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Ubiquitylation is a reversible post-translational modification that is involved in various
cellular pathways and that thereby regulates various aspects of plant biology. For a long
time, functional studies of ubiquitylation have focused on the function of ubiquitylating
enzymes, especially the E3 ligases, rather than deubiquitylating enzymes (DUBs) or
ubiquitin isopeptidases, enzymes that hydrolyze ubiquitin chains. One reason may be the
smaller number of DUBs in comparison to E3 ligases, implying the broader substrate
specificities of DUBs and the difficulties to identify the direct targets. However, recent
studies have revealed that DUBs also actively participate in controlling cellular events
and thus play pivotal roles in plant development and growth. DUBs are also essential for
processing ubiquitin precursors and are important for recycling ubiquitin molecules from
target proteins prior to their degradation and thereby maintaining the free ubiquitin pool
in the cell. Here, we will discuss the five different DUB families (USP/UBRP UCH, JAMM,
OTU, and MJD) and their known biochemical and physiological roles in plants.
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INTRODUCTION

Post-translational modification through ubiquitin, or ubiquityla-
tion, plays a key role in many aspects of plant development, growth
and environmental- as well as immune responses (reviewed in;
Vierstra, 2009, 2012). Ubiquitylation must therefore be strictly
controlled and regulated at multiple steps during these processes.
The attachment of ubiquitin to the target proteins is carried out by
the sequential activities of the ubiquitin activating enzyme (E1),
ubiquitin conjugating enzymes (E2s), and ubiquitin ligases (E3s)
(reviewed in; Hershko and Ciechanover, 1998). The ubiquitylation
status of the substrate proteins is also controlled by the activity of
deubiquitylating enzymes (DUBs: also deubiquitinating enzymes
or deubiquitinases), hydrolases that remove covalently attached
ubiquitin molecules from substrates or hydrolyze the peptide bond
between ubiquitin molecules. Notably, whereas the Arabidopsis
genome encodes more than 1500 E3s (Vierstra, 2012), only around
50 DUBs can be identified. This may owe to the fact that in order
to deubiquitylate their targets, DUBs may not need direct inter-
action with the target proteins themselves but rather interact with
the ubiquitin chains and hence, DUBs can deal with a broader
range of ubiquitylated target proteins.

DUBs have multiple key roles in the regulation of cellular
events. Firstly, they are essential for the activation of ubiquitin
molecules after translation. Ubiquitin is translated either as tan-
dem linear ubiquitin repeats or fusion to ribosomal proteins in
Arabidopsis (Callis etal., 1990, 1995) and has to be processed to
single ubiquitin molecules by DUBs in order to be conjugated to
their substrates (Figure 1A). Secondly, they are responsible for the
recycling of the ubiquitin molecules by cleaving them off from
the substrates prior their degradation either by the 26S protea-
some or by vacuolar proteases (Figure 1B). In this way, DUBs
contribute to maintain the free ubiquitin pool in the cell. Thirdly,

DUBs can also actively regulate cellular processes by influencing
the stability of proteins, in that they rescue proteins from degra-
dation by deubiquitylating them before they are recognized by
the degradation machinery (Figure 1C). Finally, by removing the
ubiquitin molecule from its target, DUBs could affect the binding
affinity of the target protein to its interactor protein and thereby
regulate downstream processes (Figure 1D).

In eukaryotes, there are five DUB families that can be classified
according to the difference in their catalytic domains [Reviewed in
(Komander etal., 2009; Reyes-Turcu etal., 2009)]: the ubiquitin-
specific proteases (UBPs or USPs), the ubiquitin C-terminal
hydrolases (UCHs), the ovarian tumor proteases (OTUs), the
Machado-Joseph domain (M]JD)- or Josephine domain proteases
and the JABI/MPN/MOV34 (JAMM) proteases. All DUBs are
cysteine proteases, except DUBs of the JAMM family, which are
zinc metalloproteases that require a coordinated Zinc ion in their
active sites. Some of the DUBs display also hydrolysis activity
toward other ubiquitin-like proteins, like Nedd8/RUB (Kumar
etal., 1993; Callis et al., 1995; Hochstrasser, 1996), SUMO (Matu-
nisetal.,1996), or ISG15/UCRP (Loeb and Haas, 1992), suggesting
a complex regulatory mechanism surrounding ubiquitin- and
ubiquitin-like modifications.

In most of the cases, interaction of DUBs with their tar-
get proteins is mediated outside of the catalytic domain by
scaffold proteins or adaptor proteins whereas structural charac-
teristics of the catalytic domain mediate the specificity toward
certain ubiquitin linkages (reviewed in; Komander etal., 2009).
The structure of the catalytic domains also determines whether
the DUB cleaves ubiquitin chains from the distal or the prox-
imal end. Only a few cases were reported in which the DUB
were shown to interact directly with its ubiquitylated substrate
protein (reviewed in; Reyes-Turcu etal., 2009). In addition,
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FIGURE 1 | Cellular function of DUBs. (A) Ubiquitin is translated as
tandem ubiquitin repeats with several amino acid extension (depicted as X)
at the C-terminus or as fusion to ribosomal proteins in plants. DUBs
process the peptide bond between ubiquitin and its fusion protein to
produce ubiquitin monomers that can be then conjugated to its substrate
proteins. (B) DUBs can remove ubiquitin chains from its target proteins and
recycle ubiquitin molecules prior to degradation by the 26S proteasome
(left) or before the sequestration into the intraluminal vesicles of the
multivesicular body (right). Deubiquitylation can start at the distal end as
shown here or at the proximal end or in the interior of polyubiquitin chains.
(C) Removal of the ubiquitin chains by DUBs can inhibit their recognition by
the degradation machinery and thus rescues them from degradation
regardless whether the protein is a cytosolic proteasomal substrate (left) or
a membrane cargo (right). (D) Ubiquitylation can serve as an interaction
signal for the modified protein. By removing the ubiquitin moiety, DUBs
could change the binding affinity of its target protein to another protein,
either by enabling (left) or by disabling the binding of the unmodified protein
to its interacting protein.
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DUB activity can be regulated at the transcriptional or post-
translational level in that the DUBs themselves can be phos-
phorylated, SUMOylated or ubiquitylated (reviewed in; Huang
and Cochran, 2013). Thus, it is difficult to associate a spe-
cific DUB family to one cellular process, rather, the biochemical
and physiological function of each DUB has to be examined
individually.

As summarized in the following sections, accumulating evi-
dence indicate an important role of DUBs not only in yeast and
mammals but also in various aspects of plant biology. However, in
contrast to target protein regulation by the ubiquitylation machin-
ery, understanding of the molecular mechanisms of cellular and
physiological functions of DUBs in plants has just started.

DUB FUNCTION IN PLANTS

UBIQUITIN-BINDING PROTEINS

The UBPs form the largest subfamily of cysteine protease DUBs in
Arabidopsis with 27 members that can be classified in 14 sub-
families based on their domain organization (Yan etal., 2000;
Figure 2A). Most of the UBPs have additionally to their cat-
alytic domain further domains that enable them to interact
with different proteins, allowing UBPs to be involved in a
broad range of biological processes. However, to date, the

molecular functions of UBPs are far from being well resolved
in plants, UBP26 being the only member among this fam-
ily for which the target protein, Histone H2B, is identified
(Sridhar etal., 2007).

UBP1 and UBP2 are close homologs to each other and are
unique to plants (Yan et al., 2000). They are both active DUBs that
can hydrolyze K48-linked ubiquitin chains in vitro. T-DNA inser-
tion mutants ubpl and ubp?2 are phenotypically indistinguishable
from wild type plants under normal conditions or standard stress
conditions that were tested for known proteasomal mutants. How-
ever, when grown in the presence of the Arg analog canavanine,
mutants show stunted growth, shorter roots and display chlorotic
leaves, indicating that UBP1 and UBP2 are necessary for resistance
to canavanine.

UBP3 and UBP4 are highly homologous to each other (Doelling
etal., 2007). ubp3 and ubp4 single mutants do not show obvious
phenotypes whereas the double mutant ubp3ubp4 shows lethal-
ity, indicating redundant functions between UBP3 and UBP4.
UBP3 and UBP4 are probably required for pollen transmission
since ubp3ubp4is defective in gametogenesis and shows also pollen
germination defects.

UBP12 and UBP13 show activity toward K48-linked diubiqui-
tin (Ewan etal.,2011). The ubp12ubp13 double mutant, but not the
single mutants, showed lethality, indicating redundant functions
between UBPI2 and UBPI13. UBPI2 and UBPI3 were identi-
fied as genes that were up-regulated in response to Pst DC3000
infection (Brazma etal., 2003). Accordingly, RNAI line that has
reduced levels of both UBP12 and UBP13 shows increased disease
resistant upon P. syringae infection. These results indicated that
both UBP12 and UBP13 act as negative regulators in Arabidopsis
immune response.

Arabidopsis UBP14 is a functional homolog of the yeast Ubp14p
and is a ubiquitously expressed DUB that cleaves K48-linked
chains and Ub-X-Bgal, but not UBQI (Doelling etal., 2001).
The ubp14 mutant arrested growth during embryo development.
The arrested embryos accumulated high amount of ubiqui-
tylated proteins, indicating that UBP14 is an essential DUB,
required for proper embryogenesis. Interestingly, UBP14 was
also identified as the causative gene of an EMS mutant phos-
phate deficiency root hair defective 1 (perl) which is defective
in Pi deficiency-induced root hair formation (Li etal., 2010).
perl shows reduced levels of UBP14/PER1 protein, and failed
to respond to Pi starvation by increasing the frequency and
length of root hairs, implicating UBP14/PER1 function also in
the adaptation to changes in phosphate/nutrient availability in the
environment.

UBPI15 can cleave peptide bonds between tandem ubiquitin
and localizes both to the cytosol and the nucleus (Liu et al., 2008).
UBPI5 is mainly expressed in leaves, which is in accordance to
its proposed function in defining leaf pattern and shape of the
leaf margin by controlling cell proliferation. Many genes includ-
ing cell cycle or flowering genes are misregulated in the ubpl5
mutant, which may be the cause for the developmental defects
observed in this mutant. Further genetic analysis has suggested
that UBP15 and UBP16 might function redundantly. The ubp19
mutant was described as embyo-lethal, but no further analysis is
yet performed.
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FIGURE 2 | Phylogenetic analyses of Arabidopsis UBP-, JAMM-,
and OTU-domain proteinases. A NeighborJoining consensus tree
based on amino acid sequences surrounding the catalytic domain for
Arabidopsis UBP- (A), JAMM- (B) and OTU- (C) domain proteins is

c
At5¢67170
AMSH1 At1928120
AMSH?2 OTLD1 At2939320
At5g03330
AMSH3 At3g62940
At5g04250
RPN11  At1g38025 At3g22260
CSN5B At1g50670 At3g02070
— At3g57810

shown. Scale bars indicate 0.5 aa substitutions per site. DUBs
mentioned in the text are highlighted in blue. Note that CSN5A and
CSN5B shown in (B) are deneddylating- and not deubiquitylating
enzymes.

UBP26/SUP32 was first identified in a suppressor screen of
rosI-1, a mutant with enhanced gene silencing (Sridhar etal,
2007). UBP26 can deubiquitylate monoubiquitylated histone
H2B in vitro, and the ubp26-1 mutant accumulates ubiquity-
lated histone H2B. Further experiments suggested that histone
H2B deubiquitylation by UBP26 is important for heterochro-
matic histone H3 methylation and DNA methylation and hence,
for proper gene silencing. Further studies have identified the
MADS-box gene PHERESI to be probably under this regula-
tion. A T-DNA insertion line of UBP26 arrested growth at the
embryo stage, probably due to the misregulation of PHERESI
that is normally under the strict regulation of genomic imprinting
(Luo etal., 2008).

The ubp26-1 mutant also shows misregulation of the FLOW-
ERING LOCUS C (FLC) gene, which leads to an early flowering
phenotype of the mutant (Schmitz etal., 2009). Expression
of FLC is decreased in the ubp26-1 mutant and ubiquity-
lated H2B was observed to accumulate in the FLC chromatin.
Deubiquitylation of H2B by UBP26 probably keeps the lev-
els of H3K27me3 low, thereby allowing activation of FLC
gene expression. UBP26, together with OTLDI1 that is men-
tioned below, are examples in which DUBs play an active
regulatory function that is not directly associated with protein
degradation.

UBIQUITIN C-TERMINAL HYDROLASES
Deubiquitylating enzymes of this family contain a UCH
domain, first identified in the yeast Uchlp, which has a

structural feature distinct from other DUBs. Mutational stud-
ies based on human UCH proteins have revealed a size-
filtering mechanism that allows UCH proteins to hydrolyze
small ubiquitin adducts more efficiently than ubiquitin chains
or large ubiquitin fusion proteins (Popp etal, 2009). For
this specificityy, UCH proteins are thought to be mainly
involved in ubiquitin recycling rather than regulating sub-
strate proteins through deubiquitylation, though several mam-
malian studies also indicate regulatory roles for UCH family
DUBs.

In Arabidopsis, three UCH domain proteins were identified and
characterized (Yang etal., 2007). Arabidopsis UCH1 and UCH2
contain a related C-terminal extension of 100 aa that is miss-
ing in UCH3. UCH2 was shown to be able to cleave peptide
and/or isopeptide bonds bound to ubiquitin and showed activ-
ity toward K48 chains in vitro. UCH1 and UCH2 are expressed
ubiquitously and GFP-fusion proteins of UCH1 and UCH2 are
localized to the nucleus like the 26S proteasome, however, sta-
ble association with the proteasome could not be demonstrated.
Both UCH1 overexpressing plants as well as a uchluch2 double
mutant show a number of developmental phenotypes including
altered sensitivity to auxin and cytokinins. Moreover, auxin sig-
naling mutants axrl-3 and axr2 show both synergy with UCH]I
overexpressing lines and in accordance with this, stability of
AUX/IAA proteins were found to be specifically modified in the
UCH1 overexpressor and uchl-Iuch2-1 double mutant, indicat-
ing the involvement of UCH proteins in the auxin signaling
pathway.
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JAMM DOMAIN PROTEINS

The JAMM domain DUBs are zinc metalloproteases that con-
tain a catalytic MPN+ domain (Maytal-Kivity etal., 2002). The
MPN+ domain coordinates two zinc ions that activate a water
molecule to attack the ubiquitin isopeptide bond. One mem-
ber of the family, human AMSH-Like protease (AMSH-LP),
was the first DUB that was co-crystalized with diubiquitin
and structural studies provided insightful information regard-
ing the K63-specificity of this DUB (Sato etal., 2008). Eight
JAMM domain proteins are present in Arabidopsis (Figure 2B),
most of them being associated with key regulatory roles. CSN5,
which is encoded by two homologous genes CSN5A and CSN5B
in Arabidopsis, is a JAMM domain protease and the catalytic
subunit of the COP9 signalosome that specifically hydrolyzes
the ubiquitin-like molecule Nedd8/RUB, rather than ubiquitin
(Chamovitz et al., 1996; Cope et al., 2002).

RPN11 was first identified as a subunit of the 26S proteasome
regulatory particle in yeast (Glickman etal., 1998) and was subse-
quently shown to possess deubiquitylating activity (Verma etal.,
2002). Arabidopsis has one homolog of RPN11, which was shown
to be part of the purified Arabidopsis 26S proteasome (Book et al.,
2010). RPN11 function is primarily required for the deubiquityla-
tion of proteasomal substrates prior to degradation and recycling
of ubiquitin molecules.

In contrast to RPN11 and CSN5, AMSH3 is not a stable
subunit of a multi protein complex (Isono etal.,, 2010). It is
an essential DUB in Arabidopsis, since the amsh3 null mutants
show seedling lethality and a number of intracellular traffick-
ing defects, implicating its function in this pathway. AMSHI,
an AMSH3 homolog, and AMSH3 both interact with ESCRT-
III subunits (Katsiarimpa etal., 2011, 2013) and are probably
involved in the deubiquitylation of plasma membrane cargos at
the multivesicular body. Furthermore, mutants of both amsh1 and
ESCRT-III show defects in autophagic degradation, indicating that
the ESCRT-III- and AMSH-dependent trafficking pathway is also
contributing to the regulation of autophagy (Katsiarimpa etal.,
2013).

Arabidopsis BRCC36A and BRCC36B are homologs of mam-
malian BRCC36, a DUB that was shown to interact with a protein
complex containing BRCA1 (Dong etal., 2003) and is recruited
to the site of DNA damage (Inui etal., 2011). Though Arabidop-
sis brec36 mutants are viable and phenotypically indistinguishable
from wild-type plants, the brcc36a mutant shows defects in intra-
and inter-chromosomal homologous recombination as well as
in DNA crosslink repair (Block-Schmidt etal., 2011). BRCC36
was also shown to be epistatic to BRCA1, indicating its involve-
ment in BRCA1 regulation, probably as part of a multi protein
complex including BRCC36 and BRCA1, as proposed in other
organisms.

OVARIAN TUMOR PROTEASES

Ovarian tumor proteases are cysteine protease DUBs that contain
the OTU-domain, which was first identified in the product of the
drosophila ovarian tumor gene and is found in virus, bacteria and
eukaryotic organisms (Kumar etal., 1993). A recent study using
structural and enzymatic analyses of OTU proteases have revealed
the mechanism of ubiquitin linkage specificity of human OTU

DUBs (Mevissen etal., 2013). The Arabidopsis genome contains
12 OTU domain-containing genes (Figure 2C) most of which are
uncharacterized yet. OTUs are involved in a variety of cellular
processes in yeast and mammals but in plants so far only one
OTU-protein, OTLD1, was characterized in relation to a specific
biological process.

OTLD1 is an otubain-like DUB that was found in a yeast
two-hybrid screen using the histone demethylase KDM1C as bait
(Krichevsky etal., 2011). Thus OTLDI, like UBP26 mentioned
above, is implicated in histone deubiquitylation. OTLD1 was
shown to bind to histones and possess DUB activity specifi-
cally toward ubiquitylated H2B but not toward H2A. In both a
KDM1C mutant swpl-I and an otld] T-DNA insertion mutant,
gene derepression was observed, indicating that KDM1C and
OTLD1 function together to repress gene expression via histone
deubiquitylation.

MACHADO-JOSEPH DOMAIN

MJD DUBs are named after the chronic degenerative Machado—
Joseph disease. In MJD patients, a cysteine proteinase DUB
called Ataxin 3 is modified in its poly Q tract, which prob-
ably causes alteration in its structure and interaction with
other proteins (reviewed in; Costa Mdo and Paulson, 2012).
Ataxin 3 contains the catalytic DUB domain named Josephine-
domain and is implicated in proteasome-dependent protein qual-
ity control. In silico search in the Arabidopsis genome database
shows three Josephine domain-containing proteins (AT1G07300,
AT2G29640, and AT3G54130), the function of which has yet to be
elucidated.

FUTURE RESEARCH ON PLANT DUBs

Although many lines of evidence suggest that not only ubiqui-
tylating enzymes but also DUBs can actively regulate substrate
fate, elucidation of the molecular function of individual DUBs
in plants has just begun. Studies in the past decade, mainly con-
ducted using yeast and mammalian models, have shown important
house keeping- as well as diverse regulatory functions of DUBs in
different pathways.

DUBs like the yeast Doa4p (Dupre and Haguenauer-Tsapis,
2001), human and plant AMSH proteins (McCullough etal.,
2004; Isono etal., 2010; Katsiarimpa etal., 2011) and human
USP8/USPY (Mizuno etal., 2006; Row etal., 2006) were shown
to be involved in the regulation of cargo endocytosis and stabil-
ity. However, it is still an open question whether ubiquitylated
endocytosis cargos are direct targets of these DUBs.

DUBs regulate their substrates not only by determining their
proteolytic fate. For example, as it was also shown in plants, his-
tone H2A or histone H2B ubiquitylation status is controlled by
multiple DUBs (Joo etal., 2007; Sridhar etal., 2007; Zhu etal,,
2007; Nakagawa etal., 2008; Schmitz etal., 2009). The ubiquity-
lation status of histones affects their methylation status and thus
controls gene expression in the corresponding chromatin region.
In TGFR signaling, two human DUBs, USP9x, and USP15, were
shown to control monoubiquitylination of their substrates Smad4
and R-SMADs, respectively. The ubiquitylation status of these pro-
teins affects their DNA-binding capacity and hence downstream
gene activation (Dupont etal., 2009; Inui etal, 2011). It is an
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intriguing future topic whether plant DUBs are also part of the
conserved or plant-specific signaling cascades.

As these examples show, in addition to the understanding of
the spatio-temporal regulation of DUBs themselves, the iden-
tification of DUB substrates is crucial for the elucidation of
individual DUB function. Since structural studies indicate that
in most of the studied cases the interaction of DUBs with the
ubiquitin chain, but not with their specific target proteins, is the
prerequisite for deubiquitylation, the identification of bona fide
DUB targets is not an easy task. With the advance in quanti-
tative proteomics coupled with the use of suitable mutants and
biochemical tools, it is to be expected that we will get a better
insight into plant DUB targets in the near future. Further studies
should reveal the sophisticated balancing mechanisms of ubiq-
uitylation and deubiquitylation by which substrate fate and thus
important intracellular and physiological processes in plants are
regulated.
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