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The development of compartments in eukaryotic cells and the
distribution of nuclear-encoded proteins underlies the expansion
of plant genomes, the proliferation of multigene families and the
specialization of cellular functions. The exploration of the pro-
teome of the cell in terms of the collection of its subcompartments
is therefore both a practical approach and also a function led
necessity that recognizes that proper interpretation of proteomic
data requires information about compartmentation of protein
machinery.

Subcellular proteomics decreases the complexity of proteome
discovery. With the typical compartment representing 500-4000
proteins, its analysis by gel based and MS based systems approach
the resolution of the analytical techniques. In contrast, whole
cell proteomes of 12,000-40,000 proteins extend well beyond the
ability of proteomic tools to resolve them, leaving whole cell
proteome studies being “tip of the iceberg” activities. Current
shotgun studies can identify ~500-3000 proteins with 2-20h
of MS time, making organelle proteomes and their quantitative
comparisons within the reach of many research laboratories that
either perform their own MS or use MS services.

Subcellular proteomics stands on the shoulders of decades of
biochemical research that has developed methods for isolation of
subcellular compartments. Extensive laboratory work involving
the tinkering with density, size, and charge separation techniques
has enabled incremental limitation of contamination in isola-
tion methods from a range of subcellular structures. However,
in depth MS studies over the last decade have also revealed that
typical 90-95% enrichment still leaves much room for contami-
nants in preparations (Eubel et al., 2007; Huang et al., 2009; Ito
et al., 2014). Studies from relatively abundant, or easily isolated
homogenous compartments dominate the literature. In this class
of structures are plastids, mitochondria, peroxisomes, and nuclei.
Currently over 8000 proteins have been experimentally identified
in these organelles in Arabidopsis (Tanz et al., 2013). Many fewer
studies have attempted to untangle the intracellular membrane
systems of ER, golgi, and PM. Separate techniques for these are
complex, lack high levels of enrichment, and the protein popu-
lations of these structures are often transitory and differ between
tissue types. Currently over 6000 proteins have been experimen-
tally identified in these membranes in Arabidopsis (Tanz et al,,
2013). All these structures bathe in the cytosol of the cell that
itself contains a large and complex proteome. Isolation of pure
cytosol without breaking organelles is extremely challenging and

thus cytosolic proteomes are best defined through subtractive
analysis of soluble proteomes against enriched organelle datasets.
Quantitative comparisons of fractions collected during the sub-
compartment enrichment process, or across gradient separation
of organelles, are key tools to differentiate the low level protein
component from the small fraction of a contaminating protein
from another location in the cell. Bringing together subcellular
proteomics studies in aggregation databases has been very reveal-
ing to confirm location of proteins for which there are multiple
conflicting claims in the literature (Tan et al., 2012; Tanz et al,,
2013).

Analysis of multiple subcellular proteomes from the same tis-
sues has begun to show the way in which multigene families have
dispersed particular protein classes across subcellular boundaries
to maintain translational, metabolic, signaling, and degradative
machinery through the cell. Subcellular proteomes and targeted
metabolic engineering are also showing how steps in metabolic
pathways have been, and can be, redistributed in plants (com-
pared to animals) to enable unique chemistries and accumulation
of end-products in plants.

This special research topic aimed to bring together knowledge
across sub cellular components and plant species to provide a
basis for accelerated research in plant subcellular protein research.
We have brought together a wide array of 26 publications includ-
ing original research articles, reviews, and mini-reviews. They are
focused on the model plants Arabidopsis (Parsons et al., 2012;
Albenne et al., 2013; Bussell et al., 2013; Carroll, 2013; Lee et al.,
2013a; Peters et al., 2013; Simm et al., 2013; Yadeta et al., 2013;
Ito et al., 2014), rice (Huang et al., 2013; Komatsu and Yanagawa,
2013) and medicago (Kiirika et al., 2013; Lee et al., 2013b; Simm
et al., 2013) as well as crop plants wheat, barley, maize, and
tomato (Casati, 2012; Komatsu and Yanagawa, 2013; Petersen
et al., 2013; Ruiz-May and Rose, 2013; Zhang et al., 2013). They
include studies of the easily isolated subcellular proteomes of
the chloroplast, mitochondria, peroxisome, and nuclei (Casati,
2012; Repetto et al., 2012; Bussell et al., 2013; Havelund et al.,
2013; Huang et al., 2013; Lee et al., 2013a; Narula et al., 2013;
Peters et al., 2013; Petersen et al., 2013; Simm et al., 2013), as
well as less easily isolated golgi, plasma membrane, cytosolic ribo-
some, and cell wall proteomes(Parsons et al., 2012; Carroll, 2013;
Takahashi et al., 2013; Yadeta et al., 2013; Zhang et al., 2013).
Articles have also begun to investigate sub-organellar proteomes
including the subcompartments of chloroplast (Simm et al,
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2013) and mitochondria (Peters et al., 2013), plasma membrane
microdomains (Takahashi et al., 2013), and cell wall plasmod-
esmata (Salmon and Bayer, 2012). In addition to cataloguing
these proteomes, researchers are beginning to investigate the post-
translational modifications present on proteins in these locations
(Havelund et al., 2013).
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