kim et al., 2005a,b).

SYMPLASTIC SIGNALING DURING SHOOT AND ROOT
DEVELOPMENT
A large number of critical cell identity regulators, non-cell
autonomous transcription factors and small RNAs have been
reported to traffic between cells. The first discovered mobile reg-
ulator was KNOTTED1 (KN1), which regulates formation and
maintenance of the shoot apical meristem (SAM) in maize (Jack-
son et al., 1994; Lucas et al., 1995). Subsequently, the movement
of Arabidopsis homologs of KN1, KNOTTED1-like homeobox
protein 1/BREVIPEDICELLUS (KNAT1/BP) and SHOOTMERIS-
TEMLESS (STM) from L1 to L2/L3 layers of the SAM was shown
in Arabidopsis (Kim et al., 2003). Yet another homeodomain tran-
scription factor, WUSCHEL (WUS) moves from the organizing
center to the adjacent cells of the SAM and activates CLAVATA 3
(CLV3), which inturn represses WUS expression with CLV1, form-
ing a feedback loop to control the size of the SAM (Schoof et al.,
2000; Yadav et al., 2011).

The long distance movement of FLOWERING LOCUS T (FT)
from the leaves to the shoot apex via phloem to promote LEAFY
(LFY ) expression is required to induce flowering (Corbesier
et al., 2007; Mathieu et al., 2007). LFY also functions non-cell
autonomously by moving to adjacent cells through PD to acti-
vate downstream target genes (Sessions et al., 2000, Wu et al.,
2003). Additionally, some MADS-box transcription factors exhibit
non-cell autonomous functions during floral organ patterning.
Antirrhinum B-function factors, DEFICIENS (DEF) and GLO-
BOSA (GLO), have been shown to exhibit regulated mobility
(Perbal et al., 1996). In Arabidopsis, the C-function gene AGA-
MOUS (AG) can move from the epidermal cell layer to the
subepidermal cell layer of the floral meristem through secondary
PD (Urbanus et al., 2010).

In Arabidopsis, the quiescent center (QC) and columella cells
of the root derive from the hypophysis, and other cells develop
from the embryo proper (Dolan et al., 1993). The auxin response
factor MONOPTEROS (MP) activates the expression of TARGET
OF MONOPTEROS 7 (TMO7) in embryonic cells, and the TMO7
protein moves to the hypophysis precursor to promote its asym-
metric division (Schlereth et al., 2010). For continuous growth
and development of the root, several signaling events that balance
cell division and cell differentiation are required. SHORTROOT
(SHR) is expressed in the stele cells but the protein migrates to
the neighboring cell layer (the QC, the cortex/endodermal initial
and the endodermis). Activation of SCARECROW (SCR) expres-
sion by SHR in the QC is critical for specifying the QC cells and
maintaining surrounding initials (Helariutta et al., 2000; Nakajima
et al., 2001). In the cortex/endodermal initials (CEIs), SHR/SCR
regulates the expression of a cell-cycle regulator, CYCLIN D6;1
to trigger the asymmetric cell division (Sozzani et al., 2010).
WUSCHEL-RELATED HOMEOBOX 5 (WOX5), is expressed in
the QC and like its SAM homologue WUS, WOX5 non-cell-
autonomously maintains columella stem cells (CSC) in the root

niche (Sarkar et al., 2007), suggesting that either WOX5 itself or
its downstream components move from QC to columella ini-
tials. Additionally, ARABIDOPSIS CRINKLY4 (ACR4) and CLV1
assemble into a complex to perceive the CLAVATA3/EMBRYO
SURROUNDING REGION40 (CLE40) signal and restrict the
expression of WOX5 to control the distal root meristem (Stahl
et al., 2009, 2013). Interestingly, both ACR4 and CLV1 can inter-
act at PD, suggesting that they may have a role in regulating the
trafficking through PD (Stahl et al., 2013).

The radial patterning of the root vascular tissues relies
on a bi-directional signaling between the stele and the endo-
dermis. SHR protein moves from the stele into the endo-
dermis and together with SCR it activates the expression of
microRNA165/6. The miR165/6 then moves in the opposite direc-
tion into the vascular tissues and establishes a concentration
gradient for their targets, the HD-ZIP III genes (Carlsbecker
et al., 2010). The miRNA-dependent post-transcriptional reg-
ulation of PHB expression is required for xylem specification
and pericycle differentiation and also to maintain the expression
of JACKDAW (JKD) in the ground-tissue (GT), the endoder-
mis and the cortex, to restrict SHR, and SCR movement
(Miyashima et al., 2011).

CALLOSE PLAYS AN IMPORTANT ROLE IN REGULATING
SYMPLASTIC COMMUNICATION DURING PLANT GROWTH
AND DEVELOPMENT
Symplastic communication in plants is largely regulated through a
control on the SEL of PD either by developmental or environmen-
tal factors. Callose is one of these factors that play an important
role in regulating inter-cellular communication through PD in a
wide range of developmental and physiological processes (Chen
and Kim, 2009). It is biosynthesized by callose synthases (CALS,
also called glucan synthase-like, GSL; Verma and Hong, 2001)
and dynamically deposited during cell plate formation in dividing
cells, during pollen development and pollen tube growth and to
some specialized cell-wall domains such as PD and sieve plates
of phloem SE. Its degradation, on the other hand, is controlled
by activities of callose degrading enzymes called β-1, 3-glucanases
(BGs). Therefore, a balance between these metabolic enzymes reg-
ulates callose levels in plant cells (Chen and Kim, 2009; Zavaliev
et al., 2011).

Despite of a large genetic redundancy among the CALS/GSL
members, some of these genes have been shown to be involved in
specific processes. For example, CALS10 (GSL8) has a role during
cytokinesis, stomata patterning and ploidy consistency in gametes
(Chen et al., 2009; Guseman et al., 2010; De Storme et al., 2013),
whereas SE-specific gene, CALS7 (GSL7) is required for callose
deposition at PD and the sieve plates of sieve cells (Barratt et al.,
2011; Xie et al., 2011). CALS3 (GSL12) has a broad expression
domain in Arabidopsis root, and the protein is localized to the
plasma membrane and PD (Vatén et al., 2011). cals3-d gain-of-
function mutants have increased level of callose at PD, resulting
in pleiotropic developmental defects (Vatén et al., 2011). Similarly,
BGs are also involved in a wide range biological processes including
development, stress responses and pathogen defense (Doxey et al.,
2007). For example, in Arabidopsis, AtBG_ppap controls molecular
trafficking through PD and PdBG1/PdBG2 play an important role
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during lateral root (LR) development (Levy et al., 2007; Benitez-
Alfonso et al., 2013). However, in tobacco, a CLASS I BETA-1,3-
GLUCANASE (βGLU1) is induced during seed germination and
releases them from dormancy (Leubner-Metzger and Meins, 2000,
2001). In addition to the callose synthases and glucanases, several
other genes also regulate symplastic trafficking by affecting callose
levels (Thomas et al., 2008; Simpson et al., 2009; Lee et al., 2011).
Collectively, these studies suggest that critical level of callose is
required during plant development and various environmental
conditions.

ROLE OF CALLOSE IN CELLULAR ISOLATION AND
SYMPLASTIC DOMAIN FORMATION DURING DEVELOPMENT
While PD provide an important path for cell-to-cell communi-
cation, regulation of their SEL at the same time also ensures a
certain level of cell individuality by restricting the diffusion of cer-
tain larger factors through PD (Oparka, 1993). Some cells become
even fully symplastically isolated after differentiation either by los-
ing their PD (e.g., guard cells) or by severely restricting molecular
trafficking (e.g., root cap) through PD (Erwee and Goodwin, 1985;
Palevitz and Hepler, 1985; Oparka, 1993). However, formation of
symplastic domains often does not require a complete closure or
loss of PD, since a temporal modulation of PD permeability can be
enough for creation of these functional domains during develop-
ment (Epel and Bandurski, 1990). Reversible deposition of callose
provides an important mechanism of control over PD in sym-
plasmic organization. For example, in poplar and birch SAMs,
callose deposition results in a closure of PD during dormancy
period, which eventually is restored by β-1, 3-glucanases dur-
ing chilling-induced dormancy release (Rinne et al., 2001, 2011).
During stomata patterning in Arabidopsis, callose creates a local
sub-domain for stomata-specific developmental programs to take
place by restricting the stomata identity factor, SPEECHLESS
(SPCH) only to the stomata initials. In cals10 mutants, stom-
ata are developed in clusters as a result of enhanced movement of
SPCH to neighboring cells due to increased symplastic connec-
tivity (Guseman et al., 2010). In Arabidopsis roots, callose level
controls symplastic domains in the root meristem and LR primor-
dia. Free GFP expressed under the phloem CC specific AtSUC2
promoter is symplastically released from the CC traffics predomi-
nantly through the SE, and diffuses freely into the root tip (Imlau
et al., 1999). This diffusion of free GFP is decreased in callose
accumulating gfp arrested trafficking 1 (gat1) and cals3-d mutants
(Benitez-Alfonso et al., 2009; Vatén et al., 2011). GAT1 encodes
for an m-type thioredoxin that controls symplastic permeability
by controlling redox regulation of callose deposition in the root
meristem. In Arabidopsis LRs, the callose deposition at PD cor-
relates with symplastic domain formation during LR primordia
specification and influences the initiation and patterning of LRs
(Benitez-Alfonso et al., 2013). Thus, callose-mediated regulation
of SEL of PD is important for creation of symplastic domains
during plant development.

THE icals3m SYSTEM; A TOOL TO CONTROL MOLECULAR
TRAFFICKING THROUGH PD
Although a large number of non-cell autonomous signals that con-
trol plant development have been identified, only little is known

about how these signals move between the cells. This is to an
extent due to absence of any suitable tool to study molecular
trafficking through PD. We have recently developed a system,
icals3m, to obstruct trafficking through PD by over-producing
callose in the vicinity of PD (Vatén et al., 2011). In this system,
a tissue-specific estradiol-inducible LexA-VP16-ER (XVE) system
regulates the expression of a mutant cals3m gene in a specified
spatial domain by using either a specific promoter or an enhancer-
trap line, thus enabling a temporal and spatial control on callose
production (Zuo et al., 2000; Vatén et al., 2011). Interestingly, the
over-produced callose is not only deposited to the neck region of
PD, but also along the entire PD channels, allowing a uniform
closure of the channel (Vatén et al., 2011).

APPLICATION OF THE icals3m IN STUDYING
INTER-CELLULAR TRAFFICKING OF PROTEINS AND SMALL
RNAs
The specificity and efficiency of the system has been demonstrated
in various tissues by multiple studies focusing on different bio-
logical processes. When the cals3m is induced in the GT-specific
enhancer line (J0571; p6xUAS::icals3m), a high level callose is pro-
duced in the endodermis and cortex (Figures 1A,B), causing a
hindrance in the symplastic connectivity between the endodermis
and the stele, resulting in an expansion of the expression domain of
PHB in the stele (Vatén et al., 2011). Induction of the cals3m in the
vasculature inhibits the movement of SHR proteins from the stele
to the endodermis (Figures 1C,D), confirming that the SHR pro-
tein moves via PD and that the icals3m system can be used to inter-
fere intercellular protein trafficking (Vatén et al., 2011; Sevilem
et al., 2013). The ability of this system to hinder the movement of
miRNAs has also been analyzed. An in situ hybridization analy-
sis for GT expressed MIR165a (J0571; p6xUAS::MIR165a) shows
that upon cals3m induction in the GT (J0571; p6xUAS::icals3m)
of shr mutant, the movement of MIR165a to the vascular tis-
sues can be inhibited (Figures 2A,B; Vatén et al., 2011). This
was further validated by creating a “miRNA-sensor” system
by combining icals3m with a modified version of MIR165A
gene, called MIR165Amu that is designed to target a broadly
expressed nuclear-localized YFP, nlsYFP (Miyashima et al., 2011;
Vatén et al., 2011; Sevilem et al., 2013). GT-specific expression
of MIR165Amu (J0571; p6xUAS::MIR165Amu) is sufficient to
remove the nlsYFP signal from the stele, however, once the move-
ment of MIR165Amu is inhibited by inducing the cals3m in the GT
(J0571; p6xUAS::icals3m), the nlsYFP signal re-appears in the stele.
These results together suggest that icals3m can be effectively used
to inhibit trafficking of a broad range of non-cell autonomous
proteins and small RNAs.

USING THE ical3m TO STUDY BIOLOGICAL PROCESSES
RELYING ON SYMPLASTIC COMMUNICATIONS
In addition to its application for mobility analysis of proteins
and miRNAs, Bishopp et al. (2011) used the system to elegantly
demonstrate that cytokinins translocate from shoot to root via
phloem. They applied 14C-labeled cytokinin on the hypocotyls
(a shoot tissue) of wild-type, apl mutants that lack phloem tis-
sues and to a transgenic line expressing icals3m in the phloem
tissues (pAPL::XVE>>cals3m). The fluorescence was visualized
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FIGURE 1 | Inducible expression of cals3m in ground and vascular

tissues. (A, B) Aniline blue stained Arabidopsis root tips of the J0571;
p6xUAS::icals3m line show that upon 24 hrs 17β-estradiol treatment,
callose accumulation is enhanced in the ground tissues (GT); the
endodermis (en) and the cortex (co) in (B). Non-induced root does not
show callose in these tissues (A). (C,D) Schematic diagram showing
the use of the icals3m system in studying the route of SHR protein

movement. (C) In non-induced condition, the SHR protein (green signal)
is distributed in the cytoplasm of vascular tissues but after moving to
the endodermis, the protein gets localize to the nucleus (N). (D) When
cals3m is induced in the vascular tissues using CRE1 promoter, it
blocks the movement of SHR protein from vascular tissues to the
endodermis, suggesting that SHR protein move through PD (Vatén et al.,
2011).

and the radioactive signals were quantified in the root apex to
analyze long-distance transport of cytokinins. In contrast to wild-
type, the basipetal transport of 14C-labeled cytokinins was highly
compromised in the apl mutants and after cals3m induction in the
phloem of the pAPL::XVE>>cals3m lines (Figures 2C,D; Bishopp
et al., 2011), suggesting that icals3m can also be used to hinder the
long-distance transport of mobile molecules.

Moreover, apart from analyzing the mobility of a candi-
date molecule, the icals3m has also been used, as a supporting
technique, in studying the significance of symplastic domain for-
mation during LR patterning (Benitez-Alfonso et al., 2013). When
cals3m was induced in the LR-competent xylem pole pericycle
(XPP) cells using an enhancer trap-line, J0121 (J0121>>cals3m),
both the LR density and positioning were affected, supporting
the hypothesis that controlled intercellular symplastic connectiv-
ity among pericycle cells, founder cells and the neighboring tissues
is important for Arabidopsis LR patterning (Benitez-Alfonso et al.,
2013). This study provides an additional value to icals3m sys-
tem that it can be applicable in interfering symplastic domain
formation during organ development.

FUTURE PERSPECTIVES
In addition to large signaling molecules (e.g., proteins and RNAs),
small molecules such as nutrients and hormones also move
through PD. A recent quantification of PD flux in the root meris-
tem demonstrates that the PD flux is actually 10-fold higher than
reported in an earlier study (Goodwin et al., 1990; Rutschow et al.,
2011), suggesting that an efficient symplastic diffusion may be
a major route for the transport of nutrients in the meristem.
Interestingly, the solute flux is reduced in Arabidopsis line overex-
pressing PDCB1, a protein that promotes callose deposition at PD
(Rutschow et al., 2011), indicating that enhanced callose deposi-
tion at PD can inhibit solute movement. Therefore, icals3m might
be equally applicable for obstructing the symplastic movement of
metabolites through PD.

In summary, PD-mediated symplastic communication pro-
vides a major route for the movement of positional signals during
plant development, and callose turnover at PD confers an impor-
tant mechanism to regulate symplastic trafficking. The icals3m
system is an effective tool to hinder symplastic trafficking through
PD in a spatially and temporally regulated manner. This system
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FIGURE 2 | Applications of the icals3m system in studying the route of

miR165 and long-distance transport of cytokinins. (A,B) Schematic
diagram illustrating the use of icals3m in inhibiting the movement of miR165
from the endodermis to the vascular tissues. Only endodermis (en) of GT is
shown in the schematic figure. (A) Under non-inducible condition, the GT
expressed miR165a can diffuse freely from endodermis to the vascular
tissues and makes a concentration gradient. The cells directly connected to
the endodermis have high levels of miRNAs whereas miRNA levels decrease
in the cells that are away from the endodermis, as shown by color gradients.
(B) Upon cals3m induction in the GT, the miRNAs are getting trapped inside
the endodermis and their concentrations in the vascular tissues are reduced.

The color codes highlight miRNA concentrations in the endodermis and the
vascular tissues, before (A) and after induction (B). The miRNA signals in the
endodermis of estradiol-treated plants are higher than the mock-treated
plants whereas opposite pattern is seen in the vascular tissues. (C,D) The
utility of icals3m in analyzing the shoot-to-root transport of cytokinins in
Arabidopsis. 14C-labeled N6-benzyladenine (BA) was applied to the
hypocotyls (shown by red arrow) and accumulation of the radio labeled
isotope was analyzed in the root tips (highlighted by red box). (C) In wild-type
roots, a high level of radioactive signal is seen in the root tip which is
significantly reduced upon blocking the symplastic connectivity in the phloem
tissues by expressing icals3m under APL promoter (D; Bishopp et al., 2011).

has been successfully applied to inhibit movement of proteins,
miRNAs, cytokinin, and to interfere a symplastic domain forma-
tion during LR development. Therefore, we envision that it can
also be efficiently used for inhibiting the symplastic transport of
nutrients and metabolites. Moreover, the icals3m system could be
used widely, in combination with other approaches, to investigate
various molecular events relying on symplastic signaling.
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